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Robert Graham Clark 1
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ABSTRACT

A well-designed sampling plan can greatly enhance the information that can be

produced from a survey. Once a broad sample design is identified, specific design

parameters such as sample sizes and selection probabilities need to be chosen. This

is typically achieved using an optimal sample design, which minimises the variance

of a key statistic or statistics, expressed as a function of design parameters and

population characteristics, subject to a cost constraint. In practice, only imprecise

estimates of population characteristics are available, but the effects of this variability

are usually ignored. A general approach to sample allocation allowing for imprecise

design data is proposed and evaluated. The approach is based on the availability of

two sets of design data which can act as a check on each other.

One application is to stratified sampling, where estimated stratum variances

may be highly variable. Pooling strata into groups may reduce this variability, at

the possible cost of some inefficiency. Proportional allocation, ignoring differences

between stratum variances, could also be used. The new approach enables a data-

driven compromise between all three. Simulation results based on real data show

useful gains in a hypothetical farm survey, business survey and household survey of

a subpopulation.

1Robert Clark is Associate Professor at the Centre for Statistical and Survey Methodology,

University of Wollongong, NSW Australia 2522 (email rclark@uow.edu.au).
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1. INTRODUCTION

In practice, sample designs are always based on limited or imprecise information.

Perhaps the most common example is the optimal allocation method first proposed

by Neyman (1934) for stratified simple random sampling without replacement. The

variance of an estimator of the population total is equal to

V =
H∑
h=1

VhN
2
hn
−1
h (1)

plus a term which does not depend on the stratum sample sizes nh, where Vh is the

population variance and Nh is the population size of stratum h. The total cost of

the survey can often be approximated by

C = C0 +
H∑
h=1

Chnh (2)

where C0 are fixed costs and Ch are cost coefficients which may be estimated based

on operational information (for example interviewers’ pay rates) or from cost data

from previous surveys. The allocation which minimises (1) subject to the cost (2)

being fixed at Cf satisfies nh ∝ Nh

√
Vh/Ch. In practice, however, the values of Vh

are unknown, and estimates are substituted. This will be called a plug-in allocation,

since the optimal allocation is derived assuming knowledge of Vh, but estimates are

then substituted.

Several authors have commented that plug-in allocations are less efficient than

the ideal optimal allocation. Lohr (2009, p.90) commented that if the V̂h used in

allocating stratified samples are very imprecise, then the plug-in design may do

worse than the proportional allocation nh ∝ Nh which makes no use of {V̂h}. Smith

et al. (2003) highlighted the importance of allocation to strata in business surveys

in the United Kingdom. They noted that “the population standard errors ... must
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be estimated from previous samples. In practice these estimated samples could

themselves be extremely volatile ... Allocations based strictly on such data would

be unlikely to be optimal in practice, so ‘smoothing’ would often be needed to achieve

more robust results.” In the related problem of choosing the within-cluster sample

size in two-stage sampling Cochran (1977), summarising Brooks (1955), found that

a large pilot sample of around 150 units may be needed to achieve precisions within

10% of the ideal optimal design.

Another difficulty in applying the plug-in allocation is in estimating the variance

that will be achieved, in advance of running the survey. The plug-in allocation n

depends on the estimated variances V̂ and is therefore itself variable. The values of n

would normally be conditioned upon once the survey is conducted, and the achieved

variance is then defined by equation (1). This quantity is normally estimated by

substituting both the plug-in n and the estimated variances V̂ into (1). It is clear

that this has the potential for bias, as the values of n−1h and V̂h are likely to be

negatively correlated, meaning that the pre-survey estimate of V will tend to be

overly optimistic.

The potential shortfalls of the plug-in method are clear, and suggest two ques-

tions: under what conditions is the variability of V̂ likely to have an appreciable

effect on either the achieved variance V or the pre-survey estimation of V ? and can

the plug-in allocation be improved upon? These are the topic of this paper. The

premise of the proposed approach is that two design datasets are available, which

can act as a check upon each other. Section 2 will define a general formulation of

the allocation problem and the approach of using a training and validation sample.

The approach is loosely based on the statistical learning approach to model choice
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(e.g. chapter 7 of Hastie et al., 2009). Theoretical results are difficult to derive, but

two simple theorems will be stated. Section 3 is a simulation study. Stratum pop-

ulation variances for times 1, 2 and 3 are generated by multiplying auto-correlated

lognormal variables for group and for stratum. The parameters of the simulation

model are obtained by analysing three real datasets. Section 4 then extends the

simulation study by varying these parameters, to identify when the new method

provides useful gains. Section 5 contains conclusions.

The findings will be of interest to researchers and companies who design and

carry out surveys, and who must make robust design decisions using borrowed data

or small pilot studies, as well as to national statistics institutes who have ready

access to repeated survey data for design purposes.

2. A STATISTICAL LEARNING APPROACH TO OPTIMAL ALLOCATION

2.1 Motivating Case: Neyman Allocation with Grouping of Strata

Consider the following scenario, which will form the basis of the simulation study

later in this paper. The aim is to design a survey to be conducted at time 3. Design

data is available from a similar survey conducted at time 2. Data is also available

from the survey at time 1. A stratified sample design is used, where strata naturally

form into groups. The aim is to minimise

Vtot(3) =
H∑
h=1

Vh3n
−1
h (3)

subject to fixed total sample size, where Vht and V̂ht refer to the population and

estimated variances for stratum h at time t, for t = 1, 2, 3, and nh depends only on

{V̂h2 : h = 1, . . . , H} and {V̂h1 : h = 1, . . . , H}. Three possible allocations are:

(i) Plug-in optimal allocation with nh ∝ Nh

√
V̂h2. This is the most common ap-
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proach in practice.

(ii) Grouped optimal allocation with nh ∝ Nh

√
V̂k2 for stratum h in group k, where

V̂kt is a population-weighted average of the stratum variance estimates in group k.

This allocation might be used if the stratum estimates V̂h2 were thought to be too

variable to be useful within groups.

(iii) Proportional allocation with nh ∝ Nh. This would be used if both V̂h2 and V̂k2

were thought to be too variable to be of any use in allocation.

We will suppose that nh is to be a compromise between these three alternatives:

nh ∝ Nh

√
λ1V̂h2 + λ2V̂k2 + λ3V̂2 (4)

where V̂2 is a population-weighted mean of V̂h2 over all h, and λ1 + λ2 + λ3 = 1.

The values of λ would then smoothly interpolate between allocations (i), (ii) and

(iii), with λ = (1, 0, 0) corresponding to the usual plug-in allocation, λ = (0, 0, 1)

corresponding to proportional allocation and so on.

The value of λ should be chosen so as to give a low value of Vtot(3) in (3). A

naive approach would be to minimise

∑
h

N2
hnh

(
V̂2,λ

)−1
V̂h2 (5)

with respect to λ, writing nh = nh

(
V̂2,λ

)
to emphasise that nh is determined by

V̂2 and λ. Unfortunately, this approach will always result in λ = (1, 0, 0), i.e. the

plug-in approach - this is a special case of the Neyman optimal design described in

the first paragraph of the paper. The problem is that nh

(
V̂2,λ

)
would be expected

to be positively correlated with V̂h2, unless λ = (0, 0, 1), so that the loss function in

no way penalizes the variability caused by plugging in estimates when calculating
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nh. The loss function ∑
h

N2
hnh

(
V̂1,λ

)−1
V̂h2 (6)

is proposed, to remove (or at least reduce) this difficulty by using separate training

estimates V̂1 and validation estimates V̂2. The value of λ is chosen to minimize (6).

The allocation nh = nh

(
V̂2,λ

)
would then be implemented for the time 3 survey

with this λ. An estimator similar to (6) could also be used to estimate the variance

that will be achieved in time 3. The values of nh in (6) should be approximately

uncorrelated with Vh2, thereby avoiding the bias of (5). (This will be proven in

subsection 2.3 for a more general formulation of the design problem.)

This motivating case may seem to be very specific, but in practice variances

for many statistics of interest from many possible designs are special cases of the

Neyman function (1). For example, the variance under two-phase sampling for

stratification is of this form, with a linear cost model often being assumed (Cochran,

1977, p330). The design parameters are the first phase sample size and the second

phase stratum sample sizes. Two-stage sampling is another special case. A sample of

n1 clusters (e.g. areas) is selected, followed by a sample of n2 units (e.g. households

or people) within selected clusters. The variance is then of the form (1) and a linear

cost model is often assumed (Cochran, 1977, p277) although more complex cost

models are sometimes used. Stratified two-stage sampling can also be written in

the form of (1), where the design parameters are the sample sizes of clusters and of

units in each stratum (Clark & Steel, 2000), as can two stage sampling with unequal

probabilities of selection for each cluster and different within-cluster sample sizes

(Clark, 2009).

Equation (4) defined one choice of the smoothing function n (λ,v). There are a

6



variety of other ways that this function could be defined. For example, (4) could be

generalized to allow a hierarchy of groupings of strata. If strata were industry by

size by state (h), then groups could be defined by industry by size (k), and broader

groups by just size (l). The smoothing function (4) could be extended to include

V̂l2 as well as V̂k2. Another example might be a stratified repeated business survey,

where allocations may be calculated using many previous instances of the survey.

An efficient design might be obtained by estimating Vh using a weighted average

over many past surveys, with λ consisting of these weights.

To allow for all of these possibilities, a more general formulation of the allocation

problem is needed. Subsection 2.2 will now define this, and propose a general

statistical learning approach.

2.2 General Formulation of Allocation Problem and Proposed Approach

The allocation problem is defined as the choice of a set of design parameters

n = (n1, . . . , nH) which specify the sampling method. The aim will be to choose

n to achieve a low value of L (n;V ) subject to a cost constraint Cf = C (n) for a

known function C(.). Typically n would be subject to some range constraints also,

for example nh > 0. The function L(., .) is a loss function which would typically

be the variance of a statistic of interest, or a linear combination of several such

variances. The vector V would be a set of population parameters. For example,

n might be the sample sizes for each of H strata in a stratified sample design,

the cost constraint might be a fixed total sample size n =
∑N

h=1 nh and V might

be the population variances in each of H strata, or n might contain probabilities

of selection in an unequal probability design, or sample sizes by stage or phase in
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multi-stage or multiphase designs. The ideal design is obviously:

nideal = arg min
n:C(n)=Cf

L (n;V ) (7)

but in practice V would be unknown. Instead, the current practice is to use the

plug-in allocation:

nplugin = arg min
n:C(n)=Cf

L
(
n; V̂

)
. (8)

The difficulty with the plug-in methodology is that it leads to more volatile

designs, where the variability in V̂ results in a loss greater than L (n;V ). To manage

the variability in V̂ , the following approach is proposed. The design variables n

based on an estimate v of V will be defined to equal n (λ,v), where n(., .) is a

function chosen by the sample designer such that λ is a p-vector controlling the

“complexity” of the design. The details of how this complexity is defined would

depend on the particular survey, but it would generally be related to the variation

in the probabilities of selection across the population. The function would be such

that one value of λ, say λ0, would result in n (λ0,v) being the plug-in allocation,

while on the other extreme, λ1 would be such that n (λ1,v) does not depend on v

at all. For example, in the special case described in subsection 2.1, λ0 = (1, 0, 0)

and λ1 = (0, 0, 1).

The aim is to choose a suitable value of λ, which results in something close to

the plug-in design when V̂ is highly precise, and in a simpler design when V̂ is a

poor estimate. Ideally, λ should minimise L (n;V ), or to be precise

L
(
n
(
λ, V̂

)
;V
)
. (9)

The trouble is, we can’t reliably estimate this loss using a single estimate of V , since

L
(
n
(
λ, V̂

)
; V̂
)

(10)
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is by definition minimised by λ = 0, giving the plug-in allocation. The problem is

that (10) is negatively biased for (9), because the same estimates V̂ used to calculate

n
(
λ, V̂

)
are then used to evaluate this allocation.

To improve on the plug-in design, it will be assumed that independent training

and validation estimates of V , V̂train and V̂valid are available. For example, these

could consist of estimates of V calculated using two previous instances of a repeated

survey. Then we calculate λ to minimise

L
(
n
(
λ, V̂train

)
; V̂valid

)
(11)

and implement an allocation based on this λ. This approach will be shown by

simulation to give sensible allocations with lower values of (9).

The preceding development is similar to the discussion of model choice in chapter

7 of Hastie et al’s 2009 book on statistical learning. Models should be chosen

with an appropriate size, and this is achieved by fitting the model using a training

dataset, but evaluating its predictive performance using an independent validation

dataset. The loss estimates based on the validation dataset are used to choose

tuning parameters which control the model’s size or complexity. While the concepts

and motivation are similar, the approach discussed here differs from the statistical

learning literature in several respects. In particular, in modelling: the loss function is

usually a measure of the model’s predictive performance, the complexity parameters

are based on measures of model size or complexity, and training and validation

datasets are often constructed as repeated partitions of a single dataset. In contrast,

the training and validation datasets here will typically consist of estimates of V

obtained from surveys run at different times, because changes in the population

over time may be a major source of error in V̂ .
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2.3 Two Theorems

This subsection states two theorems with proofs in the appendix. The first result

is that (6) is unbiased subject to regularity conditions. The second is that (5) is

negatively biased. Strong assumptions are made in each theorem, to enable clear

and interpretable results. Real surveys are likely to be messier, and this is reflected

in the simulations in sections 4 and 5, which do not satisfy the assumptions of these

theorems, but which still show useful gains from the new approach.

Theorem 1. If

(A1) E
[
V̂train − V

]
= E

[
V̂valid − V

]
= 0;

(A2) E
[
V̂valid − V

∣∣∣V̂train ] = 0;

(A3) E
[
L
(
n, V̂

)
− L (n,V )

]
= 0 for any constant n and any V̂ satisfying E [v − V ] =

0; and

(A4) n = n
(
λ, V̂train

)
then E

[
L
(
n, V̂valid

)
− L (n,V )

]
= 0 for any λ.

Condition (A1) of Theorem 1 states that the training and validation estimates

of V are both unbiased, which seems reasonable, and would be satisfied if these

datasets were obtained by stratified simple random sampling and the simple stratum

variances were used. Condition (A3) states that the expected value of loss function

using unbiased estimates of V equals the loss function with V , when n are non-

random. This is satisfied for theNeyman function (1). Condition (A2) is that the

training and validation datasets are independent in a particular way, and condition

(A4) is that the allocation be based on the training sample only.
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The Theorem means that (6) is unbiased for any value of λ and hence can be

used in order to optimize λ. In contrast, Theorem 2 states that the plug-in estimator

(5) is negatively biased for all λ except the value or values of λ corresponding to

not using any of the design data in the allocation.

Theorem 2. Conditions (A1) - (A4) from Theorem 1 are assumed as well as

(A5) n (λ,v) = arg minn Lλ (n,v) for some function Lλ(., .).

Then E
[
L
(
n, V̂train

)
− L (n,V )

]
≤ 0 for any λ, with strict inequality except

when L
(
n (λ,v) , V̂train

)
does not depend on v, which would normally only occur

if λ was such that no design data was used in calculating n.

Assumption (A5) is that n can be expressed as the minimiser of a loss function

depending on λ. This is the case with the loss function used in 2.1, 3 and 4.

Theorem 2 means that the usual plug-in approach is biased in favour of values of

λ such that n is more dependent on the design data. This results in a sub-optimal

choice of λ and in the variance that will be achieved being under-estimated at the

design stage. Theorem 1 suggests that the proposed statistical learning approach

can solve both problems.

3. SIMULATION STUDY WITH PARAMETERS BASED ON SURVEY DATA

3.1 Model for Population and Sample Stratum Variances

Population and sample variances for each strata within groups of strata for three

time periods will be generated by an assumed model. Various allocation methods

will be calculated and evaluated for each generated set of stratum variances. The

population variances Vht will be the product of a group variance Akt and a within-
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group stratum factor Bht as follows:

log (Vht) = µ+ Akt +Bht where stratum h belongs to group k

A ∼ N
(
0, σ2

groupRgroup

)
B ∼ N (0, σ2

stratumRstratum)

A and B independent


(12)

whereA is the vector of all Akt over k and t, andB is the vector of all Bht over h and

t. The correlation matrix Rgroup has 1s on the diagonal and is assumed to be such

that Ak1t and Ak2t are independent when k1 6= k2, and corr [Akt1 , Akt2 ] = ρ
|t2−t1|
group .

Similarly, the correlation matrix Rstratum has 1s on the diagonal and is assumed to

be such that Bh1t and Bh2t are independent when h1 6= h2, and corr [Aht1 , Aht2 ] =

ρ
|t2−t1|
stratum.

Given the stratum population variances, Vht, the stratum sample variances will

be generated as independent scaled chi-square distributions, with

V̂ht ∼ Vhtχ
2
d/d (13)

where d are the degrees of freedom.

There are 6 parameters which can be varied in the simulation: µ, σ2
group, σ

2
stratum,

ρgroup, ρstratum and d, as well as the number of groups, K, and the number of strata

per group, H1 The first of these, µ, will just be assumed to be zero, since it affects

variances and estimated variances as a simple multiplicative factor, and so does not

affect the relative performance of the different allocation methods.

Stratum population sizes Nkht were set to be inversely proportional to the true

variances V̄kh =
∑3

t=1 Vkht/3, because this is approximately the case in some equal

aggregate stratification methods. (Equal stratum population sizes were also simu-

lated with similar conclusions, but are not shown in this paper.)
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3.2 Empirical Fitting of Model for Stratum Population Variances for Three Datasets

The 5 parameters which can be varied in the simulation give rise to an astro-

nomical number of plausible scenarios which could be simulated. This subsection

describes the fitting of model (12) and (13) to three datasets. Subsection 3.3 will

then describe simulations based on these estimated model parameters.

The first dataset was extracted from the Australian Agriculture and Grazing In-

dustries Survey 1991-1995, conducted by the Australian Bureau of Agricultural and

Resource Economics. Sample data from the two largest industries (cropping special-

ists, and mixed cropping and sheep) were used. Strata were defined by industry, size

and state (5 largest states in Australia). Three size categories were defined for each

industry by year cell, such that the sums of the square root of total land cleared

were equal for each size. (This is an example of an equal aggregate approach to

size stratification - see for example Valliant et al., 2000, section 6.5.2). The aim is

assumed to be to estimate the population total of Annual Total Cash Income from

Crops. Groups were defined as industry by size, since these are thought to be more

important explanators than state, although state also matters due to differences in

climate, accessibility and remoteness etc. Strata with less than a sample size of 6

were excluded, leaving a total of 3189 farms in 39 strata in 9 groups over five years.

The second dataset consisted of data on enterprises with up to 100 employ-

ees from the Business Longitudinal Survey, conducted by the Australian Bureau

of Statistics for the financial years 1994-95, 95-96, 96-97 and 97-98. Only in-

dustries Metal Product Manufacturing, Machinery and Equipment Manufactur-

ing, Machinery and Motor Vehicle Wholesaling and Personal and Household Good

Wholesaling were used, as these had large enough sample sizes to avoid very small

13



strata. Strata were defined by industry, size and type of legal organisation (incor-

porated/unincorporated). This last variable is often used as a stratifying variable,

but is thought to be less distinguishing than industry and size. Hence groups were

defined as industry by size. The size variable was defined based on total employment

from 1993, with equal aggregates of the square root of employment in each industry.

The variable of interest was assumed to be annual total business income. This gave

a sample of 7328 businesses in 32 strata in 16 groups over four years.

Finally, 2001 and 2006 Counts of the Pacific Population by meshblock were

obtained from the 2006 New Zealand (NZ) Census. The 2006 NZ meshblock file

records a total of 4.03 million usual residents in approximately 41,000 meshblocks

(small areas containing on average about 100 people), of whom approximately 6.6%

are recorded to be in the Pacific population. It is assumed that the aim is to estimate

means and proportions for the Pacific population, using a sample from the general

population, stratified by meshblock. In this situation, subject to some assumptions,

the relevant population stratum variance is proportional to the proportion of the

meshblock population who belong to the Pacific population (Kalton & Anderson,

1986). Strata are grouped into Area Units (larger areas containing on average

about 2000 people). To facilitate computation, a sample of 250 area units and 10

meshblocks from each were selected for analysis. This is a somewhat unrealistic

scenario, as there are too many meshblocks for these to be an appropriate stratifier.

In reality, two-stage sampling could be used, with meshblocks as primary sampling

units. However, the resulting variance expression is approximately equivalent to the

one assumed here (Clark, 2009), so applying model (12) to this dataset still gives a

useful insight into which parameter values are likely to crop up in real surveys.
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The first step in the empirical analysis was to fit model (12) by maximum like-

lihood, assuming that V̂ht is equal to Vht. This was done because of the difficulty

of specifying a model for V̂ht which would fit these datasets, due to the variation

in stratum sample sizes and the skewed, heavy-tailed distributions of the farm and

business datasets. To correct for this, an empirical bootstrap bias-correction was

applied with 30 resamples (e.g. Chernick, 2008, pp.26-27). The correlation pa-

rameters ρstratum and ρgroup, were first transformed using the hyperbolic arctangent

transformation, to ensure that the corrected estimates lay between -1 and 1. Bias

correction was not required for the Census dataset. Table 1 shows the parameter

estimates with bootstrap standard errors in brackets.

Table 1: Estimates of Parameters of Model (12) for Three Datasets

Dataset σ2
group σ2

stratum ρgroup ρstratum CV (%) CV (%)

(eAkt) (eBkht)

Farms Survey 1.27 (0.26) 2.21 (0.38) 1.00 (0.00) 0.89 (0.03) 160 285

Business Survey 3.76 (0.27) 2.28 (0.25) 1.00 (0.00) 0.99 (0.00) 647 296

NZ Pacific Pop’n 0.88 1.57 0.98 0.44 119 195

It is notable from the table that population variances vary greatly across strata,

as shown by the values of σ2
group and σ2

stratum. The coefficient of variation (CV) of the

group and stratum factors (eAkt and eBkht) are equal to cvgroup =
√
eσ

2
group − 1 and

cvstratum =
√
eσ

2
stratum − 1 (e.g. Johnson et al., 1994, p.212). These values are well

above 100%. This is perhaps not surprising, particularly in the surveys of financial

variables for farms and businesses, where data are known to be right-skewed and

heavy tailed. The stratum and group factors are generally stable over time, with

autocorrelations of around 0.9 and 1 respectively.
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The parameter d in (13) was estimated by a small parametric simulation based

on the farms and business datasets discussed in Section 3.2. In both cases, the unit

values of the variable of interest (which will be denoted Ykhti for unit i in stratum

h, group k and time t) can reasonably be modelled as a mixture of zero values

and lognormally distributed values (this was confirmed visually using q-q plots). It

will be assumed that P [Ykhti = 0] = p, and log (Ykhti) ∼ N (αkht, γ
2) conditional

on Ykhti > 0. To obtain an estimate of d, 10,000 samples each containing n values

of Y were generated from the fitted model, where n was 6, 10 or 20, these being

reasonably typical stratum sample sizes. Observations of Y were truncated at the

97.5th percentile reflecting that business surveys normally use some form of outlier

correction, for example winsorization. 10,000 observations of V̂ were then calculated,

and fit against (13) by matching of the first two moments, with the true variance

and d being unknown parameters. Table 2 shows the resulting estimates of d. The

estimates of p and γ are also shown. The model implies that the CV of V̂ht given

Vht is cvest =
√

2/d and the estimated CVs are also shown in Table 2.

Table 2: Estimates of Parameter d in (13) and Associated Information

Survey P̂ [Y = 0] SD(log(Y)) (σ) Estimated d.f. d̂ Estimated CV% of V̂

n=6 n=10 n=20 n=6 n=10 n=20

Farms Survey 0.00 0.65 3.2 5.7 11.7 79 59 41

Business Survey 0.32 1.14 1.7 2.9 5.8 109 83 59

3.3 Simulation Results

For each simulation, the statistical learning allocation, defined by (4), was cal-

culated, with λ chosen to minimise (6). The plug-in Neyman, plug-in grouped

Neyman and proportional allocations were also calculated. All simulations and em-
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pirical analyses were conducted in the R statistical environment (R Development

Core Team, 2012). The mvtnorm package was also used (Genz et al., 2012). The

tables and figures in subsection 3.3 and section 4 can be fully reproduced using the

programs which are contained in the supplementary material, but the datasets used

in subsection 3.2 are not available because of confidentiality restrictions.

1000 sets of stratum sample variances were simulated using models (12) and

(13). The parameters were obtained from the analyses described in 3.2. For the

simulations based on the farms and business survey, K and H1 were set to 20 and

5 respectively. For the NZ Pacific population example, K = 5 and H1 = 20 were

used. Table 3 shows the achieved variances of the different allocation methods, (3),

relative to proportional allocation. The statistical learning allocation is the best

option in all cases. Particularly strong gains are apparent in the business survey

example with 6 or 10 units per stratum (13% and 35% reduction in the variance

compared to the plug-in Neyman allocation), in the farms example when the design

datasets have 6 units per stratum (10% reduction in variance), and in the NZ Pacific

example (12% reduction in variance).

It is of interest to estimate the variance that will be achieved in the time 3

survey at the design stage. The usual variance estimator is (5), which Theorem 2

states is biased. An alternative would be to use (6), which is unbiased provided

the assumptions of Theorem 1 are satisfied. However, one of the assumptions of

Theorem 1 is that Vt are stationary over time, whereas in practice there may be

systematic movement over time, for example due to inflation in financial variables.
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Table 3: Variance achieved by Different Allocation Methods relative to Proportional Alloca-

tion for Simulations with Parameters based on Three Datasets and Several Values of nh

Dataset and Assumed nh in Allocation Method

Design Datasets Plug-in SL Plug-in Grouped SL with Ideal λ

Neyman Neyman

Farms with nh = 6 0.730 0.654 0.774 0.651

Farms with nh = 10 0.648 0.623 0.759 0.621

Farms with nh = 20 0.628 0.611 0.750 0.610

Businesses with nh = 6 0.821 0.535 0.557 0.531

Businesses with nh = 10 0.589 0.514 0.536 0.512

Businesses with nh = 20 0.501 0.485 0.514 0.483

New Zealand Pacific Popn 0.934 0.822 0.850 0.820

The following estimator allows for this to some extent by use of a ratio adjustment.{∑
h

N2
hn
−1
h V̂h1

}{∑
h

NhV̂h2

}
/

{∑
h

NhV̂h1

}
(14)

Table 4 shows the ratio of the mean of the estimated variance (over 1000 simulations)

to the true variance given by (3), for the naive variance estimator and the improved

version (14). The parameter settings are the same as in Table 3. The naive variance

estimator has substantial negative bias, of up to 58%, particularly when Neyman

allocation is used and nh is small in the design datasets. The proposed variance

estimator is very nearly unbiased in all cases.

4. FURTHER SIMULATIONS

As in subsection 3.3, 1000 design datasets for three time periods were generated

using models (12) and (13). The previous section described the results when the

parameters of the simulation models were based on three survey datasets. This

section investigates the range of possible outcomes by varying each of the parameters
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Table 4: Expected Value of Variance Estimate divided by True Value for Naive and Proposed

Variance Estimators, defined by (5) and (14), for Simulations with Parameters based on Real

Datasets and Several Values of nh, for Three Different Allocation Methods

Dataset and Assumed nh Naive Variance Estimator Proposed Variance Estimator

Plug-in SL Plug-in Grou- Plug-in SL Plug-in Grou-

Neyman ped Neyman Neyman ped Neyman

Farms with nh = 6 0.574 0.692 0.849 1.008 1.004 1.008

Farms with nh = 10 0.695 0.752 0.877 1.021 1.018 1.019

Farms with nh = 20 0.733 0.776 0.885 1.016 1.016 1.014

Businesses with nh = 6 0.425 0.782 0.899 0.993 0.990 0.994

Businesses with nh = 10 0.659 0.826 0.933 0.998 0.998 0.998

Businesses with nh = 20 0.833 0.889 0.969 1.007 1.004 1.002

New Zealand Pacific Popn 0.655 0.836 0.983 0.998 1.002 1.005

cvgroup =
√
eσ

2
group − 1, cvstratum =

√
eσ

2
stratum − 1, ρgroup, ρstratum, cvest =

√
2/d, K

and H1. To reduce computation and simplify presentation of results, a baseline

scenario was based on the empirical results from subsection 3.2: cvgroup = 1.5,

cvstratum = 1, ρgroup = 1, ρstratum = 0.9, cvest = 0.5, K = 10 and H1 = 5. One

parameter at a time was varied relative to the baseline, in the ranges: cvgroup ∈

{0, 0.2, 0.4, . . . , 3}, cvstratum ∈ {0, 0.2, 0.4, . . . , 2}, ρgroup = 1, ρstratum = 0.9, cvest ∈

{0, 0.1, 0.2, . . . , 1.2}, K ∈ {2, 3, . . . , 30} and H1 = 5.

Figure 1 shows the average achieved variance, defined by (3), for three allocation

methods, divided by the value for proportional allocation. Each plot in the figure

plots the three relative efficiencies against the value of one simulation parameter.

Generally Neyman does better than Grouped Neyman, except when cvstratum is

small (< 0.75), cvest is high (> 0.5), or ρstratum is less than 0.7. Otherwise Grouped

Neyman does better, and Neyman can do spectacularly poorly.
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Figure 1: Efficiency (estimated from 1000 simulations) relative to proportional allocation of

three allocation methods: plug-in Neyman allocation, the new statistical learning method (SL),

and plug-in grouped Neyman. Each plot varies one parameter at a time from baseline level.

Baseline levels of parameters indicated by vertical dashed lines.

It is striking that the new statistical learning method (SL) is superior to Neyman

in all cases, and to grouped Neyman in almost all cases. Thus, the method is able

to choose an appropriate interpolation between the Neyman, grouped Neyman and

proportional allocation, and to do better than any of them in almost all cases. The
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improvement of SL over Neyman (which would be the usual approach in practice) is

most dramatic when either: strata in the same group are homogenous (low cvstratum)

and hence the signal to noise ratio in V̂kht is poor; the CV of V̂kht given Vkht (cvest)

is high; or the lag 1 correlation (ρstratum) is small.
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Figure 2: Ternary composition plots showing λ1, λ2 and λ3 in the statistical learning allo-

cation as estimated from 200 simulations. Best possible values of λ, based on all 200 simulations,

plotted as *. Number of groups (K) and strata per group (H1) varied. All other parameters held

at baseline level

Figure 2 contains ternary composition plots produced by the compositions pack-

age in R (Boogaart et al., 2011). The values of λ = (λ1, λ2, λ3) as estimated by

200 simulations are shown, with 2 sets of values of K and H1. These coefficients

are non-negative and sum to 1, with λ1 = 1 indicating that the SL allocation is the

same as Neyman, λ2 = 1 indicating SL=Grouped Neyman, and λ3 = 1 indicating

Proportional. The vertices of the triangles represent these three extremes, with the

closeness to each vertex reflecting the corresponding element of λ. The value of λ3

is generally small, and becomes smaller as K increases. The SL allocation is gener-

ally closer to Neyman than to Grouped Neyman. There is some variability in the

values of λ obtained by the SL method using the time 1 and time 2 data, roughly
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distributed about the best possible λ. The variability is smaller in the right hand

plot where K is larger.

5. DISCUSSION

When two sets of design data are available, a statistical learning approach to

optimal allocation can be adopted. In simulations based on real datasets, gains of

up to 35% in the variance were achieved. The gains are greatest when the autocor-

relations of the true stratum variances are weak or the stratum degrees of freedom

are small. Moreover, the new allocation method is more subjectively robust, and

would be closer to most survey designers’ judgement, as it reduces the variability of

sampling rates caused by volatile design data.

Standard pre-survey estimation of variances that will be achieved are negatively

biased by 15-55%. This bias was virtually removed by the use of a second design

dataset.

If only one design dataset is available, the new approach could be applied by

repeatedly randomly splitting the dataset in two. However this would only allow

for the sampling variability of the design data, and not for population change over

time. The usefulness of such an approach requires further study.

The statistical learning approach can be applied to any loss function of interest,

and is therefore very versatile. The simulation study and examples were based on

the Neyman loss function with a linear cost constraint. This case is worth special

consideration, because stratified simple random sampling remains one of the most

versatile and widely used sample designs in practice, and imprecision in estimated

variances can be significant. Moreover, the great majority of other sample designs

used in practice, including multi-stage and multi-phase sampling, have variances
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of the same algebraic form as (1). Future research will focus on applying the new

approach to more complex design problems.

APPENDIX: PROOF OF THEOREMS

Proof of Theorem 1:

E
[
L
(
n, V̂valid

)
− L (n,V )

]
= EE

[
L
(
n, V̂valid

)
− L (n,V )

∣∣∣ V̂train]
(A4) implies that n is a constant conditional on V̂train and (A2) states that

E
[
V̂valid − V

∣∣∣V̂train ] = 0. Hence (A3) implies that

E
[
L
(
n, V̂valid

)
− L (n,V )

∣∣∣ V̂train] = 0. The result follows.

Proof of Theorem 2: Assumption (A5) means that

L
(
n, V̂train

)
= L

(
n
(
λ, V̂train

)
, V̂train

)
≤ L

(
n (λ,V ) , V̂train

)
with equality obtaining only if L

(
n, V̂train

)
= L (n,V ). Taking expectations, we

get

E
[
L
(
n, V̂train

)]
≤ E

[
L
(
n (λ,V ) , V̂train

)]
(15)

with strict inequality except when L
(
n, V̂train

)
does not depend on the value of

V̂train. Assumptions (A1) and (A2) then imply that the right hand side of (15) is

zero, giving the result.
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