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Summary. Multilevel models have been developed and applied for individuals in groups, such as
schools or areas, but these models tend to not consider the networks of an individual’s connections
within and between groups; the social network has largely been ignored as an additional source of
dependence in multilevel modelling that is carried out in social statistics. Typical models for network
dependencies in the social networks literature, such as network autocorrelation models, have largely
ignored other sources of dependence, such as the school or area in which an individual lives. To
bridge this divide, a multiple membership modelling approach for jointly investigating social network
and group dependencies is presented that allows social network and group dependencies on individual
responses to be investigated and compared, and which can be analysed using MCMC estimation in
standard statistical software for multilevel modelling. This approach is used to analyse a subsample of
the Adolescent Health dataset from the US, where the two response variables of interest are individual
level educational attainment and self-assessed health status, and the three individual level covariates
are sex, ethnic group and age. Individual, network, school and area levels are included in the anal-
ysis. The network level can be represented with various configurations. The results suggest that the
network should not be ignored from a statistical perspective when studying variations in educational
attainment, as ignoring this level impacts on the estimates of variation at the other levels (school, area,
individual), as well as having some impact on the point estimates and standard errors of the estimates
of regression coefficients for covariates in the fixed part of the model. From a substantive perspective,
this approach provides a flexible and practical way of investigating the network level, and comparing its
relative importance to other group levels such as areas or schools.
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1. Introduction

Many social populations have a multilevel structure, such as individuals in households and areas,
students in schools, workers in organisations, or observations made on individuals at different time
points. Multilevel models have been developed to analyse data collected from these populations
(see, for example Snijders & Bosker (1999), Goldstein (2003)), and to allow relationships between
variables to be investigated at a particular level, often the individual level, whilst taking into
account effects operating at other levels of the population structure. In some situations, the aim of
the analysis is to assess whether an individual level relationship differs from one group to another.
For example, is the relationship between prior and current examination performance stronger in
some schools than others? Multilevel modelling can also be used as a model-based approach for
analysing data that have been collected from a multi-stage sample, when the target of inference is
the individual level relationship between a set of variables. In this approach the primary sampling
unit is included as a level, and the population structure may be regarded as a nuisance to be taken
into account in the analysis of an individual level relationship, so that regression coefficients are
estimated efficiently and appropriate standard error estimates are calculated. However, more often
in multilevel analysis the population structure is of direct substantive interest, and the aim of the
analysis may be twofold: to estimate an individual level relationship given the complex population
structure, and to measure the nature and extent of variations in variables of interest at the various
levels of this population structure.

Numerous studies have been carried out to investigate household level, school level, or area
level variations in individual level responses for social, educational and health outcome variables
using multilevel models. However, the social network has been largely ignored in the multilevel
modelling literature as an additional source of dependence in the context of these other levels.
Network autocorrelation models have been developed for social network dependencies in the social
network literature, adapted from models originally developed for spatial dependencies (Cliff & Ord
1975, Ord 1975). Whilst network autocorrelation models take the social network dependencies into
account, they essentially ignore other levels of the population structure unless these are added to
the model as fixed effects, which can be problematic when there are many groups. For network
autocorrelation models it is also assumed that the response variable is continuous. Moreover,
network autocorrelation models do not allow an easy assessment of the relative share of variation
in an individual response at the individual, network and group levels.

This paper illustrates some new approaches for assessing social network dependencies in individ-
ual response variables - academic performance and self-assessed quality of health, while including
other group dependencies such as the school or area to which an individual belongs, by applying
multiple membership models (Hill & Goldstein 1998) to the Adolescent Health (hereafter, ‘Add
Health’) dataset (Harris et al. 2009). The main aim of the analysis is twofold: to estimate an over-
all individual level relationship between a set of variables, and to measure the nature and extent of
variations in individual level responses at various levels of the population structure. There are two
other aims of the analysis: an assessment of the consequences, in terms of model parameter estima-
tion and subsequent statistical inference, of ignoring different features of the population structure
in the analysis, and a comparison of multiple membership models with existing models for network
autocorrelation.

An empirical study has been carried out using a subsample of the Add Health data for one
state in the US, focusing on two individual level response variables: academic performance and self-
assessed health status, each of which is related to three individual level covariates: gender, ethnic
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group and age. Friendship networks are available for the individuals in the Add Health data. The
levels of the population structure that are studied alongside the social network are: area (defined
by US county) and school, as well as the individual level.

In the multiple membership modelling approach for social networks, individuals are ‘members’
of cliques (sub-networks of a particular size where every individual is directly connected to one
another), or ego-nets (a particular individual in the network, and all the other individuals in the
network to which they are directly connected). Each individual may ‘belong’ to more than one of
these groups, or in some cases not be a member of any groups - for example population network
isolates, or members of the sampled network with very few connections to other sampled individuals.
Members of the network with few connections are more likely to occur in sampled networks, because
the friends that sampled individuals nominate may be out-of-sample. Other group dependencies,
such as those at the school or area level are added as additional crossed levels in multiple membership
models, which are a type of multilevel model.

Where possible in this paper, the results of the multiple membership modelling approaches
are compared with existing approaches for taking into account social network dependencies: in
particular, network autocorrelation models. In addition, comparisons are made with a single level
regression model, which ignores all features of the population structure. It is of interest to assess
whether such a naive statistical modelling approach would lead to different substantive conclusions
when compared with those models that account for population structure, as well as assessing the
consequences for statistical estimation of ignoring levels of the population structure above the
individual.

The remainder of the paper is organised as follows. In Section 2, a description of the data
structure and preparation is given, together with some descriptive results. In Section 3 a discussion
of the modelling approaches is given, including a brief review of network autocorrelation models,
and a definition of the multiple membership models for social network and group dependencies.
In Section 4, the results of analysing various models are given. Finally, a discussion is given and
conclusions are drawn in Section 5.

2. Data description and preparation.

The data are from a restricted access Add Health dataset for Wave I (Harris et al. 2009), and
were analysed in a secure data environment. Add Health is a longitudinal school-based sample of
school students in grades 7-12 (typically aged 11-16) in the US, which commenced around 1995.
Information collected includes a range of health outcome variables, academic performance, and indi-
vidual (i.e. student level) characteristics, as well as school and geographical details, and friendship
networks.

Two dependent variables are analysed, and both are individual level outcome variables. The
first is a measure of academic performance, which was generated by converting the grades from four
subjects (graded A-D) into four five-point scales: (0: did not take subject, 1=D or less, 2=C, 3=B,
4=A) and then summing them, so that the resulting academic performance score ranges from 0-16.
15 students achieved scores of zero for this measure, so there were very few students that did not
take any subjects. We felt it was better to include all sampled students in the analysis, to retain as
much of the sampled network as possible and because all students answered the self-assessed health
status question; the small percentage of students with a score of zero (1.5%) will have minimal
effect on the overall parameter estimates in the models for academic performance. These scores
were then standardised to have mean zero and standard deviation 1 and are called ‘ztotscore’ in
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the tables. The second dependent variable is a self-assessed measure of quality of health. Survey
participants were able to grade their quality of health into ‘poor’,‘fair’,‘good’ and ‘excellent’. This
dependent variable has then been dichotomised into ‘excellent’ or ‘good’ health = 1 and ‘fair’ or
‘poor’ health = 0.

There are three covariates: ethnicity, which is coded as a binary indicator as to whether the
student is black American or not, gender and age. The first two covariates are categorical, and the
third is continuous, and is centred in the modelling results that appear in Section 4. A subset of
the Add Health data was used for ‘State 7’, a state of the US which comprises 968 valid sampled
cases for individuals in 10 schools, and in 13 areas at the county scale. Whilst the sample is evenly
distributed in the 10 schools, the individuals are not evenly distributed in the 13 areas. Instead,
some areas have very large sample sizes, and others are very small, because Add Health is a school-
based rather than area-based sample. There are also two other finer scales of geography in the
Add Health dataset: ‘neighbourhood 1’ and ‘neighbourhood 2’, where the latter definition is the
finest geographical scale, though both these neighbourhood definitions often include only 1 sample
unit per-area. Whilst substantively these geographical scales may be interesting to study, there was
insufficient data to consider these areas further as levels in the models, as it would be very difficult
to disentangle individual and area level effects at these scales when there is often only one sample
unit per-area.

The friendship networks are potentially available for all pupils in the sample. Each individual is
asked to name up to five male and five female friends. These friends may also be in the sample, or
people can be named that are out-of sample. The networks are available in the Add Health data as
adjacency (node) lists. Directed binary adjacency matrices were extracted from these lists using R,
via a routine for converting adjacency lists to adjacency matrices. For a sample of size n, the binary
adjacency matrix, D has dimensions n × n. An element dij in the matrix D takes the value 1 if i
nominates j as a friend and 0 otherwise. Individual j may reciprocate by nominating i as a friend,
or may not, so that the directed adjacency matrix is not usually symmetric. Diagonal elements
dii, which would indicate self-friendship nominations, are assumed to be zero. These adjacency
matrices were restricted to other individuals in the sample, and also in State 7. Because of these
restrictions, around half the sample used here are social network isolates. This does not present
problems in the modelling approaches discussed later, but it is worth noting that the structure of
a sampled network is different from a population network; a sample network is likely to be a lot
sparser and less structured than the corresponding population network. As well as obtaining the
directed adjacency matrix, D, a symmetrized (undirected) version of this matrix, Ds, was obtained,
and was used in the clique set analyses below. For a symmetrized matrix, Ds, if i nominates j as
a friend, if j nominates i as a friend, or if both nominate each other as friends, the element dij is
given a value of 1. Thus, the symmetrized matrix is, by definition, symmetric, and tends to have
much higher ‘density’ (have more of the possible network connections present) than the directed
adjacency matrix, D, from which Ds was derived.

Where the network level was considered, the multiple membership models applied in Section 4
involved clique memberships for undirected cliques of minimum size 2 (clique-2) and of minimum
size 3 (clique-3), as well as ego-net membership. When clique-2 and clique-3 definitions are used
together in the models, the clique-2 level represents dyads only, and the clique-3 level represents
cliques of size at least 3. In theory, cliques of minimum size 4, or other network configurations could
be specified in this approach, but there are too few of these to include as a level in the models for
these sample data. The clique sets for these two thresholds were obtained using UCINET 6 (Borgatti
et al. 2002). The program implements the Bron & Kerbosch (1973) algorithm to find all Luce and
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Perry (1949) cliques of a specified minimum size. In addition, the ego nets for each individual were
extracted from the adjacency matrix; the ego net for each individual is the corresponding row of
the adjacency matrix. Once the ego nets and clique sets had been obtained, weight matrices were
produced for each individual. These weights work as follows. If an individual is a member of 4
cliques of minimum size 3, their weights for each of these clique-3s will be 1

4 . Where ego-nets are
used in the models a similar approach is used: if an individual (ego) had three friends in the sample
(alters), each of these alters would each be given a weight of 1

3 in the weight matrix.

2.1. Descriptive Statistics

Attributes.

The total sample size is 968, comprising 510 (52%) females and 161 (17%) black Americans.
The average age in the sample is 14.76 with a minimum of 10 and a maximum of 19. The response
variable academic performance (ztotscore) has been standardised to have mean zero and standard
deviation 1. For the dichotomous health response variable, 703 (72.6%) self-assessed their health
as ‘excellent’ or ’good’, the remainder self-assessing their health as ‘fair’ or ‘poor’.

Social Networks.

Each row of the directed network represents the ego net of an individual. Thus if individual i,
represented by row i of the matrix D, nominates four friends, then the four off-diagonal elements
in row i of D that represent these friends will take the value 1 and the remaining n - 4 will take
the value zero. Thus it is easy to identify the ego net of each individual. In the models that follow
the ego net of each individual is only represented by their friends, so that ego is not included in
their own ego-net, though alternative weighting schemes could be used. In the weighting schemes
used here, if an individual (ego) has 3 friends in the sample, each of these is given a weight of 1

3 in
the weight matrix that is used part of the information required to set up the multiple membership
model in multilevel modelling software, such as MLwiN.

A triad census was carried out in which every trio of actors is selected in turn and the nature of
their connections, if any exist, is tabulated. The triad census results for the directed and undirected
adjacency matrices are given in Table 1 in the Appendix. Definitions of these different types of
triads can be found in Holland & Leinhardt (1976). For both directed and undirected networks,
there are many empty triads (type 003) and there are 138 complete triads (type 300). In the
undirected network a complete triad is equivalent to a clique of exactly size 3. These results suggest
that identifying cliques in the network and using cliques as network definitions in the modelling
approaches makes sense.

Groups.

The distribution of people in areas, where the areas here are counties, is uneven. The distribution
is shown in Table 2 in the Appendix. Some areas, e.g. county 38, have a large sample size, whilst
some other areas contain only one observation. There are six areas with sample sizes greater than
50. The sample is much more evenly distributed in the 10 schools included in State 7, because the
sample design is a school based study (See Table 3).
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3. Models

3.1. Multiple membership models

Social network and group dependencies can be taken into account through a random effects mod-
elling approach via a multilevel model, known as the ‘multiple membership’ model . We adapt the
notation of Browne et al. (2001, eqn. 5), for a multiple membership model.

The multiple membership model for social network dependencies may be defined by one level of
grouping (e.g. membership of ego-nets) as:

yi = x′
iβ +

∑
j∈group1(i)

w1i,ju
(2)
j + ei

i = 1, ..., n group1(i) ⊂ (i, ..., J1)

u
(2)
j ∼ N(0, σ2

u(2)), ei ∼ N(0, σ2
e) (1)

In Model (1), yi is an individual level response. In this model formulation this response is assumed to
be continuous, xi is a vector of fixed covariates, β is the vector of their regression coefficients. Here,

group1(i) is the set of network subgroups to which i is a member. The term
∑
j∈group1(i) w1i,ju

(2)
j

involves a set of J1 random effects u
(2)
j , where J1 is the total number of network subgroups for the

network definition included in the model e.g. the total number of cliques of minimum size 3. The
weight given to each individual for their network subgroup membership is w1i,j . These weights sum
to 1 for each individual. The random effects at the individual and network levels are assumed to
be uncorrelated.

The multiple membership model for social network dependencies may be defined by two levels
of network subgrouping (e.g. membership of cliques of minimum size 2, and membership cliques of
minimum size 3) as:

yi = x′
iβ +

∑
j∈group2(i)

w2i,ju
(3)
j +

∑
j∈group1(i)

w1i,ju
(2)
j + ei

i = 1, ..., n group1(i) ⊂ (i, ..., J1), group2(i) ⊂ (i, ..., J2)

u
(3)
j ∼ N(0, σ2

u(3)), u
(2)
j ∼ N(0, σ2

u(2)), ei ∼ N(0, σ2
e) (2)

The term
∑
j∈group1(i) w2i,ju

(3)
j involves a set of J2 random effects u

(3)
j , where J2 is the total number

of network subgroups for the second network definition included in the model. The weight given to
each individual for their membership of this second set of network subgroups is is w2i,j , and these
weights sum to 1 for each individual.

Finally, the multiple membership model may be extended to allow for both social network and
group dependencies. As an example, the model for social network dependencies defined at two
levels, Model (2) is extended to include two additional levels: a school level, with random effects

u
(5)
school(i) and a geographical level, as defined by ‘county’, with random effects u

(4)
area(i). The area
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and the school are not assumed to be nested in this model formulation:

yi = x′
iβ + u

(5)
school(i) + u

(4)
area(i) +

∑
j∈group2(i)

w2i,ju
(3)
j +

∑
j∈group1(i)

w1i,ju
(2)
j + ei

i = 1, ..., n group1(i) ⊂ (i, ..., J1), group2(i) ⊂ (i, ..., J2)

u
(5)
school(i) ∼ N(0, σ2

u(5)), u
(4)
area(i) ∼ N(0, σ2

u(4))

u
(3)
j ∼ N(0, σ2

u(3)), u
(2)
j ∼ N(0, σ2

u(2)), ei ∼ N(0, σ2
e) (3)

Here school(i) is the school to which the student i belongs, and area(i) is the area in which student
i lives.

An alternative way of accounting for the group dependencies is to extend model (1) or (2) to
include fixed indicator variables for the groups and this may be appropriate where the number of
groups is small and all groups are included in the sample. An example of this approach, where
there are fixed indicator variables for schools, rather than adding school as a level (and areas are
not included in the model), can be found in Table 8.

Models (1), (2) and (3) can all be estimated in the software MLwiN (Rasbash et al. 2009). The
model parameters are estimated via Monte Carlo Markov Chain (MCMC) (Browne 2009). Prior
to fitting the models, data preparation to identify the groups in the networks, such as ego-nets,
or cliques, and the corresponding membership weights, as discussed above in Section 2, must be
undertaken. Model (3) was fitted to the Add health data in the form as specified above with
area, school, network and individual levels all defined, and such a model was run as a null model
(no covariates) and as a model with fixed covariates included. In this model, the two levels of
network dependencies were clique-2s and clique-3s, based on the undirected adjacency matrix. A
slightly reduced form of Model (3) was also fitted, with just one level of network dependencies: the
ego-nets of each individual, as derived from the directed adjacency matrix. Linear formulations of
these models (formulation as shown above) were estimated for the academic performance outcome
and logistic versions of these models (formulation not shown) were run for the dichotomous health
outcome. The results are discussed in the next section.

Fitting these models allows us to fulfil the two main aims of our analysis. Firstly, to estimate
the individual level relationship between the two individual level outcome variables academic per-
formance and self assessed health status with the three individual level covariates: gender, ethnic
group and age, having taken the clustering of academic performance in networks, schools and ar-
eas into account. Secondly, to investigate the extent of variation in academic performance at the
individual, network, school and area levels, both before and after the inclusion of individual-level
covariates. In addition, reduced versions of this model were also fitted, including a single level
regression model. That is, a model that ignores school, area and network dependencies, as well as
models that ignore some of the levels above the individual. This enables us to fulfil one of the other
aims of this paper; to investigate the consequences of ignoring particular features of the population
structure in statistical analysis. The results are given in Section 4.

3.2. Network Autocorrelation models
Other models exist for social network dependencies, and these have been applied in the social
networks literature; in particular, network autocorrelation models. See Leenders (2002) for a review.
One such network autocorrelation model is the network effects model, also known in the geographical
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literature as the spatial effects model (Doreian 1980), and defined as:

Y = ρA1Y + Xβ + ε

ε ∼ N(0, σ2
ε In) (4)

where Y is a n × 1 vector of response variables and A1 is an n × n matrix of weights to reflect
the connections for the n individuals. The definition of A1 will affect the estimated model pa-
rameters, as Leenders (2002) noted. One such definition, as used here, is to derive A1 from the
row-standardised directed adjacency matrix, so that this is the same weight information as used in
the multiple membership models based on ego-nets, as defined above. The autocorrelation param-
eter, ρ, measures the strength of association between an individual’s response and the responses to
which the individual is connected. The same value of ρ is assumed for all of these connections. X
is a n × p matrix of fixed covariates, with associated regression coefficients β, and ε is a vector of
error terms. If there are no connections between individuals, or if ρ is zero, Model (4) reduces to
an ordinary least squares regression equation.

A variation of this model, the network disturbances model, also known in the geographical
literature as the spatial disturbances model (Doreian 1980), is defined as

Y = Xβ + ε

ε = ρA2ε+ ξ

ξ ∼ N(0, σ2
ξIn) (5)

In Model (5) the parameters in common with Model (4) are defined identically. The matrix A2

is an n× n weight matrix to reflect the connections for the n individuals, which could be identical
to A1. Again, if there are no connections between individuals, or if ρ is zero, Model (5) reduces to
an ordinary least squares regression equation. Finally, it is possible to formulate a combined model
based on (4) and (5), so that network autocorrelation is jointly modelled through the response and
error terms, and where the matrices A1 and A2 may be the same, or different. Models (4) and (5),
and the combined model, may be estimated using the sna and spdep packages in R (Butts 2008,
Bivand 2010). In the literature, the models tend to perform similarly in terms of statistical measures
(Doreian 1980, Leenders 2002). The decision to fit the network effects model, network disturbances
model, or some combination of the two, should therefore be made on substantive grounds.

3.3. Different modelling approaches
As well as the social network dependencies, other group dependencies may also be present. For
example, in the Add Health data, there are geographical groups at various scales (neighbourhoods,
and counties), as well as schools. In the fixed effects approaches of Models (4) and (5), it is possible
to also add the groups as fixed effects via a set of indicator (dummy) variables. This approach is
often appropriate when there is a relatively small number of groups. Some of these models were
estimated below with schools as groups. This enabled us to compare the network disturbance model
and multiple membership models for an example that included network and group dependencies
(see Section 4 for a discussion). When modelling the cliques in the multiple membership models, it
would be possible to just include one term e.g. just for clique-3s without clique 2s, and this may be
appropriate if we had a particular substantive theory about cliques of size 3 or more with respect
to the individual level responses.
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The decision to fit network autocorrelation models or multiple membership models when other
groups are present is likely to depend on two things: one substantive, one practical. Firstly, from
a substantive perspective, if interest focuses in estimating the nature and extent of variation in
individual responses at the network ‘level(s)’ compared with other group levels, then the multiple
membership model may be preferable because variance components are explicitly included as model
parameters and it is possible to model other group levels alongside the networks as random effects
and compare the extent of variation at the different levels. However, if the substantive focus of the
analysis is on estimating the individual level relationship and regarding the networks as a nuisance
then the network autocorrelation modelling may be preferable. Moreover, the feedback correlations
obtained from these models may have some substantive interpretation in some contexts. Secondly,
from a practical perspective, if the number of groups such as schools or areas is large, and/or if
the sample is unevenly distributed within the groups, the multiple membership modelling approach
may be more statistically efficient. Also, it is relatively straightforward to define and fit the multiple
membership model for a binary response, as we demonstrate in the results section, whereas it is
not straightforward to fit the network autocorrelation models for binary responses. We compare
the two approaches in the context of the Add Health data in the next section for the academic
performance response variable, which is continuous.

4. Results.

We began by fitting multiple membership models for network and group dependencies with stan-
dardised academic score (ztotscore) as the dependent variable. In Tables 4 and 5 we defined the
network through the clique-2 and clique-3 membership based on the undirected adjacency matri-
ces. All multiple membership models presented in this paper were estimated via the Monte Carlo
Markov Chain (MCMC) algorithm using default flat priors for the fixed effects and a chain of
20,000 samples, implemented in MLwiN. In all models, standard (gamma) priors were assumed for
the variance parameters.

Table 4 shows null models with only a constant term in the fixed part, and Table 5 adds the
three individual level fixed covariates. Because both clique membership terms are included in the
models, the clique-2 represents dyad membership only, and clique-3 represents individuals that are
members of cliques of minimum size 3. Because the networks are based on sample data, and only
a limited number of friend nominations per-individual is allowed in the Add Health survey, there
are very few cliques of size 4 or more.

Network, school and area levels were included in the ‘complete’ models (penultimate columns
of Tables 4 and 5) to meet our two aims, of estimating the individual level relationship between
academic performance and the individual level covariates, having taken into account the population
structure above the individual level, and to investigate the nature and extent of variations in
individual level responses at the individual and group levels. In Table 4 for the null models, we
found that the best-fitting models according to the Deviance Information Criterion (DIC) involved
the network and the school level above the individual level (DIC=2700). For the model that
included schools areas and networks there was little difference in the goodness of fit (DIC=2701)
when compared with the model that only includes network and school levels, probably reflecting
the overlap of networks and areas in this example. The areas may not perform quite as well as a
level when schools are not included because of the uneven sample distribution in areas (DIC=2716).
The final column of Table 4 shows the results for the null model with a DIC of 2750 suggesting
a much worse model fit when no population structure above the individual level is accounted for
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in the null model. These goodness of fit results suggest that the population structure above the
individual level, including the network level, should not be ignored in statistical analysis when
studying variations in academic performance.

The penultimate column of Table 4 shows the results for the model that includes networks,
schools and areas. It can be seen that most of the variation is between individuals but there is also
considerable variation at the network level for both clique definitions, suggesting clustering within
dyads (clique-2s) and within more clustered parts of the network (clique-3s). There is also more
variation between schools than between areas (variance components of .052 and .036 respectively).

In Table 4 we also removed features of the population structure from the models to assess the
consequences of ignoring one or more levels of population structure in this example. If just schools
or just areas are modelled above the individual we see that the individual variance component
increases compared with the cases where the network level is also included, but the school or area
level components do not change much. This is in contrast to the findings of Tranmer & Steel (2001)
who found that ignoring a geographical level between the individual level and a more aggregated
area level affected both estimates in an example based on UK census data. However this may reflect
the fact that the levels were hierarchical in the case of census data. In the case of the Add Health
data, the levels are cross-classified.

Looking now at the model that adds the three individual level covariates in Table 5, we see
a pattern fairly similar to that described for Table 4 in terms of model goodness of fit. The
penultimate column of Table 5 gives the model results with all three levels above the individual:
school, area and network, included and we find that for the individual level relationship between
academic score and the three covariates (Black, Female, Age) there is little change in the coefficients
and only a minor reduction in their standard errors, although the coefficient for ‘black’ changes in
its point estimate (though it is non-significant in both cases) and the standard error increases a
little for the model that includes population structure above the individual level.

In terms of the share of the variation at the network, area and school level (penultimate column
of Table 5) the pattern is similar to that described above for the null model (Table 4). In all models,
the coefficient estimates for female and age are found to be statistically significant, and conditional
on the addition of the covariates to the model, the school and area level variance components reduce.
The clique-3 variance components are also reduced by the inclusion of covariates and, interestingly,
in the model with all features of the population structure included (penultimate column) there is
now a slightly larger variance for the clique-2 level than the clique-3 level, though both component
estimates are reduced, compared with the corresponding results from the null model. At these
levels, the covariates may be partly explaining homophily (people with similar characteristics tend
to be more likely to be connected (McPherson et al. 2001)) in the networks with respect to age, sex
and ethnic group.

In terms of model fit, the model with all features (penultimate column) shares the lowest DIC
with the model that includes areas and social networks, but not a school level (DIC=2674); this
may suggest that the individual characteristics added to these models are to some extent clustered
within schools and are thus accounting for some of the school differences. Interestingly, in this
example a similar conclusion would have been reached regarding the individual level relationship
between academic performance and the three covariates: black, female and age, if a single-level
regression model had been estimated with the individual level data (final column), as was found
with the more sophisticated models in Table 5 that take into account population structure. However,
the single level regression would not allow any potentially important substantive inferences to be
made about variation in academic performance at the levels of the population structure above the
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individual. The fact that models that allow for population structure above the individual level have
a statistically better fit, suggests that these additional levels should not be ignored. One reason
why the individual level relationship between academic performance and the covariates might be
similar could be the large number of social network isolates in this dataset.

In Table 6, we carried out an analysis similar to that of Tables 4 and 5, but this time we defined
the network level as ego-net membership based on the directed adjacency matrix, D, with the
weight matrix calculated as a row-standardised version of D. We found that defining the network
by ego-net as opposed to cliques results in slightly better goodness of fit and similar coefficients
for the individual level covariates and their standard errors for the model as found, for example,
in Table 5 for the corresponding models where networks were defined via cliques. The individual
level variance component estimate reduces more in the ego-net than for the corresponding clique
model, however, and the network variance is higher for the single ego-net component than for either
of the clique estimates for the corresponding model in Table 5. The school and area level variance
components are similar for the full model in Table 6 as for the comparable model where the network
is defined via cliques (penultimate column of Table 5).

In Table 7, we applied the multiple membership models to the dichotomous individual level
health response ‘health good/excellent’ = 1 vs. ‘health fair/poor’ = 0. Table 7 summarises the
results of a multilevel logistic regression model, where the response is now dichotomous. There is
evidence that the social network and group levels are important with respect to variations in health
in this example because the DIC statistics are smaller when compared with a model that ignores
population structure above the individual level; we note that in this case it appears that most of
the variation appears to be at the area and school levels rather than at the network level for the
health response. In the single-level model shown in the final column of Table 7 in which population
structure above the individual is ignored, we note that the coefficient of female would be found
to be statistically non-significant at the 5% significance level, whereas this coefficient would be
statistically significant at the 5% level in the corresponding models that include networks, schools
and areas, regardless of whether the network is defined via cliques or ego-nets.

In Table 8, we compared the multiple membership and network autocorrelation model as closely
as possible for this data-set for modelling social networks and groups by fitting a model with just
networks and schools as levels above the individual. We did this as follows. Because the sample is
evenly distributed across the schools, we created nine fixed indicator variables for the ten schools,
choosing School 17 as a reference group. We then fitted a Multiple Membership (MM) model
with networks defined by ego-nets, and estimated a Network Disturbance (ND) model using the
same weight information in both cases: the row standardised version of the adjacency matrix. The
network disturbance models were first run using the lnam command in the sna package in R, and
the results are estimated via maximum likelihood, so that their goodness of fit statistic is based on
the AIC rather than the DIC for the MM models that were estimated via MCMC, though the two
measures are comparable. We chose to compare the ND model with the MM model because in the
ND model the network effects are going through the error term, rather than directly through the
response as would be the case for the network effects model In Table 8 we fitted a model with just
a constant and the school indicators and also a ‘full model that also includes the three individual
level covariates. We find that the two models have comparable results in terms of the estimated
coefficients, their standard errors, and the model goodness of fit.
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5. Discussion and conclusion

An approach for estimating the nature and extent of social network dependencies on individual
responses in the context of other group dependencies has been demonstrated, using multiple mem-
bership models. This approach takes into account social network and group dependencies when
estimating an individual level relationship and allows the variations in individual level responses at
levels of the population structure above the individual to be compared. The model can be fitted in
software for multilevel modelling, such as MLwiN. The model results for the academic performance
score in particular suggest that network dependencies exist, even when other levels of the popula-
tion structure such as school and areas are accounted for. In many cases the variance component
estimates for network cliques and ego nets are larger than the corresponding model estimates for
school and area level variance components, this is because the ego-nets and cliques are smaller and
compact groups than schools or areas ; thus we would expect relatively high variance components
for cliques and ego-nets when compared with schools and areas.

These new approaches compare well in terms of goodness of fit with existing models used for
social network dependencies, such as network autocorrelation models. Substantively, there are
implications for assuming these models: in particular it is assumed for these models that the social
network is exogenous to the individual response. This is a different assumption from those models
that allow the co-evolution of social networks and behaviour, and hence selection and influence,
to be assessed with longitudinal network data: Stochastic Actor Based Models (SABMs) (Snijders
et al. 2010). The models presented here are not an alternative to SABMs; they have a different
role. In a descriptive sense, the models presented here allow the variation in individual responses
to be assessed at different levels of the population structure, including the network level. Hence,
using the multiple membership modelling approaches it is possible to ask “Is there more variation
in academic performance or health between networks, between schools, or between areas?”, and to
obtain a measure before and after the addition of other variables to the model, such as individual
characteristics, that might capture homophily at the network level. This approach could be applied
to other situations given data availability. For example: individuals, households, social networks
and geographical groups.

In terms of the multiple membership model, various extensions are possible via the multilevel
approach. For example: given the multiple waves of the Add Health data, a time level could be
included to allow further inferences about variations in individual responses through time in the
context of other population structural features. Also, covariates could be given random coefficients
at different levels. For example, it is possible to make ‘female’ random at the clique or ego-net level
to assess whether social network structure has a different association with the response variable for
girls than for boys. It has already been demonstrated here that the multiple membership model can
be applied to a dichotomous response and other categorical responses could also be modelled (for
example, an ordinal response for self-assessed health status (excellent, good, fair, poor)). Another
application of these methods is to multiplex networks, where the different types of connection are
specified as a series of weight matrices in the multiple membership model specification. Moreover,
a bivariate response could be considered within the multilevel model framework. Finally, other
data could be combined with the network data in the multiple membership model framework; for
example Census information could be combined with the survey data at area level, if the areas were
identifiable in the survey data.

The goodness of fit, measured by DIC, of the models that define network by clique is almost
as low as the corresponding DICs for models that define networks by ego net, and this may have
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implications for network data release. For example, in some cases the network may be accounted
for using anonymised clique-set information rather than full network information, rather than using
the full network. We note that the full network information would usually be preferable, but if this
could not be released then accounting for cliques would be much better than ignoring the network
dependencies altogether.

Models based on ego-net connections capture direct relationships between people, whereas those
that involve cliques explicitly capture higher-order substructures in the network. In our examples
both models performed similarly in terms of goodness of fit. The decision as to how to model
the network may depend on the substantive theories to be tested; whether these relate to clusters
in the network or simply to connected individuals. The MM model framework would allow other
network configurations to be included - for example the kinds of substructures that are often
included in Exponential Random Graph Models (see, for example, Robins, Pattison, Kalish &
Lusher (2007), Robins, Snijders, Wang, Handcock & Pattison (2007) for an introduction), provided
such substructures could be identified and the weight matrices for membership of these substructures
by each individual could be obtained.
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Table 1. Triad census results for directed and undirected friendship networks. For triad
definitions see: Holland & Leinhardt (1976).
Type 003 012 102 021D 021U 021C 111D 111U

Directed 149955404 572001 175813 246 311 411 309 276
Undirected 149955404 0 747814 0 0 0 0 0

type 030T 030C 201 120D 120U 120C 210 300

Directed 28 2 107 19 34 9 34 12
Undirected 0 0 1660 0 0 0 0 138

Table 2. Area (county) sample distribution.
County ID 20 22 23 25 28 29 30 31 34 35 36 37 38

Frequency 1 272 2 83 4 1 1 123 1 167 1 59 253

Table 3. School sample distribution.
School ID 17 28 44 49 85 117 144 146 149 185

Frequency 102 89 179 191 74 66 74 59 83 51

Table 4. Null Multiple Membership Models. Dependent variable: academic performance (ztotscore). Social Networks
defined by undirected clique-2 and clique-3 membership.

School
School Area Network School School Area +Area Ind.

Param. only only only +Area +Network +Network +Network only

Constant .04 (.10) .03 (.10) -.02 (.03) .03 (.12) .02 (.09) .02 (.11) .03 (.10) .00 (.03)
School var. .075 .059 .073 .052
Area var. .070 .036 .070 .036

Network var.:
Clique-3 .188 .148 .218 .153
Clique-2 .139 .139 .040 .139

Individual var. .958 .973 .924 .958 .884 .930 .885 1.00
DIC 2714 2727 2736 2715 2700 2716 2701 2750
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Table 5. Main Effects Multiple Membership Models with individual covariates. Dependent variable: academic perfor-
mance (ztotscore). Social Networks defined by undirected clique-2 and clique-3 membership.

School
School Area Network School School Area +Area Ind.

Param. only only only +Area +Network +Network +Network only

Constant -.09 (.07) -.07 (.09) -.09 (.05) -.08 (.09) -.10 (.07) -09 (.09) -.09 (.08) -.08 (.05)
Black -.03 (.09) -.04 (.09) -.07 (.09) -.03 (.09) -.03 (.09) -.04 (.09) -.03 (.09) -.06 (.08)
Female .17 (.06) .17 (.06) .17 (.06) .17 (.06) .17 (.06) .17 (.06) .17 (.06) .17 (.06)
Age -.13 (.02) -.12 (.02) -.13 (.02) -.12 (.02) -.12 (.02) -.12 (.02) -.12 (.02) -.13 (.02)
School var. .023 .010 .027 .012
Area var. .034 .029 .036 .026

Network var.:
Clique-3 .106 .110 .106 .102
Clique-2 .016 .103 .099 .108

Individual var. .930 .927 .922 .927 .875 .875 .871 .941
DIC 2687 2682 2689 2683 2678 2674 2674 2692

Table 6. Main Effects Multiple Membership Models. Dependent variable: ztotscore. Social Networks defined by ego-net
membership.

School School
Network School Area +Area Network School Area +Area

Param. only +Network +Network +Network only +Network +Network +Network

Constant -.01 (.03) .03 (.09) .07 (.06) .04 (.1) -.09 (.04) -.09 (.07) -.07 (.09) -.08 (.09)
Black -.06 (.09) -.03 (.09) -.04 (.09) -.03 (.08)
Female .17 (.06) .16 (.06) .17 (.06) .17 (.06)
Age -.13 (.02) -.12 (.02) -.12 (.02) -.12 (.02)
School var. .08 .06 .03 .01
Area var. .07 .03 .04 .03

Network var.:
Ego .17 .20 .15 .19 .15 .15 .15 .15

Individual level: .926 .870 .902 .873 .873 .861 .856 .862
DIC 2737 2697 2713 2697 2681 2674 2669 2672
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Table 7. Multiple Membership Models: null and with individual covariates. Dependent variable:
health good/excellent.

School School School School
+Area +Area Ind. +Area +Area Ind.

Param. +Network +Network only +Network +Network only

Constant 1.20 (.29) 1.157 (.243) .98 (.07) 1.28 (.26) 1.27 (.29) 1.1 (.11)
Black .07 (.22) .09 (.22) .14 (.20)
Female -.31 (.14) -.31 (.15) -.28 (.15)
Age -.05 (.05) -.05 (.05) -.07 (.04)
School var. .109 .101 .152 .129
Area var. .301 .280 .198 .258

Network var.:
Clique-3 .095 .090
Clique-2 .099 .018
Ego .000 .008
DIC 1120 1118 1138 1120 1119 1137

Table 8. Multiple Membership (MM) and Network Disturbance (ND) models with
school indicators as fixed covariates ; Full model also includes all individual level
covariates. Dependent variable: academic performance (ztotscore). reference
school = School 17. Dependent variable = ztotscore

Constant + School Indicators Full Model
MM ND MM ND

Parameter

Constant -.004 (.110) .001 (.104) .030 (.115) .034 (.110)
School 28 .259 (.153) .235 (.152) .076 (.160) .043 (.159)
School 44 -.196 (.128) -.205 (.129) -.174 (.134) -.180 (.128)
School 49 -.107 (.131) -.136 (.128) -.112 (.130) -.131 (.126)
School 85 -.327 (.151) -.342 (.156) -.296 (.156) -.307 (.154)
School 117 .344 (.165) .322 (.164) -.012 (.178) -.044 (.178)
School 144 .138 (.156) .123 (.158) -.185 (.173) -.207 (.170)
School 146 .407 (.167) .388 (.167) .050 (.185) .022 (.180)
School 149 .258 (.151) .251 (.152) -.083 (.167) -.099 (.166)
School 185 -.327 (.173) -.327 (.173) -.612 (.189) -.626 (.186)
Black .006 (.092) .015 (.093)
Female .165 (.062) .173 (.062)
Age -.119 (.025) -.125 (.025)
Ego-net var. .193 .165
Individual var. .872 .855
DIC 2698 2674
ρ̂ .107 (.041) .111 (.041)
AIC 2711 2675

σ̂2 .917 .883
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