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Potential Gains from Sample Design Using Unit Level Cost Information 

 

David Steel  

Centre for Statistical and Survey Methodology 

University of Wollongong 

 

 

Abstract 

In developing the sample design for a survey we usually attempt to produce a good 

design for the funds available. Information on costs can be used to develop sample 

designs that minimise the sampling variance of an estimator of total for fixed costs. 

Improvements in survey management systems mean that it is now possible to estimate 

the cost of including each unit in the sample. This paper develops relatively simple 

approaches to determine whether the potential gains arising from using this unit level 

cost information are likely to be of practical use. It is shown that the key factor is 

coefficient of variation of the costs relative to the coefficient of variation of the 

relative error on the estimated cost coefficients. 

 

Key words: optimal design, sampling variance,  

 

1. Introduction 

In developing the sample design for a survey we usually attempt to produce a good 

design for the funds available. In many cases the sample size is taken as fixed and the 

design is developed to minimise the sampling variance of an estimator of mean or 

total. This approach assumes that the cost of enumerating a unit is the same for all 
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units in the population. If costs vary between units then this variation can be taken 

into account in the sample design. Information on costs can be used to develop sample 

designs that minimise the sampling variance of an estimator of total for fixed costs. In 

stratified sampling a common approach is to estimate a cost coefficient for each 

stratum and determine the optimal allocation. The resulting allocation of sample to 

strata is proportional to the inverse of the square root of the stratum cost coefficients 

(Neyman, 1934). In a multistage design the costs of including the units at the different 

stages of selection can be used to decide the number of units to select at each stage 

(Hansen, Hurwitz and Madow, 1953). Discussions of costs in survey design are given 

in Cochran (1977), Kish (1965) and Groves (1989). Clark and Steel (2000) summarize 

the key results.  

 

In these approaches the costs at each stage are assumed to be constant within strata. In 

practice costs will vary across units and the cost coefficients used are essentially 

averages. Improvements in survey management systems mean that it is now possible 

to estimate the cost of including each unit in the sample. This paper develops 

relatively simple approaches to determine whether the potential gains arising from 

using this unit level cost information are likely to be of practical use. 

 

In section 2 the gain in using the individual level cost information is considered for 

the simple case of Poisson sampling assuming that the cost and variate values are 

known and positive for each unit. The more realistic situation where the cost 

coefficients are estimated with some error and instead of the values of the variable of 

interest we know the values of an auxiliary variable are considered. The extension to 

cases where the population units may take zero values is also considered in section 3. 
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The case when the selection probabilities are changed at some point in the conduct of 

the survey because of a change in the budget is also considered in section 4. Section 5 

gives a brief summary and discussion. 

 

2. Poisson Sampling 

2.1 Known Variate Values and Costs 

Consider a finite population, U, consisting of values . A sample is to be 

selected using a Poisson sampling scheme in which the ith population unit has 

probability of selection iπ . Let iδ  be an indicator for sample membership, 

so . The cost of enumerating unit i is  and the total funds available is 

, so that the cost of enumerating the sample s is 

€ 

Ci
i∈s
∑  and the expected cost 

is

€ 

Ci
i∈U
∑ π i . The expected sample size is ∑

∈

=
Ui

iEn π . Assume that 

 is used to estimate  The estimator is design 

unbiased for YT and has sampling variance  

∑∑
∈∈

−=
Ui

i
Ui i

i
Y YYTV 2

2

)ˆ(
π

   (1) 

For the moment will allow iπ  to depend on 

€ 

Yi. The more realistic case when we do 

not know the values of the variable of interest, but we do know the values of a related 

auxiliary variable is considered in section 2.2. 

Theorem 1.1 

If 0>iY  for all Ui∈  then )ˆ( YTV  is minimized for expected cost equal to  if 

∑
∈

=

Ui
ii

A

i

i
i CY

C
C
Y

π  and the resulting sampling variance is 
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∑
∑

∈

∈ −

⎟
⎠

⎞
⎜
⎝

⎛

=
Ui

i
A

Ui
ii

Yopt Y
C

CY
TV 2

2

)ˆ(    (1) 

Proof: apply standard Lagrangian methods. 

 

 A useful result is given by  

Lemma 1.2  

Consider the pairs Nivu ii ,...1, , = , and the covariance 

€ 

Suv =
1
N

(ui − u )(vi
i=1

N

∑ − v ) then 

€ 

ui
i=1

N

∑ vi = Nu v (1+ Cu,v )    (2) 

where 

€ 

Cu,v =
Suv

u v 
 is the relative covariance of the values. 

Setting ii vu =  gives 

€ 

ui
2

i=1

N

∑ = Nu 2(1+ Cu
2)     (3) 

where uC  is the coefficient of variation of the values ofu . 

If 

€ 

Ru,v  is the correlation of the values of u  and v  then  

€ 

ui
i=1

N

∑ vi = Nu v (1+ Ru,vCuCv )    (4) 

 

Applying these results we obtain  

Theorem 1.3 

€ 

Vopt ( ˆ T Y ) = N 2Y 2 C− 2

C A

1+ CY , c( )
2

nE

−
(1+ CY

2 )
N

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥    (5) 
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where 

€ 

C− =
1
N

Ci
i=1

N

∑  is the population average of the square root of the cost 

coefficients and 
E

A
A n

CC = is the average of the allocated cost per expected sample 

unit. 

 

We will compare the optimal strategy with three approaches for the same expected 

cost: 

1. ignoring costs 

2. ignoring variate values 

3. ignoring costs and variate values 

 

Ignoring Costs 

If the costs are ignored then ii Y∝π . Fixing the expected cost at  gives 

∑
∈

=

Ui
ii

A
ii CY
CYπ  and the resulting sampling variance 

∑
∑∑

∈

∈∈ −

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛

=
Ui

i
A

Ui
ii

Ui
i

YY Y
C

CYY
TV 2

. )ˆ( . Applying (2) gives 

€ 

VY .( ˆ T Y ) = N 2Y 2 C 
C A

1+ CY ,C( )
nE

−
(1+ CY

2 )
N

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥    (6) 

where ∑
∈

=
Ui

iCN
C 1  is the average of the cost coefficients. 

Noting that 

€ 

C = 1
N

Ci( )
2

i∈U
∑ and applying (3) gives 

€ 

C = C−( )
2
(1+ C C

2 ) , where 

€ 

C C
2  

is the coefficient of variation of 

€ 

Ci , and so  
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€ 

VY .( ˆ T Y ) = N 2Y 2
C−( )

2

C A

(1+ C C
2 )

nE

1+ CY ,C( ) − (1+ CY
2 )

N

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥   (7) 

If the sampling fraction is not large then the last term in (5) and (7) can be ignored 

and so 

€ 

VY .
Vopt

≈
(1+ C C

2 )(1+ CY ,C )
(1+ CY C )

2     (8) 

If the costs and variate values are unrelated this gives 

)1( 2.
C

opt

Y C
V
V

+≈     (9) 

 

Ignoring Values 

Suppose that only the cost are taken into account, so that 
i

i C
1

∝π , which for 

expected cost implies 
∑

=
i

A

i
i C

C
C
1

π  and associated sampling variance  

€ 

V.C ( ˆ T Y ) =

Yi
2 Ci

i∈U
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Ci

i∈U
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

CA

− Yi
2

i∈U
∑ .  

Applying (3) and (2) 

€ 

V.C ( ˆ T Y ) = N 2Y 2
C−( )

2

C A
(1+ CY

2 )
nE

1+ CY 2 , C( ) − (1+ CY
2 )

N

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥   (10) 

For small sampling fraction  

€ 

V.C
Vopt

≈ (1+ CY
2 ) 1+ CY 2 , C( )     (11) 

If the costs and variate values are unrelated this gives 
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)1( 2.
Y

opt

C C
V
V

+≈     (12) 

 

Ignoring Costs and Values 

When cost and variate values are ignored the selection probabilities will be constant, 

which for fixed expected costs gives, 

€ 

π i =
CA

Ci
i∈U
∑

 and associated sampling variance  

∑
∑∑

∈

∈∈ −

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛

=
Ui

i
A

Ui
i

Ui
i

Y Y
C

CY
TV 2

2

)ˆ..( . Applying (3) and (2) 

€ 

V.C ( ˆ T Y ) = N 2Y 2
C−( )

2

C A
(1+ CY

2 )
nE

1+ C C
2( ) − (1+ CY

2 )
N

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥   (13) 

For small sampling fraction  

€ 

V..
Vopt

≈
(1+ CY

2 ) 1+ C C
2( )

1+ CY C

   (14) 

If the costs and variate values are unrelated this gives 

€ 

V..
Vopt

≈ (1+ CY
2 ) 1+ C C

2( )    (15) 

These results show that taking costs into account in the design eliminates the 

€ 

1+ C C
2( )term and taking the values into account the term )1( 2

YC+ is eliminated. 

 

2.2 Using Auxiliary Variable and Estimated Costs 

The analysis so far has assumed that we know the population values of the variable of 

interest and the cost coefficients precisely. In practice we will not know the variate 

values but we may know the values of a related auxiliary variable, iX  and the cost 
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coefficient  will be estimated, with some error, as iD .  Write iii XaY =  and 

iii CbD = .  

 

Using the auxiliary variable and the estimated costs in the optimal probabilities 

implies 
i

i
i D

X
∝π . To make comparisons for the same true expected costs we 

consider 
∑
∈

=

Ui
iii

A

i

i
i DXC

C
D
X

π . The resulting sampling variance is 

∑
∑∑

∈

∈∈ −

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛

=
Ui

i
A

Ui
iii

Ui
iii

YXD Y
C

DXCXDY
TV 2

2

)ˆ( . This can be expressed in terms 

of the relative error factors ia  and ib , as 

∑
∑∑

∈

∈∈ −

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛

=
Ui

i
A

Ui
iii

Ui
iii

YXD Y
C

bXCDXa
TV 2

2

)ˆ( . 

Theorem 1.4 

€ 

VXD ( ˆ T Y ) = N 2Y 2 C− 2

C A

1+ Ca
2( )

2
(1+ C b

2 )
nE

A − (1+ CY
2 )

N

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
, where 

€ 

A = (1+ CX , D )(1+ Ca 2 ,X D )(1+ C
X , 1

b

)(1+ C C ,X / b )(1+ C b , C )(1+ CaX )
−2 

Proof 

Apply (2) and (3) to sums of products and note that  (3) can be used to obtain 

222222 )1( aXCXaNYN +=  and ).1( , CbCCbD += −−−  Taylor series methods 

give )1(1 2

1
b

U
i Cb

N
b +≈⎟

⎠

⎞
⎜
⎝

⎛
∑
∈

− .  
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Assuming that the relative error factors are independent of the costs and values and 

also that the estimated costs are independent of the auxiliary variable, then 1=A . In 

this case 

€ 

VXD ( ˆ T Y ) = N 2Y 2 C− 2

C A

1+ Ca
2( )

2
(1+ C b

2 )
nE

−
(1+ CY

2 )
N

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
   (16) 

For small sampling fractions, when 1=A , we obtain 

)1)(1( 22
ba

opt

XD CC
V
V

++≈     (17) 

This shows the effect of the use of the auxiliary variable and the estimated cost 

coefficients is determined by the coefficient of variation of 

€ 

ai  and 

€ 

bi . Comparing 

this variance with completely ignoring the auxiliary variable and the costs, gives 

€ 

VXD

V ..
≈
(1+ Ca

2)(1+ C b
2 )

(1+ CY
2 )(1+ C C

2 )
     (18) 

 

When considering the gains from using the costs information we should consider what 

would happen when we use the auxiliary variable but ignore the estimated costs. 

Using similar methods we get the associated sampling variance as 

€ 

VX .( ˆ T Y ) = N 2Y 2 C− 2

C A

(1+ C C
2 )(1+ Ca

2)(1+ Ca 2 ,X )(1+ CC ,X )
nE

−
(1+ CY

2 )
N

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 (19) 

When independence assumptions are made this becomes 

€ 

VX .( ˆ T Y ) = N 2Y 2 C− 2

C A

(1+ C C
2 )(1+ Ca

2)
nE

−
(1+ CY

2 )
N

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
   (20) 

For small sampling fraction the increase in variance arising from ignoring the 

estimated cost coefficients is  
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)1(
)1(

2

2
.

b

C

XD

X

C
C

V
V

+

+
=      (21) 

Hence, provided the coefficient of variation of the square root of the relative errors in 

estimating the cost is less than the coefficient of variation of the square root of the 

costs, there is a gain in using the information on individual level costs. There is a gain 

in using the auxiliary variable, provided the coefficient of variation of the factor 

relating the variable of interest to the auxiliary variable is less than the coefficient of 

variation of the variable of interest. 

Example 

Suppose 
C
Ci mainly varies between 0.25 and 4, so that 

C

Ci varies approximately 

uniformly between 0.5 and 2, then 

€ 

C C ≈ 0.4  and from (9) 16.1. ≈
opt

Y

V
V

. Thus the loss 

through ignoring the costs is 16 percent and correspondingly the gain in using them is 

15 percent. Similarly if 
C
Ci mainly varies between 0.2 and 2, then 031.0≈CC and 

031.1. ≈
opt

Y

V
V

, and a potential gain of about 3 percent might arise from using the cost 

information. 

 

Suppose 
a
ai mainly varies approximately uniformly between 0.6 and 1.4, so 2.0≈aC  

and 04.1)1( 2 =+ aC . From (17) this suggests that there will be a 4 percent loss through 

using the auxiliary variable instead of the values of the variable on interest. 
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Suppose 
b
bi mainly varies between 0.6 and 1.4, so that 

b

bi varies between 0.8 and 

1.2, then 1.0≈bC  and so 01.1)1( 2 =+ bC . Assuming 

€ 

C C ≈ 0.4  as above, then from 

(21) 

€ 

VX .

VXD

=
1.16
1.01

=1.15 . Hence the use of estimated rather that actual costs reduces the 

gain by 1 percent, but a gain of 15% still arises from the use of the cost information. 

 

The simple results are based on various covariances being zero. While this may not 

always be true, the covariances will often be small. Further empirical and theoretical 

work could be done to check this out. For many cases there would be no reason for 

there to be an appreciable covariance. Small covariances between the relative errors 

and the variable that they apply to depend on errors behaving in this way. The most 

likely case where the assumption that the covariance is small may be questionable is 

the covariance between cost and the variate value. In some cases, larger values of 

€ 

Yi 

may lead to larger costs. A particular case is that of a dichotomous variable, which is 

considered in section 4.  

 

Even though simple Poisson sampling is not used in practice, the theory described 

here could be used to calculate relative efficiencies. The theory shows that we need to 

have some information on the costs, the relationship between the estimated and actual 

costs, and between the variable of interest and the auxiliary variable. ABS data could 

be used to examine these relationships. Relative efficiencies could be calculated 

without making the assumptions concerning the covariances. 
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The theory can be expanded to consider the case when the population size is known 

and we use the estimator 

€ 

˜ T Y =
N
π i
−1

i∈s
∑

ˆ T Y . 

 

3 Allowing for Variables Taking Zero Values 

The analysis so far does not allow for the case when iY  can take the value 0, which 

means that it does not apply for a dichotomous variable. Also, we directly used the 

auxiliary variable in determining iπ  and it is not clear that this is the best way of 

using the auxiliary variable.  Both these issues can be tackled by assuming that there 

is some statistical model that relates iY  to the population values of the auxiliary 

variables, UX . Assume that the selection probabilities are determined by UX . Then, 

for Poisson sampling the expectation of the sampling variance is  

€ 

V ( ˆ T Y |XU ) =
E[Yi

2 |XU ]
π ii∈U

∑ − E[Yi
2 |XU ]

i∈U
∑  

As the estimator is design unbiased this is also the total variance. Hence, all the results 

obtained above apply with iY  replaced by iφ , where 

€ 

φi
2 = E[Yi

2 |XU ] = E[Yi |XU ]
2 +V (Yi |XU ). Also, if we estimate iφ  by iφ̂  then 

i

i
ia

φ

φ
ˆ= . 

 

For a dichotomous variable indicating membership of a particular category of the 

population, for example being unemployed, 

€ 

Yi
2 =Yi and so 

€ 

φi = E[Yi |XU ]
0.5 = P(Yi =1 |XU )

0.5. 

 

If UX  indicates geographic areas, such as regions, then iφ  reflects the square root of 

the probability of people being in the category for the region. Often the variation of 
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iφ is small and so there is little loss in ignoring it in determining the selection 

probabilities.  

 

4 Adjustment of Design During the Enumeration Period 

In some cases the selection probabilities may be reviewed as the survey progresses 

and adjustments made to the selection probabilities in light of the funds spent or 

changes made to the budget. To approximate this situation suppose the population is 

divided into two components, 1U  and 2U .  Suppose that the units in 1U  have been 

subjected to the Poisson selection scheme using selection probabilities iπ  resulting in 

the sample is  and the selections are represented by iδ .  The selection probabilities 

used for 1U  are not necessarily chosen optimally. At this stage the funds still available 

are 

€ 

CA 2 = CA − Ci
i∈U1

∑ δi. The sampling variance will be 

∑∑∑
∈∈∈

−+=
Ui

i
Ui i

i

Ui i

i
Y YYYTV 2

22

21

)ˆ(
ππ

.  At this stage the only term in the variance that can 

be affected is the middle term, thus the optimal choice of the selection probabilities 

for 2U  are given by 
∑
∈

=

2

2

Ui
ii

A

i

i
i CY

C
C
Y

π  for 2Ui∈ . 

 

5. Summary and Conclusions 

The theoretical results developed here show that for there to be appreciable gain from 

exploiting information on the costs of enumerating units in a sample survey the square 

root of these costs must vary considerably. While derived for the simple case of 

Poisson sampling the formulas can be used to quickly judge the potential gain from 

taking costs into account, by assessing the coefficient of variation of the square root of 
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the costs. Costs will be estimated with some error and this reduces the gain from using 

cost information by a factor determined by the relative variation of the square root of 

the relative errors in estimating the costs at the individual level. 
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