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Unbiased Regression Estimation for Multi-Linked Data
in the Presence of Correlated Linkage Error

Gunky Kim and Raymond Chambers

Centre for Statistical and Survey Methodology
University of Wollongong

Abstract

Linkage errors can occur when probability-based methods are used to link records from two

or more distinct data sets corresponding to the same target population. Recent research

on methods for modifying standard methods of regression analysis to allow for these errors

assumes that when more than two linked data sets are used to generate the data for this

analysis, the linkage errors in these different data sets are independent. In this paper we

extend these results to accommodate the more realistic scenario of dependent linkage errors.

Our simulation results show that an incorrect assumption of independent linkage errors can

lead to insufficient linkage error bias correction, while an approach that allows for correlated

linkage errors appears to fully correct this bias.

key words: probabilistic record linkage; correlated linkage errors; linear regression; estimating

equations.

1 Introduction

Probabilistic data linkage is widely used when direct measurement is impossible or extremely

costly. One important application is where different data sets relating to the same individuals

at different points in time are ’multi-linked’ to provide a synthetic longitudinal data record

for each individual. However, even with a unique identifier, there exists the possibility that

linkage errors in the merged data could lead to such a longitudinal record being actually

made up of data items from different individuals. These linkage errors will lead to bias and

loss of efficiency in regression modelling using the merged data set. Kim and Chambers
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(2012b) describe methods for correcting the bias due to linkage errors when multiple data

sets are probabilistically multi-linked. These methods assume independent pairwise linkage

errors. A more realistic scenario, however, is to allow dependent pairwise linkage errors, in

the sense that it is more likely that if the records corresponding to two different individuals

in data sets A and B are incorrectly linked, then it is quite likely that the records for the

same two individuals in data sets A and C will also be incorrectly linked. In this paper

we show how the bias due to correlated linkage errors in the resulting merged data set can

be corrected. Our methods are based on the inference framework described in Chambers

(2009), and we focus on the situation where the merged data set is obtained by linking three

separate data sources via two possibly dependent linkage operations. These data sources

could represent different registers for the same population at different points in time or they

could correspond to where a survey sample is linked to two separate population registers,

one contemporaneous with the survey and the other containing historical information.

1.1 Technical background and assumptions

For notational simplicity we denote conditioning by a subscript in what follows, so the

conditional expectation E(y|X) is written EX(y) and so on. Suppose that we are interested

in fitting a regression model of the form EX(y) = f(X;β) where f is a known function,

but the parameter β is to be estimated. Here y denotes the vector of population values

of the response variable of interest, and X denotes the corresponding matrix of population

values for a set of explanatory variables, which are themselves drawn from multiple sources.

In particular, we focus on the situation where the actual values making up y and X are

unknown, but probabilistic linkage is used to reconstruct their values using the data in two

or more population registers. To fix concepts, we assume throughout this paper that the

regression model of interest is the linear model

y = 1β0 +X1β1 +X2β2 + ε = Xβ + ε (1)

where y, X1 and X2 denote data stored on three separate population registers and 1 denote

the unit vector of order N . However, our development is quite general, and the linear

model (1) is easily replaced by a generalized linear model. The model errors ε are assumed

to have zero mean and are uncorrelated given X, with VarX(ε) = σ2IN where IN is the

identity matrix of order N , the population size. It is assumed that no unique identifier
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exists, and so these three registers cannot be perfectly linked. Instead the data available to

fit this regression model is generated via a probabilistic linkage process, so linkage errors are

possible. These mismatches will lead to biased estimation of β. The aim of this paper is to

describe a methodology that can be used to eliminate this bias.

In what follows, we do not distinguish between the population registers that define y, X1

and X2 and the data sets themselves. Also, without loss of generality, we take one of the

three data sets to be the ‘benchmark’ register, i.e. all linkage errors are defined relative to

the population ordering defined by it. Following Kim and Chambers (2012b) we focus on

the situation where is the benchmark register and there are linkage errors between y and

X1 and between X1 and X2 .

In common with the development in Kim and Chambers (2012a), we initially consider the

situation where the data sets are all population registers with complete linkage. This enables

us to develop our notation and general approach in a situation where the basic analytic issues

are clear. We then move to the more interesting situation where one data set is a sample,

which is linked to two separate population registers. In this case we allow for incomplete

linkage. We start by stating our basic assumptions for the first situation, i.e. where the

linked data set is constructed by linking three population registers:

1 All registers have complete coverage of the target population and are of size N . In

particular, for each distinct population unit there exist unique records in each of y,

X1 and X2 that correspond to this population unit.

2 The registers y, X1 and X2 can each be partitioned into Q ‘match blocks’ or ‘m-blocks’

such that linkage errors occur only within them. That is, records in distinct m-blocks

can never be linked, and the records for any population unit in anm-block are contained

in the corresponding m-blocks of each register. We denote quantities associated with

the qth m-block by a subscript of q. Thus the Mq records making up the qth m-block

within X1 are denoted X1q, etc. An individual record i in m-block q is denoted i ∈ q.

3 We have non-informative linkage in the sense that linkage errors within an m-block are

independent of any regression errors associated with observations from that m-block.
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In many practical situations, a sample s of records from the register X1 is selected, and a

subsample of these records is linked to the two separate population registers y and X2. In

this situation we make the following additional assumptions:

4 The method of sampling is non-informative within m-blocks for the regression model of

interest, in the sense that the same regression model holds for both sampled and non-

sampled population units within an m-block. Furthermore, the linked sample records

in an m-block are ‘linked at random’, so the non-informativeness assumption also holds

for the linked sample units. Note that this last assumption is a strong one. See Kim

and Chambers (2012a).

5 Let y = (yi), X1 = [xT1i] and X2 = [xT2i]. A consistent estimator of any population quan-

tity of the form
∑N

i=1 g(yi,x1i,x2i) is its sample-weighted equivalent
∑
swig(yi,x1i,x2i),

where ws = (wi; i ∈ s) is a vector of known sample weights.

2 Methodological Development

Fellegi and Sunter (1969) describe an approach to optimal probability-based linkage that is

based on maximising the probability of a declared link being correct. Unfortunately, most

practical implementations of their approach require one to trade off the number of links made

against their accuracy. As a consequence, any implementation of probabilistic linkage will

result in unmade linkages or non-linkages as well as linkage errors where linkages are actually

made. In what follows, we show that the bias caused by linkage errors can be corrected if

we know the probability of correct linkage. In particular, we develop efficient estimators

for regression coefficients when three data sources have been probabilistically linked to form

the data set used in the analysis. Although our primary interest in this context is where a

sample from one register has been independently linked to two other registers, we start by

considering the case where three registers are completely linked.

2.1 A model for correlated linkage error

In this sub-section and the next we assume that all three linked data sets are registers

and linkage is complete, i.e. linkage is one to one and onto. We use a superscript of * to

denote quantities defined using the linked data and, following Kim and Chambers (2012b),
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we model the relationship between the true, but unobserved, values of y and X2 and the

observed linked values y∗ and X∗2 within m-block q by writing

y∗q = AqY q and X∗2q = BqX2q

whereAq andBq are unobserved random permutation matrices of order Mq that characterise

the outcomes of the two linkage processes in m-block q. In particular, we put

T Aq = EX∗(Aq) and TBq = EX∗(Bq).

We follow Kim and Chambers (2012b) and use the exchangeable linkage errors (ELE) model

of Chambers (2009) to define T Aq and TBq. That is, for any linked record i in m-block q, it

is equally likely that it is correctly linked to itself or incorrectly linked to any other record

in the same m-block. This leads to the representations

T Aq = (λAq − γAq)Iq + γAq1q1
T
q

and

TBq = (λBq − γBq)Iq + γBq1q1
T
q

where, for any two distinct records i and j in m-block q, λAq = Pr(x1iq, yjq correctly linked)

and γAq = Pr(x1iq, yjq incorrectly linked, i 6= j) = (Mq − 1)−1(1 − λAq), with λBq and γBq

defined similarly.

Kim and Chambers (2012b) assume thatAq andBq are independently distributed. However,

it is more realistic to assume that if the records corresponding to two different individuals

in data sets X1 and y are incorrectly linked, then it is quite likely that the records for the

same two individuals in data sets X1 and X2 will also be incorrectly linked, i.e. Bq and

Aq are dependent random matrices. Let Aq = [aqij] and Bq = [bqij]. In order to model the

conditional distribution of given we further assume that

φq = Pr(x1iq,x2iq correctly linked & x1iq, yiq correctly linked)

does not depend on i. Put λB|Aq = λ−1
Aqφq. Under the correlated ELE model for Aq and Bq

defined above, it can then be shown that

TB|Aq = EX∗(Bq|Aq) = (λB|Aq − γB|Aq)Iq + γB|Aq1q1
T
q

5



where γB|Aq = (Mq − 1)−1(1− λB|Aq). It follows that

XE|A
q = EX∗

([
1q,X1q,B

T
qX

∗
2q

]∣∣Aq

)
=
[
1q,X1q,TB|AqX

∗
2q

]
(2)

and so

EX∗(y∗q) = EX∗(Aqyq) = EX∗(Aq)EX∗(yq|Aq) = T AqX
E|A
q β. (3)

2.2 Unbiased regression estimation under correlated linkage error

We focus on the situation where the aim is to estimate the parameter β of the linear regression

model of interest using an adjusted unbiased estimating function. When both yq and Xq are

available this is the function of the formH(β) =
∑

qGq(yq−f q) where f q = EX(yq) = Xqβ

and Gq is a weighting function that depends on Xq but not on yq. However, we do not

observe yq or Xq. Instead, their linked versions y∗q and X∗q are observed. A naive estimating

function based on H(β) then takes the form

H∗(β) =
∑
q

G∗q(y
∗
q − f ∗q)

where f ∗q = X∗qβ and G∗q = X∗Tq . Here X∗q = (1q,X1q,X
∗
2q). The naive estimator is

defined by solving H∗(β) = 0. This estimator is biased since EX∗(y∗q) = T Aqf
E|A
q 6= f ∗q,

where fE|Aq = XE|A
q β. On the other hand, using (2) and (3), we see that an unbiased

estimating function based on the linked data is of the form

H∗(β) =
∑
q

G∗q(y
∗
q − T Aqf

E|A
q ) (4)

and so an unbiased estimator of β can be defined as the solution β̂∗ to the estimating

equation defined by setting (4) to zero. The following Theorem extends Theorem 1 of Kim

and Chambers (2012b) and develops the asymptotic variance of β̂∗ under correlated linkage

error. Its proof is in the Appendix.

Theorem 1. Let f ∗2q = (f ∗2iq; i ∈ q) = X∗2qβ2 and let β̂∗ denote the solution to setting (4)

to zero. The asymptotic variance of β̂∗ is then

V (β̂∗) =
[∑

q

G∗qT AqX
E|A
q

]−1[∑
q

G∗qV (y∗q)G
∗T
q

]([∑
q

G∗qT AqX
E|A
q

]−1)T
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where V (y∗q) = σ2Iq + V Aq + V Cq. Here

V Aq = (1− λAq) diag
[{
λAq(f

E|A
iq − f̄E|Aq )2 + f̄E|A(2)

q − (f̄E|Aq )2
}

; i ∈ q
]

where fE|Aq = (f
E|A
iq ; i ∈ q), f̄

E|A
q = M−1

q

∑
i∈q f

E|A
iq and f̄

E|A(2)
q = M−1

q

∑
i∈q(f

E|A
iq )2. Simi-

larly

V Cq = (1− λB|Aq) diag
[
(Mq − 1)−1

{
(λAqMq − 1)di +Mq(1− λAq)d̄q

}
; i ∈ q

]
with di = λB|Aq(f

∗
2iq− f̄ ∗2q)2 + f̄

∗(2)
2q −(f̄ ∗2q)

2, f̄ ∗2q = M−1
q

∑
i∈q f

∗
2iq and f̄

∗(2)
2q = M−1

q

∑
i∈q(f

∗
2iq)

2.

Note:

1. Given T Aq, TB|Aq and fE|Aq , an unbiased estimator of σ2 is

σ̃2 = N−1
[∑

q

(y∗q − fE|Aq )T (y∗q − fE|Aq )− 2
∑
q

(fE|Aq )T (Iq − T Aq)f
E|A
q

]
.

We can therefore estimate V (y∗q) above by substituting β̂∗ for β in the definitions

of fE|Aq , f ∗2q and σ̃2. An estimator of the asymptotic variance V (β̂∗) of β̂∗ follows

directly.

2. The value of β̂∗ depends on choice of the weighting function G∗q. A popular choice

is G∗q = (X∗q)
T . However, there are alternative choices. For example, Lahiri and

Larsen (2005) develop an adjusted estimator for β that, when placed in an estimating

equation framework, corresponds to settingG∗q = (T AqX
E|A
q )T . The optimal weighting

function, i.e. the one that minimises the asymptotic variance of β̂∗ (see Godambe

(1960)), depends on the unknown model parameters and is given by

G∗q =
( ∂

∂β

[
EX∗(y∗q)

])T(
V (y∗q)

)−1

=
(
X∗q

)T(
σ2Iq + V Aq + V Cq

)−1

.

This suggests that an iterative approach to weighting should lead to an efficient ad-

justed estimator β̂∗. Simulation studies in the next section compare the performances

of the estimators defined by these alternative choices.

The development so far has assumed that the correct linkage probabilities λAq and λB|Aq are

known. This will not be the case in practice, and estimates of these probabilities will need to

be used. The actual asymptotic variance of β̂∗ then also depends on the additional variability

induced by this estimation process, as we show in the following Lemma to Theorem 1.

7



Lemma 1. When λAq and φq are unknown and are replaced by m-block-specific consistent

estimators λ̂Aq and φ̂q, the asymptotic variance of β̂∗ becomes

V (β̂∗) = D
[∑

q

(
G∗qV (y∗q)G

∗T
q +

2∑
i=1

2∑
j=1

(
∂iH

∗)Jijq(∂jH∗)T)]DT

where D =
[∑

qG
∗
qT AqX

E|A
q

]−1

, J q = [Jijq] = Cov(λ̂Aq, φ̂q) and

∂iH
∗ =

(
∂iG

∗
q

)(
y∗q − T Aqf

E|A
q

)
−G∗q

[(
∂iT Aq

)
fE|Aq + T Aq

(
∂if

E|A
q

)]
.

Here ∂1 = ∂/∂λA and ∂2 = ∂/∂φq.

Observe that as in Chambers (2009) and Kim and Chambers (2012b), the estimated param-

eters λ̂Aq and φ̂q can be based on a random ‘audit sample’ of records in m-block q of the

linked data base
[
y∗ X1 X

∗
2

]
.

2.3 Incomplete sample to registers linkage

We finally consider the more realistic case when a sample s of n records from the benchmark

register X1 is taken and an attempt is made to link these records to the y and X2 registers.

However, this linkage is incomplete, i.e. there are some records in the sample s that cannot

be linked, either to records in the X2 register or to records in the y register, or both. Note

that assumption 4 at the end of section 1 applies here, so whether a record in X1q is sampled

or not has nothing to do with whether it can be linked to a record in yq or one in X2q (or

both) and furthermore, actual linkage is then a random event.

Let X1sq be the set of the sample records from X1q. Also let X1slq be the set of sample

records in X1sq that are linked to both X2 and to y. The set of sample records in X1sq

that cannot be linked in this way are denoted by X1suq. Similarly, X1rq denotes the set

of non-sample records in X1q. Following Kim and Chambers (2012b), we assume that that

there exists, at least in theory, a corresponding set of decompositions of the set of non-sample

records. In particular, X1rlq represents the set of non-sample records that are potentially

‘linkable’ to both X2 and y. The remaining non-sampled ‘unlinkable’ records are denoted
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X1ruq. It immediately follows that the following partitions exist:

y∗q =


y∗slq
y∗suq
y∗rlq
y∗ruq

 =


A(slsl)q A(slsu)q A(slrl)q A(slru)q

A(susl)q A(susu)q A(surl)q A(suru)q

A(rlsl)q A(rlsu)q A(rlrl)q A(rlru)q

A(rusl)q A(rusu)q A(rurl)q A(ruru)q



yslq
ysuq
yrlq
yruq

 = Aqyq.

where

E(Aq|X∗q) = T Aq =


T (sl)Aq

T (su)Aq

T (rl)Aq

T (ru)Aq

 =


T (slsl)Aq T (slsu)Aq T (slrl)Aq T (slru)Aq

T (susl)Aq T (susu)Aq T (surl)Aq T (suru)Aq

T (rlsl)Aq T (rlsu)Aq T (rlrl)Aq T (rlru)Aq

T (rusl)Aq T (rusu)Aq T (rurl)Aq T (ruru)Aq

 .

Further, because X∗2 can be similarly partitioned into X∗2slq, X
∗
2suq, X

∗
2rlq and X∗2ruq, one

has

TB|Aq =


T (sl)B|Aq
T (su)B|Aq
T (rl)B|Aq
T (ru)B|Aq

 =


T (slsl)B|Aq T (slsu)B|Aq T (slrl)B|Aq T (slru)B|Aq
T (susl)B|Aq T (susu)B|Aq T (surl)B|Aq T (suru)B|Aq
T (rlsl)B|Aq T (rlsu)B|Aq T (rlrl)B|Aq T (rlruB|A)q

T (rusl)B|Aq T (rusu)B|Aq T (rurl)B|Aq T (ruru)B|Aq

 .

Since both the sampling and linking processes are assumed to be non-informative within

m-blocks, the estimating function for β based on the linked sample data is

H∗sl(β) =
∑
q

G∗slq
(
y∗slq − T (sl)Aqf

E|A
q

)
=
∑
q

G∗slq
(
y∗slq − T (slsl)Aqf

E|A
slq − T (slsu)Aqf

E|A
suq − T (slrl)Aqf

E|A
rlq − T (slru)Aqf

E|A
ruq

)
.

(5)

Under the ELE model , (5) becomes

H∗sl(β) =
∑
q

G∗slq

[
y∗slq −

(λAqMq − 1

Mq − 1

)
f
E|A
slq −

(1− λAq
Mq − 1

)
1slq1

T
q f

E|A
q

]
.

This modified estimating function depends on the value of 1Tq f
E|A
q , which is a population,

rather than a sample, quantity. Given assumptions 4 and 5 at the end of section 1, we can

estimate 1Tq f
E|A
q using the weighted sample estimate w̃T

slqf
E|A
slq , where w̃slq = MsqM

−1
slqwslq.

Here wslq denotes the vector of sampling weights associated with the Mslq linked sample
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records in the qth m-block, while Msq is the total number of sampled records in this block.

In the special case where X1sq corresponds to an equal probability sample from X1q, w̃slq =

MqM
−1
slq 1slq, where Mq is the number of records in qth m-block. It immediately follows that

(5) can be replaced by

H∗sl(β) =
∑
q

G∗slq
(
y∗slq − T̃ (sl)Aqf

E|A
slq

)
(6)

where

T̃ (sl)Aq = (Mq − 1)−1
{

(λAqMq − 1)Islq + (1− λAq)1slqw̃T
slq

}
.

Unfortunately, there is still an issue with use of (6) since, by (2),

f
E|A
slq =

(
1slq,X1slq,T (sl)B|AqX

∗
2q

)
β

where

T (sl)B|AqX
∗
2q = T (slsl)B|AqX

∗
2slq + T (slsu)B|AqX

∗
2suq + T (slrl)B|AqX

∗
2rlq + T (slru)B|AqX

∗
2ruq

and the last three terms on the right hand side in the preceding identity are dependent on the

unlinked sample and non-sample (linked and unlinked) values in X2, which are unknown.

The same argument used to justify sample weighting above then leads to T (sl)B|AqX
∗
2q being

approximated by T̃ (sl)B|AqX
∗
2slq where

T̃ (sl)B|Aq = (Mq − 1)−1
{

(λB|AqMq − 1)Islq + (1− λB|Aq)1slqw̃T
slq

}
.

That is, the final form of the estimating function that can be used in this case replaces (6)

with

H̃
∗
sl(β) =

∑
q

G∗slq
(
y∗slq − T̃ (sl)Aqf̃

E|A
slq

)
(7)

where f̃
E|A
slq =

(
1slq,X1slq, T̃ (sl)B|AqX

∗
2q

)
β = X̃

E|A
slq β.

As in the previous sub-section, the development so far has assumed that the probabilities

λAq and λB|Aq are known. In practice, these will be unknown and replaced by the values of

suitable estimators λ̂Aq and λ̂B|Aq respectively. The following Theorem sets out the form of

the asymptotic variance for the solution β̂∗s to setting (7) to zero. Its proof is along the same

lines as that of Theorem 1 and Lemma 1. The notation used there is used again without

further comment.

10



Theorem 2. Let β̂∗s denote the solution to setting the modified estimating function (7) to

zero. Given the assumptions (4) and (5) at the end of section 1 as well as those implicit in

Theorem 1 and Lemma 1, the asymptotic variance of β̂∗s is then

V (β̂∗s) = D̃sl

[∑
q

(
G∗slqV (y∗slq)G

∗T
slq +

2∑
i=1

2∑
j=1

(
∂iH̃

∗
slq

)
Jijq
(
∂jH̃

∗
slq

)T)]
D̃

T

sl

where

D̃sl =
[∑

q

G∗slqT̃ (sl)AqX̃
E|A
slq

]−1

,

V (y∗slq) = σ2Islq + Ṽ (sl)Aq + Ṽ (sl)Cq

and

∂iH̃
∗
slq =

(
∂iG

∗
slq

)(
y∗slq − T̃ (sl)Aqf̃

E|A
slq

)
−G∗slq

[(
∂iT̃ (sl)Aq

)
f̃
E|A
slq + T̃ (sl)Aq

(
∂if̃

E|A
slq

)]
.

Here

Ṽ Aq = (1− λAq) diag
[{
λAq(f̃

E|A
iq − f̃E|Aslq )2 + f̃

E|A(2)
slq − (f̃

E|A
slq )2

}
; i ∈ slq

]
where f̃

E|A
slq = M−1

slq

∑
i∈slq f̃

E|A
iq and f̃

E|A(2)
slq = M−1

slq

∑
i∈slq(f̃

E|A
iq )2. Similarly

Ṽ (sl)Cq = (1− λB|Aq) diag
[
(Mq − 1)−1

{
(λAqMq − 1)d̃i +Mq(1− λAq)d̃q

}
; i ∈ q

]
with d̃i = λB|Aq(f

∗
2iq−f̄ ∗2slq)2+f̄

∗(2)
2slq−(f̄ ∗2slq)

2, f̄ ∗2slq = M−1
slq

∑
i∈slq f

∗
2iq and f̄

∗(2)
2slq = M−1

slq

∑
i∈slq(f

∗
2iq)

2.

3 Simulation Results

3.1 Specification of the simulation study

We used Monte Carlo simulation to compare the performances of the estimating function-

based estimators defined by different choices of the weighting function in (4) and (7). The

data model used in the simulation was

yi = 1 + 5x1i + 8x2i + εi.

The values x1i were drawn from the standard normal distribution and the values x2i were

drawn from a normal distribution with a mean of 2 and a variance of 4, while the errorsεi

were independently drawn from the standard normal distribution.
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The population was generated as three m-blocks, with linkage errors generated according to

the correlated ELE model. In particular, the probabilities of correct linkage between yq and

X1q were set to λA1 = 1, λA2 = 0.95 and λA3 = 0.85 , the probabilities of correct linkage

between X1q and X2q were set to λB1 = 1, λB2 = 0.85 and λB3 = 0.8 , and the joint correct

linkage probabilities φq were set to φ2 = 0.845 and φ3 = 0.77 . Note that with these choices

we then had λB|A2 = 0.89 and λB|A3 = 0.91.

Kim and Chambers (2012b) already showed that the estimating equation with ELE model

corrects the bias due to linkage errors in multi-linked data under the assumption that the

linkage errors in Bq is not depend on the linkage errors in Aq. Our simulation will show that

the estimation equation in Kim and Chambers (2012b) is not enough when the linkage errors

in Bq and Aq are correlated. To do that, we will generate the data sets y, X1 and X2 in

which the linkage errors in Bq and Aq are correlated. Then we will estimate the parameter

β = (1, 5, 8)T using the method in Kim and Chambers (2012b) as well as the method describe

in this article to show that the incorrect independent assumption between Bq and Aq cause

some bias in estimation of β. There should be some bias as long as λBq 6= λB|Aq.

We considered the case where these probabilities are known as well as the case where they

were estimated from audit samples. These audit samples were defined by taking independent

random samples of size 200 in the m-blocks corresponding to q= 2 and q = 3 and then

estimating λAq and φq as the proportion of correctly linked x1 − y and x1 − x2 − y audit

sample records respectively.

Two linkage scenarios were examined in the simulations.

• Scenario 1: This is the register to registers linking case considered in sections 2.1 and

2.2, with three m-blocks each of size 1000.

• Scenario 2: This is the sample to registers linking case considered in section 2.3, with

three m-blocks each of size 2500. 500 records in each m-block were randomly assigned

to be unlinkable. An independent random sample of size 1000 was then selected in

each m-block, so that, on average, 800 of the sampled records were able to be linked

(not necessarily correctly) to both registers in each simulation.
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Three methods of estimating the regression parameter β = (1, 5, 8)T were considered:

Scenario 1

ST The naive OLS estimator based on the linked data;

R-cor The solution to (4) with G∗q =
(
XE|A

q

)T
- the ratio type estimator;

A-cor The solution to (4) with G∗q =
(
T AqX

E|A
q

)T
- the implied Lahiri-Larsen estimator;

C-cor The solution to (4) with G∗q =
(
T AqX

E|A
q

)T (
σ2Iq + V AqV Cq

)−1
- the implied effi-

cient estimator;

R-ind The ratio type estimator, incorrect independent assumption between Bq and Aq;

A-ind The implied Lahiri-Larsen estimator, incorrect independent assumption;

C-ind The implied efficient estimator, incorrect independent assumption.

Scenario 2

ST The naive OLS estimator based on the linked data;

R-cor The solution to (7) with G∗slq =
(
X̃

E|A
q

)T
- the ratio type estimator;

A-cor The solution to (7) with G∗slq =
(
T̃ (sl)AqX̃

E|A
slq

)T
- the implied Lahiri-Larsen estima-

tor;

C-cor The solution to (7) with G∗slq =
(
T̃ (sl)AqX̃

E|A
slq

)T (
σ2Islq + Ṽ (sl)AqṼ (sl)Cq

)−1
- the

implied efficient estimator;

R-ind The ratio type estimator, incorrect independent assumption between Bq and Aq;

A-ind The implied Lahiri-Larsen estimator, incorrect independent assumption;

C-ind The implied efficient estimator, incorrect independent assumption.
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3.2 Simulation results

The main objective of this study is to show that, when the linked data set contains linkage

errors inevitably due to probabilistic record linkage process and these linkage errors are

correlated, our methods adjust bias due to linkage errors. In doing so, we examine the effect

of the correlation measure, φ in this setting. In our previous study, we developed some

error correction methods under the assumption that the linkage errors between X1 and X∗2

are independent to the linkage errors between X1 and y∗. First thing we want to check is

whether our methods from previous study can also adjust the bias even though we ignored

the effect of φ. Therefore, in our simulation, we also added the simulation results using the

methods from our previous study. The methods from our previous study can be obtained

by replacing λB|Aq withλBq . For more details, see Kim and Chambers (2012b). With this

in mind, let us explain the figure files. ST from the left hand side represents the results

of nave estimator. Following R-ind, A-ind and C-ind after ST from the left side represent

the results when we assume that the linkage errors are independent, while R-cor, A-cor and

C-cor represent the results when we consider the correlation measures.

The two scenarios were independently simulated 1000 times and the estimates of β (based

on ST, A-ind, R-ind and C-ind as well as R-cor, A-cor and C-cor) calculated using the linked

data generated in each simulation. Table 1 shows the relative bias and RMSE for these

estimators as well as the actual coverage of nominal 95 per cent confidence intervals based

on estimates of the asymptotic variances shown in Theorems 1 and 2. Clearly, the estimators

R-cor, A-cor and C-cor correct the bias due to incorrect linkages and their correlation mea-

sure, with the implied efficient estimator C-cor generally outperforming the Lahiri-Larsen

estimator A-cor and the ratio type estimator R-cor in terms of relative root mean squared

error. However, these results are not true if we ignore the correlation measure as we can

see the biases from R-ind, A-ind and C-ind estimators. Note that R-ind, A-ind and C-ind

estimators do not produce the biases for β1, the coefficient for X1. The reason for this is

that λAq are correctly specified for R-ind, A-ind and C-ind estimators. However, because, in

R-ind, A-ind and C-ind estimators, λB|Aq are mis-specified as λBq, R-ind, A-ind and C-ind

estimators produce the biases for β2 as well as β0.

Tables 1, 2 here.
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It is noteworthy that coverage rates for the estimators R-cor, A-cor and C-cor are consis-

tently higher than 95%, indicating that the estimators of the asymptotic variances of these

estimators are biased upwards. This does not appear to happen when only two data sets are

linked, see Chambers (2009) and Kim and Chambers (2012a).

Figures 1-3 show box plots of the distributions of estimation errors underpinning the results

shown in Tables 1 and 2. These distributions are for Scenario 2. The corresponding results

for Scenario 1 were very similar. The overall superiority of method C-cor, as well as the

increase in variability when the correct linkage probabilities are estimated, is clear.

Figure 1 here.

Figure 2 here.

Figure 3 here.
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A Apendix

A.1 Proof of Theorem 1

We use ∂β to denote the partial differentiation operator with respect to β and adapt standard

arguments used to obtain the asymptotic variance of the solution to an unbiased estimating

equation. Furthermore, we only consider the case where G∗q is a function of X∗q. Then, since

∂βH
∗(β) = −

∑
q

G∗qT AqX
E|A
q

we need only to show that in large samples the variance of y∗q given X∗q can be approximated

by V (y∗q) = σ2Iq + V Aq + V Cq. Note that

VarX∗(y∗q) = EX∗

{
VarX∗

(
y∗q|Aq

)}
+ VarX∗

{
EX∗

(
y∗q|Aq

)}
. (8)

Then, by (2) and (3),

EX∗
(
y∗q|Aq

)
= AqEX∗

(
yq|Aq

)
= AqX

E|A
q β = Aqf

E|A
q .

Hence V Aq = VarX∗

{
EX∗

(
y∗q|Aq

)}
= VarX∗

(
Aqf

E|A
q

)
. A large sample approximation to

this variance is set out equation (16) of Chambers (2009), and is given by

V Aq = (1− λAq) diag
[{
λAq(f

E|A
iq − f̄E|Aq )2 + f̄E|A(2)

q − (f̄E|Aq )2
}

; i ∈ q
]
. (9)

In order to calculate EX∗

{
VarX∗

(
y∗q|Aq

)}
, we note that

VarX∗
(
y∗q|Aq

)
= Aq

[
EX∗

{
VarX∗

(
yq|(B|A)q

)}]
AT
q

+Aq

[
VarX∗

{
EX∗

(
yq|(B|A)q

)}]
AT
q .

(10)

From (1) we see that

VarX∗
(
yq|(B|A)q

)
= σ2Iq.

Hence the first terms on the right hand side of (10) is

Aq

[
EX∗

{
VarX∗

(
yq|(B|A)q

)}]
AT
q = Aqσ

2IqA
T
q = σ2AqIqA

T
q = σ2Iq. (11)

In order to evaluate the second term on the right had side of (10) we note that, given

f ∗2q = X∗2qβ2,

V Bq = VarX∗

{
EX∗

[
yq|(B|A)q

]}
= VarX∗

(
(B|A)Tq f

∗
2q

)
17



which has the large sample approximation

V Bq = (1− λB|Aq) diag
[{
λB|Aq(f

∗
2iq − f̄ ∗2q)2 + f̄

∗(2)
2q − (f̄ ∗2q)

2
}]

= (1− λB|Aq) diag
[
di; i ∈ d

]
.

Put V Cq = EX∗

(
Aq

[
VarX∗

{
EX∗

[
yq|(B|A)q

]}]
AT
q

)
. Then

V Cq = EX∗

(
Aq(1− λB|Aq) diag

[
di; i ∈ d

]
AT
q

)
= (1− λB|Aq)EX∗

(
Aq diag

[
di; i ∈ d

]
AT
q

)
.

Put

eAqij = λAqI(i = j) +
1− λAq
Mq − 1

I(i 6= j).

Then, using similar arguments to that underpinning equations (66)-(67) of Chambers (2009),

we can write down the large sample approximation

EX∗

(
Aq diag

[
di; i ∈ d

]
AT
q

)
= diag

( Mq∑
i=1

die
Aq
ij ; i ∈ q

)
= diag

[
(Mq − 1)−1

{
(λAqMq − 1)di +Mq(1− λAq)d̄q

}
; i ∈ q

]
so the corresponding large sample approximation to V Cq is

V Cq = (1− λB|Aq)EX∗ diag
[
(Mq − 1)−1

{
(λAqMq − 1)di +Mq(1− λAq)d̄q

}
; i ∈ q

]
. (12)

Combining (8), (9), (11) and (12), the required result follows immediately. Use of this

asymptotic variance result to estimate the variance of β̂∗ follows directly. All that is required

is an unbiased estimator of σ2 based on the linked data. Here we note that we can write

(y∗q − fE|Aq )T (y∗q − fE|Aq ) = U 1q +U 2q +U 3q,

where
U 1q = yTqA

T
qAqyq − yTq f q − fTq yq + fTq f q

U 2q = yTq f q − fTq f q
U 3q = fTq yq − (y∗q)

TfE|Aq − (fE|Aq )Ty∗q + (fE|Aq )TfE|Aq .

Now

EX∗

(∑
q

U 1q

)
= EX∗

(∑
q

(yq − f q)T (yq − f q)
)

= Nσ2.

Also

EX∗

(∑
q

U 2q

)
= EX∗

(
(yq − f q)Tf q

)
= EX∗

(
εTq f q

)
= 0
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while, after re-arranging terms, we have

U 3q =
{
yTq f

E|A
q − (y∗q)

TfE|Aq

}
+
{

(fE|Aq )TfE|Aq − (fE|Aq )Ty∗q
}

+ ∆q,

where

EX∗

(
∆q

)
= EX∗

({
yTq − (fE|Aq )T

}
f q +

{
(fE|Aq )T − yTq

}
fE|Aq

)
= 0.

Thus,

EX∗

(
U 3q

)
= EX∗

[{
yTq f

E|A
q −(y∗q)

TfE|Aq

}
+
{

(fE|Aq )TfE|Aq −(fE|Aq )Ty∗q
}]

= 2(fE|Aq )T (Iq−T Aq)f
E|A
q .

Hence an unbiased estimator of σ2 is

σ̂2 = N−1
∑
q

{
(y∗q − f̂

E|A
q )T (y∗q − f̂

E|A
q )− 2(f̂

E|A
q )T (Iq − T Aq)f̂

E|A
q

}
.

A.2 Proof of Lemma 1

A first order Taylor series approximation is of the form

0 = H∗(β̂, λ̂A, φ̂)

≈H∗(β0, λ0,A, φ0) + ∂βH
∗(β0, λ0,A, φ0)(β̂ − β0)

+ ∂λA
H∗(β0, λ0,A, φ0)(λ̂A − λ0,A) + ∂φH

∗(β0, λ0,A, φ0)(φ̂− φ0),

where β0, λ0,A and φ0 denote the true values of β, λA and φ respectively. It leads us

VarX∗(β̂) =
[
∂βH

∗
0

]−1
[
VarX∗(H∗0) +

(
∂λA
H∗0
)
VarX∗(λ̂A)

(
∂λA
H∗0
)T

+
(
∂φH

∗
0

)
VarX∗(φ̂)

(
∂φH

∗
0

)T
+
(
∂λA
H∗0
)
CovX∗(λ̂A, φ̂)

(
∂φH

∗
0

)T
+
(
∂φH

∗
0

)
CovX∗(φ̂, λ̂A)

(
∂λA
H∗0
)T]([

∂βH
∗
0

]−1
)T
,

where H∗0 denote H∗(β0, λ0,A, φ0). Let ∂1 = ∂λA
and ∂2 = ∂φ. Then using the definition of

∂βH
∗
0 and VarX∗(H∗0) from the proof of Theorem 1, the asymptotic variance of β̂∗ is

V (β̂∗) = D
[∑

q

(
G∗qV (y∗q)G

∗T
q +

2∑
i=1

2∑
j=1

(
∂iH

∗)Jijq(∂jH∗)T)]DT

where D =
[∑

qG
∗
qT AqX

E|A
q

]−1

and J q = [Jijq] = Cov(λ̂Aq, φ̂q).
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Linear model, sample-register:  estimated lambda, Intercept

Figure 1: Simulated percentage relative errors for intercept coefficient β0 in linear regression

under scenario 2.
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Figure 2: Simulated percentage relative errors for the first slope coefficient β1 in linear

regression under scenario 2.
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Figure 3: Simulated percentage relative errors for the second slope coefficient β2 in linear

regression under scenario 2.
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Table 1: Relative bias and relative RMSE (both expressed in percentage terms) for parameter

estimates investigated in the simulation study when the data sets are all registers. Empir-

ical coverages (expressed in percentage terms) of normal theory-based nominal 95 per cent

confidence intervals are also shown. For estimators A and C, these are based on estimators

of the asymptotic variances of these estimators as shown in Theorem 1.

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Scenario 1- estimation of β0

ST 204.77 204.77 205.58 205.58 0.0 0.0

R-ind -83.08 -82.53 85.78 90.86 8.5 100.0

A-ind -70.11 -68.35 72.50 75.33 15.3 100.0

C-ind -32.34 -29.87 33.28 32.86 84.2 100.0

R-cor -0.91 -0.79 20.07 29.65 98.3 90.0

A-cor -0.81 -0.08 18.26 26.93 98.9 92.3

C-cor 0.37 2.11 9.56 14.74 100.0 99.3

Scenario 1- estimation of β1

ST -6.73 -6.73 16.43 16.43 38.3 38.3

R-ind -0.06 -0.09 6.98 7.27 96.6 100.0

A-ind -0.05 -0.10 6.63 6.90 96.7 100.0

C-ind -0.51 -0.59 4.29 4.45 99.2 100.0

R-cor -0.07 -0.10 6.95 7.24 95.8 95.6

A-cor -0.06 -0.10 6.59 6.87 96.5 96.4

C-cor -0.03 -0.13 4.16 4.30 99.4 99.3

Scenario 1- estimation of β2

ST -12.79 -12.79 36.32 36.32 0.0 0.0

R-ind 5.19 5.16 15.14 16.05 2.5 100.0

A-ind 4.38 4.27 12.80 13.31 6.5 100.0

C-ind 2.02 1.87 5.84 5.77 43.7 100.0

R-cor 0.06 0.05 3.53 5.23 94.9 80.1

A-cor 0.05 0.00 3.21 4.74 96.1 83.0

C-cor -0.02 -0.13 1.53 2.52 100.0 97.1
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Table 2: Relative bias and relative RMSE (both expressed in percentage terms) for parame-

ter estimates investigated in the simulation study when the data sets are samples. Empirical

coverages (expressed in percentage terms) of normal theory-based nominal 95 per cent con-

fidence intervals are also shown. For estimators A and C, these are based on estimators of

the asymptotic variances of these estimators as shown in Lemma 1.

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Scenario 2- estimation of β0

ST 206.14 206.14 207.43 207.43 0.0 0.0

R-ind -80.69 -80.25 84.80 96.29 14.0 100.0

A-ind -67.96 -64.65 71.87 78.32 22.3 100.0

C-ind -31.45 -25.91 33.46 33.44 78.7 100.0

R-cor 1.16 1.22 24.99 40.96 94.4 100.0

A-cor 1.13 2.65 23.27 37.41 95.6 100.0

C-cor 1.37 5.36 12.99 21.89 99.7 100.0

Scenario 2- estimation of β1

ST -6.69 -6.69 16.35 16.35 37.5 37.5

R-ind -0.03 -0.02 7.09 7.83 96.7 100.0

A-ind -0.03 -0.06 6.77 7.43 97.2 100.0

C-ind -0.49 -0.65 4.36 4.75 99.9 100.0

R-cor -0.04 -0.02 7.01 7.74 95.9 100.0

A-cor -0.03 -0.07 6.69 7.35 96.1 100.0

C-cor -0.01 -0.21 4.24 4.62 99.7 100.0

Scenario 2- estimation of β2

ST -12.89 -12.89 36.62 36.62 0.0 0.0

R-ind 5.05 5.02 14.86 16.94 5.4 100.0

A-ind 4.25 4.05 12.54 13.74 8.8 100.0

C-ind 1.97 1.62 5.74 5.78 48.5 100.0

R-cor -0.07 -0.07 3.91 7.01 91.9 100.0

A-cor -0.07 -0.16 3.56 6.35 93.0 100.0

C-cor -0.08 -0.33 1.76 3.63 99.6 100.0
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