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Unit Root Tests for ESTAR Models

Heni Puspaningrum, Yan-Xia Lin1 and Chandra Gulati

Centre for Statistical and Survey Methodology
School of Mathematics and Applied Statistics, University of Wollongong,

Wollongong, NSW, 2522, AUSTRALIA

Abstract

Since the introduction of augmented Dickey-Fuller unit root tests, many new types of unit root
tests have been developed. Developments in nonlinear unit root tests occurred to overcome poor
performance of standard linear unit root tests for nonlinear processes. Venetis et al. (2009) developed
a unit root test for the k-ESTAR(p) model where k is the number of equilibrium levels and p is the
order of autoregressive terms. Their approach may cause singularity problem because some of the
regressors might be collinear. To overcome the problem, they move collinear regressors into the error
term. This paper extends the work of Venetis et al. (2009). Using a new approach given in this paper,
the singularity problem can be avoided without worrying the issue of collinearity. For some cases,
simulation results show that our approach is better than other unit root tests.

Keywords: ESTAR model, unit root test, augmented Dickey-Fuller test.

1 Introduction

Since the introduction of unit root tests in Fuller (1976) and then Dickey and Fuller (1979, 1981),
many new types of unit root tests have been developed. Developments in nonlinear unit root tests
occurred as the standard linear unit root tests performed poorly for nonlinear processes. For example,
Pippenger and Goering (1993) showed that the power of the standard DF tests falls considerably when
the true alternative is a threshold autoregressive (TAR) model. Other researchers have attempted
to address similar issues in the context of a TAR model; see, for example Balke and Fomby (1997),
Enders and Granger (1998), Berben and van Dijk (1999), Caner and Hansen (2001) and Lo and Zivot
(2001).

The smooth transition autoregressive (STAR) process developed by Granger and Terasvirta (1993)
has been a popular process for modelling economic and finance data due to its generality and flexibility.
Nonlinear adjustment in a STAR model allows for smooth rather than discrete adjustment in a TAR
model. In a STAR model with one equilibrium, adjustment takes place in every period but the speed
of adjustment varies with the extent of the deviation from the equilibrium. A 1-STAR(p) model can
be expressed as follows:

yt = θ1,0 +
p∑

j=1

θ1,j yt−j +

θ2,0 +
p∑

j=1

θ2,j yt−j

G(θ, e, yt−d) + ϵt, t = 1, 2, . . . , T, (1)

where {ϵt} is a stationary and ergodic martingale difference sequence with variance σ2
ϵ ; d ≥ 1 is a

delay parameter; (θ, e) ∈ R+×R where R denotes the real space (−∞,∞) and R+ denotes the positive
real space (0,∞); e is an equilibrium; θ is the coefficient in the transition function; θ1,j , j = 0, . . . , p,
are autoregressive coefficients corresponding to linear term; θ2,j , j = 0, . . . , p, are autoregressive
coefficients corresponding to nonlinear term. The transition function G(θ, e, yt−d) determines the
speed of adjustment to the equilibrium e. Two simple transition functions suggested by Granger and
Terasvirta (1993) and Terasvirta (1994) are the logistic and exponential functions:

G(θ, e, yt−d) =
1

1 + exp{−θ(yt−d − e)}
− 1

2
, (2)

G(θ, e, yt−d) = 1 − exp{−θ2(yt−d − e)2}. (3)

If the transition function G(θ, e, yt−d) is given by (2), (1) is called a logistic smooth transition au-
toregressive (LSTAR) model. If the transition function G(θ, e, yt−d) is given by (3), (1) is called an
exponential smooth transition autoregressive (ESTAR) model.

1Correspondence author, email: yanxia@uow.edu.au
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The logistic transition function in (2) is bounded between -1/2 and 1/2 and implies asymmetric
behavior of yt depending upon whether it is above or below the equilibrium level (see Figure 1(a)).
On the other hand, the exponential transition function in (3) is bounded between zero and unity and
symmetrically inverse-bell shaped around equilibrium level e (see Figure 1(b)). These properties of
an ESTAR model are more attractive in the present modelling context than a LSTAR model because
it allows a smooth transition between regimes and symmetric adjustment of yt for deviation above
and below the equilibrium level e. The transition parameter θ in ESTAR models determines the
speed of transition between the two extreme regimes, with lower absolute values of θ implying slower
transition. The inner regime in ESTAR models corresponds to yt−d = e, so that G(θ, e, yt−d) = 0 and
(1) becomes a linear AR(p) model:

yt = θ1,0 +
p∑

j=1

θ1,j yt−j + ϵt, t = 1, 2, . . . , T. (4)

The outer regime of ESTAR models corresponds to lim(yt−d−e)→±∞ G(θ, e, yt−d) = 1, for a given θ,
so that (1) becomes a different linear AR(p) model as follow:

yt = θ1,0 + θ2,0 +
p∑

j=1

(θ1,j + θ2,j) yt−j + ϵt, t = 1, 2, . . . , T. (5)
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Figure 1: Plots of transition functions with θ = 0.5, e = 0 and d = 1.

An ESTAR model has become a popular model to analyse some economic and finance data. Michael
et al. (1997), Taylor et al. (2001) and Paya et al. (2003) used ESTAR models to analyse real exchange
rate and purchasing power parity (PPP) deviations. Terasvirta and Elliasson (2001), and Sarno et al.
(2002) used ESTAR models to analyse deviations from optimal money holding. Monoyios and Sarno
(2002) found that symmetric deviations from arbitrage processes such as stock index futures follow
ESTAR models. In economics and finance theories such as real exchange rate, PPP, and arbitrage
processes, ESTAR models can be characterised by a unit root behaviour in the inner regime, but for
large deviations, the process is mean reverting. Kapetanios et al. (2003) considered a unit root test
for an ESTAR(1) model and applied their test to real interest rates and rejected the null hypothesis
for several interest rates considered, whereas Augmented Dickey-Fuller (ADF) tests failed to do so.

Venetis et al. (2009) developed a unit root test for ESTAR models with the transition function
involves k equilibriums:

G(θ, e, yt−d) = 1 − exp

−θ2

(
k∏

i=1

(yt−d − ei)

)2
 (6)

where e = (e1, e2, . . . , ek)′.
As noted by Venetis et al. (2009), many economic theories support the existence of multiple

equilibria. For example, in the case of inflation, attempts by governments to finance a substantial
proportion of expenditure by seigniorage can lead to multiple inflationary equilibria (see Cagan, 1956
and Sargent and Wallace, 1973). In the case of unemployment, shocks from public produce not merely
fiscal and monetary (demand policy) responses but also changes in supply-side policy affecting the
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equilibrium values of real variables or “natural rate” (see Diamond, 1982 and Layard et al., 1991).
With regard to monetary policy rules, some models suggest that real interest rates might follow a
number of equilibria once the zero bound on the nominal interest rate is taken into account (see
Benhabib et al., 1999).

Even though Venetis et al. (2009) developed a unit root test for a more general form of ESTAR
model but their approach might cause singularity problem because some of the regressors might be
collinear. To overcome this problem, they moved collinear regressors into the error term. Even though
the test under alternative hypothesis is consistent, but it may make a significant difference for some
cases.

This paper extends the work of Kapetanios et al. (2003) by considering a unit root test for a
k-ESTAR(p) model with a different approach to Venetis et al. (2009). By using a new approach given
in this paper, singularity problems can be avoided without considering the issue of collinearity. For
some cases, simulation results show that our approach is better than Venetis et al. (2009), Kapetanios
et al. (2003) and the Augmented Dickey-Fuller (ADF) test of Dickey and Fuller (1979, 1981).

The rest of paper will be organised as follows: Section 2 explains the new unit root test derivation
for a k-ESTAR(p) model while Section 3 explains the F-test procedure. As the asymptotic distribution
of the test for a k-ESTAR(2) model does not contain a nuisance parameter while that for a k-ESTAR(p)
model, p > 2, contains nuisance parameters, Section 4 will give further analysis of unit root test for a
k-ESTAR(2) model and Section 5 will give further analysis of unit root test for a k-ESTAR(p) model,
p > 2. Section 6 presents conclusions of this paper.

The following standard notation is used subsequently, i.e.:
∫

W =
∫ 1

0
W (s)ds where W (s) is the

standard Brownian motion defined on s ∈ [0, 1]; “ ⇒′′ means convergence in distribution; “ →′′ means
convergence in probability; Xt = op(1) means that Xt → 0 in probability as t → ∞; Xt = Op(1) means
that Xt is bounded in probability, i.e. for every ε > 0 there is an M < ∞ such that P (|Xt| > M) < ε
for all t.

2 A New Approach of Unit Root Test for a k-ESTAR(p)
Model

In this section we develop a unit root test for a k-ESTAR(p) model with a slightly different approach
compared to Venetis et al. (2009). Especially, we are interested in the case where yt is a zero mean
series2 and has a unit root in the linear term, i.e. θ1,0 = 0 and

∑p
j=1 θ1,j = 1 3. Consider a k-

ESTAR(p) model in (1) and (6). An equilibrium level ei can be defined as any real number y∗ that
solves the system

y∗ = y∗ +

θ2,0 +
p∑

j=1

θ2,j y∗

G(θ, e, y∗)

or

0 =

θ2,0 +
p∑

j=1

θ2,j y∗

G(θ, e, y∗). (7)

One of solutions for (7) is y∗
1 = −θ2,0/

∑p
j=1 θ2,j where

∑p
j=1 θ2,j ̸= 0. This solution is named as the

first equilibrium e1 with the other solutions4 y∗
i = ei, i = 2, · · · , k named further equilibriums. Note

that when
∑p

j=1 θ2,j ̸= 0 and e1 = −θ2,0

∑p
j=1 θ2,j , then e1 = 0 if only if θ2,0 = 0 . Therefore, if

θ2,0 = 0, one of the equilibriums should be zero.
Venetis et al. (2009) rearrange (1) to become

∆yt = θ1,0 +
p∑

j=1

θ1,j yt−1 +
p−1∑
j=1

θ∗1,j ∆yt−j +

θ2,0 +
p∑

j=1

θ2,j yt−j

G(θ, e, yt−d) + ϵt, (8)

where t = 1, 2, . . . , T ; θ∗1,j = −
∑p

k=j+1 θ1,k, j = 1, · · · , (p − 1).

2If yt is not a zero mean series, we can de-mean the series so that the adjustment series will has a zero mean. This
de-mean strategy was also applied in He and Sandberg (2005). Empirical examples in Venetis et al. (2009) and Monoyios
and Sarno (2002) support the assumption is satisfied in practice.

3Note that when
Pp

j=1 θ1,j = 1 hold, the restriction −2 <
Pp

j=1 θ2,j < 0 ensures ergodicity of the process.
4Following Bair and Haesbroeck (1997) further differentiation reveals that ei, i = 2, 3, · · · , k, is monotonously

semistable from below if ei > −θ2,0/
Pp

j=1 θ2,j , and monotonously semistable from above if ei < −θ2,0/
Pp

j=1 θ2,j .
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Instead of rearrange (1) to become (8), we rearrange (1) to become

yt = θ1,0 +
p∑

j=1

θ1,j yt−1 +
p−1∑
j=1

θ∗1,j ∆yt−j +

θ2,0 +
p∑

j=1

θ2,j yt−1 +
p−1∑
j=1

θ∗2,j ∆yt−j

G(θ, e, yt−d) + ϵt,

(9)

where t = 1, 2, . . . , T ; θ∗i,j = −
∑p

k=j+1 θi,k, j = 1, · · · , (p − 1) and i = 1, 2.
Let θ1,0 = 0 and

∑p
j=1 θ1,j = 1 meaning that {yt} has a unit root without a drift in the linear

term5. Furthermore, without loss generality, assume that θ2,0 = 0 so that e1 = 0. Thus, (9) can be
arranged to become

∆yt =
p−1∑
j=1

θ∗1,j ∆yt−j +

 p∑
j=1

θ2,j yt−1 +
p−1∑
j=1

θ∗2,j ∆yt−j

G∗(θ, e, yt−d) + ϵt, t = 1, 2, . . . , T,

(10)

where

G∗(θ, e, yt−d)) = 1 − exp

−θ2y2
t−d

[
k∏

i=2

(yt−d − ei)

]2
 , (11)

with e1 = 0.

3 F-test Procedure

In this section, we develop a F-test for testing the null unit root hypothesis, H0 : θ = 0 against the
alternative hypothesis of globally stationary k-ESTAR(p) model in (10). Like the 1-ESTAR(1) model
in Kapetanios et al. (2003) and k-ESTAR(p) in Venetis et al. (2009), testing H0 can not be done
directly due to a well known identification problem. We use the same strategy in Venetis et al. (2009)
to solve the problem by using a second order Taylor approximation to the nonlinear function around
θ = 0 in (11).

G∗(θ, e, yt−d)) = 1 − exp

−θ2 y2
t−d

[
k∏

i=2

(yt−d − ei)

]2


≈ θ2 y2
t−d

[
k∏

i=2

(yt−d − ei)

]2

+ R

= θ2 y2
t−d

δ0 +
2(k−1)∑

s=1

δs ys
t−d

+ R

= θ2

2(k−1)∑
s=0

δs ys+2
t−d + R, (12)

where R is the remainder, δ0 = (
∏k

i=2 ei)2 and δ2(k−1) = 1.
Substituting (12) into (10),

∆yt =
p−1∑
j=1

θ∗1,j ∆yt−j +
2(k−1)∑

s=0

γ1,s yt−1 ys+2
t−d +

2(k−1)∑
s=0

p−1∑
j=1

γ2,sj ys+2
t−d∆yt−j + ϵ∗t , (13)

where γ1,s = θ2δs

∑p
j=1 θ2,j ; γ2,sj = θ2δsθ

∗
2,j ; s = 0, 1, · · · , 2(k − 1); j = 1, 2, · · · , (p − 1) and ϵ∗t =

ϵt + R
[∑p

j=1 θ2,j yt−j

]
. If θ = 0, yt is linear in yt−j , j = 1, 2, · · · , p and ϵ∗t = ϵt since the remainder

R ≡ 0.

5This paper only considers test for a unit root without a drift because in our next paper, we want to apply the test
to a series in pair trading which is not possible if the series has a drift or trend.
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Testing the null hypothesis of a unit root against the alternative of a globally stationary k-
ESTAR(p) model is equivalent to testing,

H0 : γ1,s = γ2,sj = 0, for all s and j in (13)

against
H1 : Not all γ1,s and γ2,sj = 0.

Under the null hypothesis H0, it follows for (13) that

∆yt =
p−1∑
j=1

θ∗1,j ∆yt−j + ϵt, (14)1 −
p−1∑
j=1

θ∗1,j Lj

∆yt = ϵt,

∆yt =

1 −
p−1∑
j=1

θ∗1,j Lj

−1

ϵt,

=
∞∑

j=0

cj ϵt−j ,

= C(L)ϵt = ηt, (15)

where L is the lag operator, i.e. Lyt = yt−1. We assume that the sequence {ηt} satisfies the following
assumption:

Assumption 1 Assumptions for {ηt} :

• ηt =
∑∞

j=0 cjϵt−j = C(L)ϵt, where {ϵt} is a stationary and ergodic martingale differences se-
quence (MDS) with natural filtration Ft = σ({ϵi}t

−∞), variance σ2
ϵ , and E|ϵt|6+r < ∞ for some

r > 0.

• C(L) =
∑∞

j=0 cjL
j is a one-sided moving average polynomial in the lag operator such that

C(1) ̸= 0 (no unit root),
∑∞

j=0 cj = C(1) < ∞ and
∑∞

j=0 jp|cj |p < ∞ (one-sumability and
p-sumability) for p ≥ 1.

Following Phillips and Solo (1992), the Beveridge-Nelson (BN subsequently) decomposition (see
Beveridge and Nelson, 1981) will be applied. We start with the BN lemma as follows:

Lemma 1 (Lemma 2.1 in Phillips and Solo, 1992). Let C(L) =
∑∞

j=0 cjL
j. Then

C(L) = C(1) − (1 − L)C̃(L),

where C̃(L) =
∑∞

j=0 c̃jL
j and c̃j =

∑∞
k=j+1 ck. If p ≥ 1, then

∞∑
j=1

jp|cj |p < ∞ ⇒
∞∑

j=0

|c̃j |p < ∞ and |C(1)| < ∞.

If p < 1, then
∞∑

j=1

j|cj |p < ∞ ⇒
∞∑

j=0

|c̃j |p < ∞.

Before we derive the F-test statistic for the unit root test for a k-ESTAR(p) model, we present the
theorem below used in the F-test statistic derivation.

Theorem 1 Assume that {ηt}∞t=1 and {ϵt}∞t=1 satisfy Assumption 1. Let yt =
∑t

i=0 ηi, t = 1, 2, . . . , T,
with y0 = 0. Denote λ = σϵC(1) and γj = E(ηtηt−j) = σ2

ϵ

∑∞
s=0 cscs+j, j = 0, 1, . . . , for all t. Then,

under H0, the following sums converge jointly.

(a) T−1
∑T

t=p+1

(
yt√
T

)q

⇒ λq
∫

W q,

5



(b) T−1
∑T

t=p+1

(
yt−1√

T

)2 (
yt−d√

T

)q

⇒ λq+2
∫

W q+2,

(c) T−1
∑T

t=p+1 ηt−iηt−j ⇒ γ|j−i|, i, j = 1, . . . , (p − 1),

(d) T−1
∑T

t=p+1

(
yt−d√

T

)q

ηt−iηt−j ⇒ γ|j−i|λ
q
∫

W q, i, j = 1, . . . , (p − 1),

(e) T−1/2
∑T

t=p+1

(
yt−1√

T

)(
yt−d√

T

)q
ηt−i√

T
⇒ 0, i = 1, . . . , (p − 1),

(f)
∑T

t=p+1
yt−1√

T

(
yt−d√

T

)q
ϵt√
T
⇒ σϵλ

q+1
∫

W q+1dW,

(g) T−1/2
∑T

t=p+1 ηt−iϵt ⇒
√

γ0σϵWi(1), i = 1, . . . , (p − 1),

(h)
∑T

t=p+1

(
yt−1√

T

)q
ηt−iϵt√

T
⇒ √

γ0σϵλ
q
∫

W qdWi, i = 1, . . . , (p − 1),

as T → ∞.
∫

W x =
∫ 1

0
W (s)xds and

∫
W xdW =

∫ 1

0
W (s)xdW (s) where W (s) is the standard

Brownian motion defined on s ∈ [0, 1] and x is an integer number. W is a standard Brownian motion
corresponding to MDS {ϵt} and Wi a standard Brownian motion corresponding to MDS {ηt−iϵt},
i = 1, 2, . . . , (p − 1). Note that W and Wi are independent as Cov(ϵt, ηt−iϵt) = E(ηt−iϵ

2
t ) = 0.

Proof: see Appendix A.1

Theorem 2 Let us write (13) as a partitioned regression model,

Y = X1 b1 + X2 b2 + ϵ∗t (16)

where

Y = [∆yp+1, ∆yp+2, · · · ,∆yT ]′

X1 =
[
(∆yp, ∆yp+1, · · · ,∆yT−1)′, (∆yp−1,∆yp, · · · , ∆yT−2))′, · · · ,

(∆y2,∆y3, · · · , ∆yT−(p−1))′
]

X2 =
[
(ypy

2
p+1−d, · · · , yT−1y

2
T−d)

′, (ypy
3
p+1−d, · · · , yT−1y

3
T−d)

′, · · · ,

(ypy
2k
p+1−d, · · · , yT−1y

2k
T−d)

′, (y2
p+1−d∆yp, · · · , y2

T−d∆yT−1)′, · · · ,

(y2
p+1−d∆y2, · · · , y2

T−d∆yT−(p−1))′, (y3
p+1−d∆yp, · · · , y3

T−d∆yT−1)′, · · · ,

(y3
p+1−d∆y2, · · · , y3

T−d∆yT−(p−1))′, · · · , (y2k
p+1−d∆yp, · · · , y2k

T−d∆yT−1)′, · · · ,

(y2k
p+1−d∆y2, · · · , (y2k

T−d∆yT−(p−1))′
]

b1 =
(
θ∗11, θ

∗
12, . . . , θ

∗
1(p−1)

)′
b2 =

(
γ1, γ21, · · · , γ2(2k−2), γ31, · · · , γ3(p−1), γ411, · · · , γ4(2k−2)(p−1)

)′
.

Under the null hypothesis of H0 : θ = 0, ϵ∗t = ϵt, an F-type test can be constructed. The F-type
statistic to test the null hypothesis of a unit root without a drift against the alternative of a globally
stationary k-ESTAR(p) model is

Fnl =
1

σ̂2
ϵ∗

(
b̂2 − b2

)′
(X ′

2M1X2)
(
b̂2 − b2

)
(17)

where M1 = I − X1(X ′
1X1)−1X ′

1 is orthogonal to the X1 projection matrix and σ̂2
ϵ∗ is the maximum

likelihood estimator of the error variance. The statistic

Fnl ⇒ F ′
1(W )F−1

2 (W )F1(W ), as T → ∞ (18)

where F1(W ) and F2(W ) are described below.
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Let W denote a standard Brownian motion,

F1(W ) =



∫
W 3dW

...∫
W (2k+1)dW(∫

W 2dW1 − W1(1)
∫

W 2
)

...(∫
W 2dW(p−1) − W(p−1)(1)

∫
W 2
)(∫

W 3dW1 − W1(1)
∫

W 3
)

...(∫
W 3dW(p−1) − W(p−1)(1)

∫
W 3
)

...(∫
W 2kdW1 − W1(1)

∫
W 2k

)
...(∫

W 2kdW(p−1) − W(p−1)(1)
∫

W 2k
)



,

F2(W ) =
[

F21(W ) 0
0 F22(W )

]
,

F21(W ) =


∫

W 6 · · ·
∫

W (2k+4)

...
. . .

...∫
W (2k+4) · · ·

∫
W (4k+2)

 ,

F22(W ) =


(∫

W 4 − (
∫

W 2)2
)
Π · · ·

(∫
W 2k+2 −

∫
W 2

∫
W 2k

)
Π

...
. . .

...(∫
W 2k+2 −

∫
W 2

∫
W 2k

)
Π · · ·

(∫
W 4k − (

∫
W 2k)2

)
Π


and

Π =


1 ρ1 · · · ρp−2

ρ1 1 · · · ρp−3

...
...

...
...

ρp−2 ρp−3 · · · 1


(p−1)×(p−1)

, (19)

where
∫

W x =
∫ 1

0
W (s)xds and

∫
W xdW =

∫ 1

0
W (s)xdW (s) where W (s) is the standard Brown-

ian motion defined on s ∈ [0, 1] and x in an integer number. W is a standard Brownian motion
corresponding to MDS {ϵt} and Wi a standard Brownian motion corresponding to MDS {ηt−iϵt},
i = 1, 2, . . . , (p−1). Note that W and Wi are independent as Cov(ϵt, ηt−iϵt) = E(ηt−iϵ

2
t ) = 0 and also

note that {ηt−iϵt} is MDS. ρi, i = 1, . . . , (p − 2), are constants corresponding to correlation between
∆yt and ∆yt−i.

Proof: see Appendix A.2

4 Unit Root Test Analysis for a k-ESTAR(2) Model

In this section, a unit root test analysis for a k-ESTAR(2) model is considered. For this model, we
can resolve the singularity problem in Venetis et al. (2009). For this model, the test does not involve
the nuisance parameter Π in (19). We compare the performance of our approach and other unit root
tests.

Now, consider (10) for a k-ESTAR(2) model,

∆yt = θ∗1,1 ∆yt−1 +
[
(θ2,1 + θ2,2)yt−1 + θ∗2,1 ∆yt−1

]
G∗(θ, e, yt−d) + ϵt, t = 1, 2, . . . , T (20)

where θ > 0 and {ϵt} is a stationary and ergodic martingale difference sequence with variance σ2
ϵ and

G∗(θ, e, yt−d) as in (11).
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Recall the Taylor approximation for G∗(θ, e, yt−d) around θ = 0 in (12),

G∗(θ, e, yt−d) ≈ θ2

2(k−1)∑
s=0

δsy
s+2
t−d + R,

where R is the remainder, δ0 = (
∏k

i=2 ei)2 and δ2(k−1) = 1. Thus, (20) becomes,

∆yt = θ∗1,1 ∆yt−1 +
2(k−1)∑

s=0

γ1,s yt−1y
s+2
t−d +

2(k−1)∑
s=0

γ2,s ys+2
t−d∆yt−1 + ϵ∗t (21)

where γ1,s = θ2δs(θ2,1 + θ2,2), γ2,s = θ2δsθ
∗
2,1 and ϵ∗t = ϵt + R

[∑2
j=1 θ2,j yt−j

]
. If θ = 0, yt in (20) is

linear in yt−1 and yt−2, and ϵ∗t = ϵt since the remainder R ≡ 0.
Testing the null hypothesis of a unit root (H0 : θ = 0) against alternative of a globally stationary

k-ESTAR(2) model is equivalent to testing,

H0 : γ1,s = γ2,s = 0, for all s in (21) against its complement.

Under the null hypothesis H0, ϵ∗t = ϵt, thus, (21) becomes

∆yt = θ∗1,1 ∆yt−1 + ϵt =
∞∑

j=0

cj ϵt−j = C(L)ϵt = ηt, (22)

where L is the lag operator, i.e. Lyt = yt−1, and θ∗1,1 = −θ1,2.
Following the results from Section 2, for p = 2, Π will become a constant 1, thus the Fnl statistic

in (18) becomes
Fnl = (F1(W ))′(F2(W ))−1F1(W ) (23)

where

F1(W ) =



∫
W 3dW

...∫
W (2k+1)dW(∫

W 2dW1 − W1(1)
∫

W 2
)

...(∫
W 2kdW1 − W1(1)

∫
W 2k

)


,

F2(W ) =
[

F21(W ) 0
0 F22(W )

]
,

F21(W ) =


∫

W 6 · · ·
∫

W (2k+4)

...
. . .

...∫
W (2k+4) · · ·

∫
W (4k+2)


and

F22(W ) =


(∫

W 4 − (
∫

W 2)2
)

· · ·
(∫

W 2k+2 −
∫

W 2
∫

W 2k
)

...
. . .

...(∫
W 2k+2 −

∫
W 2

∫
W 2k

)
· · ·

(∫
W 4k − (

∫
W 2k)2

)
 .

Note that even if the limit distribution of Fnl for a k-ESTAR(2) model in (23) does not depend
on any nuisance parameters, special attention is needed for values of θ∗1,1 close to -1 or 1. Under the
null hypothesis, yt is a function of θ∗1,1, as is seen from (22). Thus, the time series ∆yt is then close
to having a unit root or becoming nonstationary. In these situations the test may reject the null
hypothesis too often.

In comparison with Venetis et al. (2009), denote the test statistic by FV PP after the authors. Their
approach will consider,

∆yt = θ∗1,1 ∆yt−1 + [θ2,1 yt−1 + θ2,2 yt−2]G∗(θ, e, yt−d) + ϵt, t = 1, 2, . . . , T, (24)

rather than (20). Substituting the Taylor approximation for G∗(θ, e, yt−d) around θ = 0 in (12) into

8



Table 1: Asymptotic critical values of F test statistics for k-ESTAR(2) models.

Sig. Level
0.1 0.05 0.01 0.1 0.05 0.01

k Fnl FV PP

1 5.49 6.94 10.37 3.73 4.88 7.73
2 13.83 15.98 20.80 9.54 11.36 15.47
3 20.44 23.18 28.61 13.64 15.70 19.94
4 26.64 29.65 36.64 17.06 19.38 28.61

Note: Simulations were based on samples size T=10,000 and 50,000 replications.

(24) gives

∆yt = θ∗1,1 ∆yt−1 +
2(k−1)∑

s=0

γ1,s yt−1 ys+2
t−d +

2(k−1)∑
s=0

γ2,s yt−2 ys+2
t−d + ϵ∗t (25)

rather than (21). Here ϵ∗t is defined as in (21). Since asymptotically yt−1y
s+2
t−d are collinear with

yt−2y
s+2
t−d , for s = 0, 1, . . . , 2(k − 1), Venetis et al. (2009) rearranged (25) to become

∆yt = θ∗1,1 ∆yt−1 +
2(k−1)∑

s=0

γ1,s yt−1 ys+2
t−d + υt (26)

where υt =
∑2(k−1)

s=0 γ2,s yt−2 ys+2
t−d + ϵ∗t . Thus, they moved regressors to the error term and formed a

new error term.
Using (26), the asymptotic FV PP test statistics will be

FV PP = (F1(W ))′(F2(W ))−1F1(W ) (27)

where

F1(W ) =


∫

W 3dW∫
W 4dW

...∫
W (2k+1)dW

 and F2(W ) =


∫

W 6
∫

W 7 · · ·
∫

W (2k+4)∫
W 7

∫
W 8 · · ·

∫
W (2k+5)

...
...

. . .
...∫

W (2k+4)
∫

W (2k+5) · · ·
∫

W (4k+2)

 .

The expressions of F1(W ) and F2(W ) in Fnl and FV PP are different. This is due to the fact that
the FV PP has some regressors added into the error term so that the expression of F1(W ) and F2(W ) in
Fnl, i.e. our approach, have additional terms, compared to the FV PP . The advantage of our approach
is that it has solved the singularity problem for this case without the need to add regressors into the
errors term. It will maximise the usage of the information of data.

Asymptotic critical values for F -type statistics from Fnl in (23) and FV PP in (27) with k = 1, . . . , 4
are obtained via stochastic simulations and presented in Table 1.6

As suggested by Venetis et al. (2009), for computational purposes Fnl and FV PP can be easily
calculated following the steps below:

1. Estimate the unrestricted model on (21) for Fnl or (26) for FV PP and keep the sum of squared
residuals SSRU .

2. Estimate (22) as the restricted model implied by the null hypothesis and keep the sum of squared
residuals SSRR. Note that based on the null hypothesis, Fnl and FV PP have the same restricted
model.

3. Calculate the ratio F = T (SSRR −SSRU )/SSRU where T denotes the number of observations
in the restricted model and then compare with the critical values in Table 1.

6Critical values for the VPP in this table are quite different to the values in Table 2b in Venetis et al. (2009) as they
did not assume that θ2,0 = 0 when ei = 0 for a certain i, i = 1, . . . , k.
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4.1 Sufficient Conditions for Stationarity of a k-ESTAR(2) Model

For a k-ESTAR(2) model, we determine a set of sufficient conditions for parameter combinations
corresponding to a stationary series. Knowing the conditions will be useful in doing the simulation
study presented in the next subsection.

Let us rearrange yt in (20) as follows,

yt = (θ1,1 + θ2,1G
∗(θ, e, yt−d)) yt−1 + (θ1,2 + θ2,2 G∗(θ, e, yt−d)) yt−2 + ϵt. (28)

Considering (28) as an AR(2) process, the necessary stationarity conditions for this process (see
Box and Jenkins, 1976, p. 58) are,

(θ1,1 + θ2,1 G∗(θ, e, yt−d)) + (θ1,2 + θ2,2 G∗(θ, e, yt−d)) < 1 (29)
(θ1,2 + θ2,2 G∗(θ, e, yt−d)) − (θ1,1 + θ2,1 G∗(θ, e, yt−d)) < 1 (30)

−1 < θ12 + θ2,2 G∗(θ, e, yt−d)) < 1 (31)

Note that from (11), 0 < G∗(θ, e, yt−d) < 1, and under the null hypothesis of a unit root in the
linear term, θ1,1 + θ1,2 = 1 (see the discussion in Section 2). Thus, from (29) we obtain,

(θ2,1 + θ2,2)G∗(θ, e, yt−d) < 0. (32)

The stationarity conditions in (32) will be fulfilled if (θ2,1 + θ2,2) < 0.
From (30), we have

(θ1,2 − θ1,1) + (θ2,2 − θ2,1)G∗(θ, e, yt−d) < 1.

Under the null hypothesis of a unit root, θ1,1 + θ1,2 = 1. Thus,

((1 − θ1,1) − θ1,1) + (θ2,2 − θ2,1)G∗(θ, e, yt−d) < 1
(θ2,2 − θ2,1)G∗(θ, e, yt−d) < 2θ1,1 (33)

The stationarity condition in (33) will be fulfilled if 0 ≤ (θ2,2−θ2,1) < 2θ1,1 or (θ2,2−θ2,1) ≤ 0 < 2θ1,1

and θ1,1 ≥ 0.
To fulfill the stationarity condition in (31), θ1,2 should be −1 < θ1,2 < 1, so that

−1 − θ1,2 < θ2,2G
∗(θ, e, yt−d) < 1 − θ1,2.

Thus, the parameters should satisfy −1−θ1,2 < θ2,2 ≤ 0 or 0 ≤ θ2,2 < 1−θ1,2 to fulfill the stationarity
conditions.

To summarise, one set of the sufficient stationarity conditions for (28) is

(θ2,1 + θ2,2) < 0
θ1,1 ≥ 0

0 ≤ (θ2,2 − θ2,1) < 2θ1,1 or (θ2,2 − θ2,1) ≤ 0
−1 < θ1,2 < 1

−1 − θ1,2 < θ2,2 ≤ 0 or 0 ≤ θ2,2 < 1 − θ1,2. (34)

4.2 Small Sample Properties of Fnl Test for a k-ESTAR(2) Model

In this subsection, small sample size and power performance of Fnl test for a k-ESTAR(2) model are
undertaken using Monte Carlo experiments. For comparison sake, we include FV PP , the augmented
KSS test (denoted by AKSS; see Kapetanios et al., 2003) and the augmented Dickey-Fuller test
(denoted by ADF; see Fuller, 1976). For the AKSS test, we only consider Case 1 because based on
Venetis et al. (2009), generally this case has more ability to detect the true model than the other
cases.

The calculated F statistics from the Fnl and FV PP are compared with the critical values in Table 1.
The critical value for the t-test of AKSS test is -2.22 obtained from Table 1 in Kapetanios et al. (2003).
The critical value for the t-test of ADF test is -1.95 obtained in Fuller (1976). For each experiment,
the rejection probability (as a percentage) of the null hypothesis computed with the nominal sizes of
the tests, which are set at 5%. The sample size is considered for T = 50, 100, 200 with the number of
replications at 10,000.
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4.2.1 The size of Alternative Tests

To obtain the size of the alternative tests, we generate samples from the null model, i.e.:

∆yt = θ∗1,1∆yt−1 + ϵt (35)

where θ∗1,1 = −θ12 and ϵt is drawn from the standard normal distribution. We take θ1,2 = {−0.8,−0.5,
−0.2, 0, 0.2, 0.5, 0.8}.

For computational purposes, the regression model in (35) becomes the restricted model for Fnl

and FV PP . Furthermore, the unrestricted models for Fnl and FV PP are the regression models in (21)
and (25) respectively. For the AKSS test and the ADF test, we include the lagged first difference
(∆yt−1) to overcome the autocorrelation 7, so that the regression model for the AKSS test is

∆yt = δ1yt−1y
2
t−d + δ2∆yt−1 + ϵt (36)

and the regression model for the ADF test is

∆yt = δ1yt−1 + δ2∆yt−1 + ϵt. (37)

The null and alternative hypothesis for the AKSS test and ADF test are

H0 : δ1 = 0 vs H1 : δ1 < 0. (38)

The calculated t-test statistics value for δ1 is then compared with the critical values of the AKSS
test and ADF test. The null hypothesis for the AKSS test and the ADF test conclude that yt has a
unit root without a drift. On the other hand, the alternative hypothesis for the AKSS test concludes
that yt is a globally stationary 1-ESTAR(1) model while the ADF test concludes that yt is a stationary
linear ARMA model. The size of the alternative tests are presented in Table 2.

As Venetis et al. (2009) noted, the F tests (Fnl and FV PP ) resemble the familiar X 2 test when
under the null hypothesis the process is stationary. For this reason, Fnl and FV PP may suffer from
size problems when the number of restrictions is large and the time series is short. As Fnl has a larger
number of restrictions than FV PP , the distortion becomes larger for Fnl than FV PP for the same
conditions. Table 2 shows that Fnl and FV PP are oversized for large values of k and θ1,2 = −0.8. If
θ1,2 is close to -1, θ∗1,1 in (22) will be close to 1. It means that ∆yt will be close to has an explosive
unit root. Generally, if the value of θ1,2 is close to 0 and the sample size increases from T = 50 to
T = 200, Fnl and FV PP have nominal size close to 5%. In addition to the Fnl and FV PP tests for
k = 1, 2, 3, 4, the rejection probabilities of the null hypothesis for the AKSS and the ADF tests are also
computed in the last two columns in Table 2. For all cases, the rejection probabilities for the AKSS
are less than 5%. Therefore, the AKSS test has more power to detect the null hypothesis than the
other methods. It happens because this test involves fewer estimation parameters and deals with one
sided alternatives of stationarity. On the other hand, even though the ADF test also involves fewer
estimation parameters and deals with one sided alternatives of stationarity, the rejection probabilities
for the ADF tests are close to or slightly higher than 5%. Even for θ1,2 = 0 and T = 200, the rejection
probability of the null hypothesis for the ADF test is 5.24%.

4.2.2 The Power of Alternative Tests

To evaluate the power of tests against the globally stationary k-ESTAR(2) model, samples were
simulated from model in (20) with d = 1 and ϵt is drawn from a standard normal distribution. We
calculate the rejection probabilities of the null hypothesis (percent) given that the yt is an k-ESTAR(2)
model. The simulation results are summarised in Tables 3-8.

The data for Tables 3-5 are simulated with k = 1, i.e. e1 = 0. From the three tables, the rejection
probabilities increase as k increases for the tests based on Fnl and FV PP with T = 50. This may
be due to large number of restrictions and short time series. Therefore, even though the rejection
probabilities for the Fnl test with k = 4 are quite high (around 22%-31%), we do not recommend the
results from very small sample. For k = 1, the rejection probabilities increase as T increases for the
tests based on Fnl and FV PP . Furthermore, for large sample (T = 200), the probabilities for k = 1
are the highest compared to other k. Apparently, with large samples, the Fnl and FV PP tests are able
to recognise the true number of equilibrium (for this case, k = 1). From the three tables, the Fnl test
shows more power to detect the alternative compared to the other methods when θ1,2 close to 1. For

7Therefore we call the tests as the augmented KSS test and the augmented DF test
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Table 2: The size of alternative tests (in percentage)

Fnl FV PP AKSS ADF
k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

θ1,2 = −0.8
T=50 7.36 16.05 25.43 36.84 5.95 9.32 11.73 14.32 4.61 5.79

T=100 5.79 9.66 12.59 16.71 5.37 6.54 7.65 8.17 4.54 5.25
T=200 5.25 7.15 7.62 9.10 5.16 5.91 5.96 6.27 4.62 5.12

θ1,2 = −0.5
T=50 5.91 11.15 17.38 26.27 5.53 7.39 8.67 10.54 4.38 5.39

T=100 5.13 7.01 8.12 10.00 5.15 5.76 5.97 6.28 4.45 4.98
T=200 4.94 6.00 5.42 6.19 5.04 5.57 5.10 5.20 4.60 5.26

θ1,2 = −0.2
T=50 5.26 9.96 15.06 23.73 5.39 6.20 7.77 9.39 4.23 5.25

T=100 4.76 5.87 7.11 8.69 4.92 4.95 4.99 5.53 4.34 4.95
T=200 4.72 5.33 4.98 5.23 5.07 5.19 4.45 4.46 4.70 5.21

θ1,2 = 0
T=50 5.23 9.27 14.48 23.42 5.07 5.32 7.24 8.93 4.05 5.18

T=100 4.72 5.49 6.56 8.45 4.72 4.62 4.43 4.94 4.16 4.93
T=200 4.71 5.03 4.77 5.08 4.93 4.74 4.05 4.01 4.52 5.24

θ1,2 = 0.2
T=50 5.45 8.96 14.38 23.42 4.95 5.01 6.66 8.68 3.88 5.18

T=100 4.80 5.45 6.21 8.53 4.55 4.30 3.94 4.62 4.01 4.91
T=200 4.84 5.00 4.85 4.81 4.85 4.31 3.67 3.69 4.46 5.21

θ1,2 = 0.5
T=50 6.07 8.89 13.95 22.83 4.50 4.63 6.08 8.19 3.51 5.06

T=100 5.26 5.57 6.18 8.20 4.43 3.82 3.53 4.39 3.78 4.89
T=200 5.06 5.16 4.55 4.91 4.71 3.87 3.29 3.41 4.30 5.24

θ1,2 = 0.8
T=50 6.74 9.28 14.13 23.78 4.28 4.56 5.61 7.88 3.46 4.93

T=100 5.89 6.13 6.58 8.82 3.95 3.49 3.65 4.33 3.39 4.83
T=200 5.59 5.29 4.91 5.14 4.07 3.22 3.11 3.28 3.76 5.27

example, for (θ1,2, θ2,1, θ2,2) = (0.9, 0,−0.9), T = 200 and k = 1, the Fnl test has power almost 60%
while the FV PP , the AKSS and the ADF have power around 32%, 31% and 41% respectively.

The data for Tables 6-8 are simulated with k = 2, i.e. e1 = 0, e2 = 3. Generally, the patterns
are similar to k = 1. For small samples (T = 50), the rejection probabilities increase as k increases
for the tests based on Fnl and FV PP . For large samples (T = 200), for (θ2,1, θ2,2) = (0,−0.9) in
Table 6 and (θ2,1, θ2,2) = (0.4,−0.9) in Table 8, the power for k = 2 are the highest compared to
other k when we use the Fnl tests while the FV PP tests still have the highest power with k = 1.
Apparently, with large samples, the Fnl tests are more able to recognise the true number of equilibria
(for this case, k = 2) compared to the FV PP tests. Over the three tables, the Fnl test shows more
power to detect the alternative than the competitors tests when θ1,2 is close to 1. For example, for
(θ1,2, θ2,1, θ2,2) = (0.9, 0.4,−0.5), T = 200 and k = 2, the Fnl test has power approximately 72% while
the test based on FV PP , AKSS and ADF are only around 5%, 4% and 19% respectively.
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Table 3: The power of alternative tests (in percentage), k = 1, e1 = 0 and θ = 0.01.

Fnl FV PP AKSS ADF
(θ1,2, θ2,1, θ2,2) k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

(0, 0, -0.9)
T=50 30.96 18.35 21.68 31.67 39.80 12.26 11.81 14.50 35.88 26.30

T=100 74.01 32.57 24.40 25.73 85.73 32.69 20.41 19.08 84.22 78.31
T=200 99.56 81.01 58.91 49.18 99.90 90.81 69.91 57.36 99.89 99.99

(0.2, 0, -0.9)
T=50 21.03 14.18 18.64 28.51 24.27 7.99 8.98 11.95 21.38 16.45

T=100 52.76 21.12 17.08 19.04 66.32 17.16 12.10 11.83 63.68 52.86
T=200 96.33 56.92 37.04 30.67 98.93 64.55 39.77 31.31 98.74 99.13

(0.5, 0, -0.9)
T=50 14.45 11.73 15.96 25.72 13.14 5.55 7.20 9.66 11.37 11.11

T=100 32.14 13.40 11.84 13.94 36.84 8.44 7.04 7.56 34.51 27.17
T=200 81.29 32.36 20.38 17.71 88.00 28.26 16.97 14.67 86.93 86.64

(0.7, 0, -0.9)
T=50 12.96 11.39 16.68 25.24 9.64 4.77 6.32 8.64 8.38 9.43

T=100 25.01 11.68 10.58 12.94 24.23 6.04 5.67 5.90 22.47 18.82
T=200 66.93 24.00 15.51 13.69 67.23 15.58 10.80 9.46 65.80 67.32

(0.9, 0, -0.9)
T=50 14.70 12.05 17.22 26.91 6.69 3.64 5.20 7.26 5.77 7.65

T=100 24.55 12.70 12.03 13.64 12.22 3.77 3.89 4.56 11.46 12.84
T=200 59.38 22.90 16.41 14.72 32.35 6.81 5.06 5.06 31.27 41.69

Table 4: The power of alternative tests (in percentage), k = 1, e1 = 0 and θ = 0.01.

Fnl FV PP AKSS ADF
(θ1,2, θ2,1, θ2,2) k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

(0, 0.4, -0.5)
T=50 9.79 9.79 14.13 23.04 8.93 4.92 5.98 8.15 7.53 8.52

T=100 17.95 9.69 9.13 10.86 16.41 5.21 4.45 4.90 15.04 12.89
T=200 47.03 18.61 12.07 10.51 48.75 9.57 5.60 5.04 46.92 38.51

(0.2, 0.4, -0.5)
T=50 8.21 9.22 13.88 22.66 6.64 4.06 5.55 7.72 5.77 7.44

T=100 13.13 7.64 7.82 9.06 10.08 3.55 3.59 4.04 9.11 9.64
T=200 31.09 12.87 8.90 8.00 26.91 5.31 3.79 3.71 25.45 20.66

(0.5, 0.4, -0.5)
T=50 7.81 8.58 13.94 22.41 4.84 3.41 4.89 7.37 4.12 6.18

T=100 10.48 6.64 6.81 8.66 6.07 2.61 2.90 3.74 5.48 7.10
T=200 20.66 9.54 7.08 6.53 11.12 2.77 2.64 3.08 10.49 10.93

(0.7, 0.4, -0.5)
T=50 8.09 8.88 13.69 22.54 4.09 3.42 5.21 7.35 3.47 5.44

T=100 10.71 6.55 7.35 9.22 4.19 2.08 2.80 3.63 3.87 6.19
T=200 19.95 9.35 7.03 6.63 6.01 1.88 2.35 2.44 5.63 7.55

(0.9, 0.4, -0.5)
T=50 12.12 10.72 16.33 25.72 2.74 3.34 5.40 7.88 2.13 4.53

T=100 16.01 9.55 9.87 12.06 2.02 2.04 3.22 4.10 1.87 4.14
T=200 29.28 14.26 10.94 10.10 1.80 1.26 2.20 2.68 1.76 4.41
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Table 5: The power of alternative tests (in percentage), k = 1, e1 = 0 and θ = 0.01.

Fnl FV PP AKSS ADF
(θ1,2, θ2,1, θ2,2) k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

(0, 0.4, -0.9)
T=50 21.28 14.29 18.27 28.21 23.81 7.96 8.60 10.99 20.66 16.38

T=100 52.82 21.66 17.49 19.17 65.04 16.71 10.61 10.96 62.60 52.67
T=200 95.93 57.26 36.76 31.32 98.58 62.72 35.05 27.43 98.43 98.94

(0.2, 0.4, -0.9)
T=50 15.01 11.94 16.54 25.52 14.39 5.66 7.20 9.46 12.36 11.56

T=100 34.80 14.18 12.47 14.17 41.08 8.60 6.69 7.29 38.29 29.88
T=200 83.82 36.17 22.17 18.97 91.07 31.30 16.38 14.10 90.16 89.81

(0.5, 0.4, -0.9)
T=50 11.33 10.47 14.67 23.73 8.06 4.33 5.97 8.97 6.92 8.47

T=100 21.13 10.12 9.90 11.37 18.98 4.64 4.47 5.03 17.43 15.76
T=200 57.20 20.26 13.00 12.05 61.43 10.19 7.25 6.74 59.49 55.33

(0.7, 0.4, -0.9)
T=50 11.34 9.81 14.60 23.36 5.84 3.57 5.34 7.61 5.10 7.28

T=100 17.77 9.36 9.50 11.21 10.66 3.15 3.97 4.52 9.69 11.54
T=200 44.37 16.13 11.23 10.33 34.81 5.06 4.65 4.93 33.08 34.11

(0.9, 0.4, -0.9)
T=50 14.88 12.02 17.56 26.86 3.39 3.30 5.53 8.08 3.04 5.92

T=100 22.92 11.96 12.14 13.85 3.84 2.53 3.14 4.13 3.44 6.84
T=200 47.91 20.84 15.55 13.58 8.38 2.47 2.75 3.40 7.72 16.31

Table 6: The power of alternative tests (in percentage), k = 2, e1 = 0, e2 = 3 and θ = 0.01.

Fnl FV PP AKSS ADF
(θ1,2, θ2,1, θ2,2) k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

(0, 0, -0.9)
T=50 57.89 64.69 62.93 68.05 67.81 56.91 53.21 52.78 64.54 51.92

T=100 91.47 93.38 89.57 86.51 96.50 93.08 90.63 87.12 96.14 91.53
T=200 99.94 99.98 99.94 99.83 99.99 99.99 99.97 99.96 99.98 99.99

(0.2, 0, -0.9)
T=50 46.72 50.93 50.41 57.34 52.36 41.09 37.70 38.74 49.23 38.67

T=100 77.40 82.05 75.50 72.13 87.90 77.64 73.57 68.54 86.80 76.10
T=200 99.34 99.73 99.07 97.83 99.88 99.63 99.40 98.76 99.88 99.76

(0.5, 0, -0.9)
T=50 37.60 38.02 39.42 47.59 36.47 25.58 24.26 25.99 33.40 30.95

T=100 60.37 65.17 57.72 55.07 70.28 51.32 47.58 43.77 68.27 54.33
T=200 94.07 96.44 92.40 88.02 97.50 90.87 91.12 87.00 97.29 95.92

(0.7, 0, -0.9)
T=50 35.83 34.58 37.06 45.00 26.85 18.53 18.24 20.38 24.39 26.49

T=100 55.52 58.64 51.31 49.85 56.23 35.19 32.36 30.64 54.53 46.71
T=200 89.44 92.28 87.50 81.52 92.59 71.87 73.71 68.13 92.20 89.75

(0.9, 0, -0.9)
T=50 44.28 41.88 43.43 51.12 16.35 11.03 12.75 15.19 14.87 20.08

T=100 66.74 66.34 62.16 59.51 33.92 17.50 17.57 18.22 32.42 46.99
T=200 93.37 93.45 91.88 88.59 69.14 38.00 36.98 36.77 68.17 88.04
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Table 7: The power of alternative tests (in percentage), k = 2, e1 = 0, e2 = 3 and θ = 0.01.

Fnl FV PP AKSS ADF
(θ1,2, θ2,1, θ2,2) k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

(0, 0.4, -0.5)
T=50 27.71 20.64 24.47 34.59 19.57 6.67 7.53 9.63 17.11 18.65

T=100 57.72 34.56 31.02 32.58 48.45 11.39 7.62 8.01 45.72 48.51
T=200 93.05 70.70 63.23 59.87 89.27 39.46 20.66 16.74 88.50 95.16

(0.2, 0.4, -0.5)
T=50 22.01 17.14 21.71 31.02 11.70 4.77 6.19 8.49 10.17 12.28

T=100 42.61 26.06 24.19 25.51 27.33 5.76 5.32 6.10 25.20 29.04
T=200 82.71 54.69 48.92 46.03 72.41 16.69 9.62 9.08 71.03 74.78

(0.5, 0.4, -0.5)
T=50 19.68 16.32 20.39 29.36 6.08 3.52 5.67 8.30 4.97 8.35

T=100 34.31 23.05 20.99 22.56 11.46 3.48 4.47 5.19 10.44 15.95
T=200 66.34 47.18 42.46 38.45 35.18 6.13 5.25 5.25 33.48 43.33

(0.7, 0.4, -0.5)
T=50 21.52 17.42 21.83 31.40 3.98 3.27 5.78 8.43 3.28 6.06

T=100 37.15 26.86 24.26 25.13 6.02 2.72 3.98 5.29 5.39 10.44
T=200 65.76 52.44 47.30 42.56 16.43 3.98 4.40 5.14 15.55 30.72

(0.9, 0.4, -0.5)
T=50 30.09 25.74 29.00 38.24 2.08 3.79 6.92 10.05 1.74 3.99

T=100 50.09 41.48 37.26 37.33 2.24 3.51 5.63 7.13 1.99 5.69
T=200 78.64 72.02 69.01 64.69 4.50 5.43 6.84 7.64 4.17 19.13

Table 8: The power of alternative tests (in percentage), k = 2, e1 = 0, e2 = 3 and θ = 0.01 (continue).

Fnl FV PP AKSS ADF
(θ1,2, θ2,1, θ2,2) k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

(0, 0.4, -0.9)
T=50 53.08 52.95 53.80 60.75 59.90 33.01 30.58 34.33 56.51 46.60

T=100 88.13 84.25 79.54 76.75 94.64 74.33 65.30 62.75 93.99 85.80
T=200 99.89 99.83 99.45 98.67 99.98 99.77 99.24 98.52 99.98 99.96

(0.2, 0.4, -0.9)
T=50 39.96 41.15 42.63 50.49 39.45 19.28 19.52 23.50 36.15 34.17

T=100 69.42 69.06 63.01 60.72 80.34 44.90 39.49 38.32 78.55 65.04
T=200 98.65 97.97 95.79 92.89 99.59 95.63 90.28 86.56 99.55 98.68

(0.5, 0.4, -0.9)
T=50 32.68 32.54 33.96 42.94 20.14 10.85 12.42 16.53 17.61 24.45

T=100 48.60 53.30 48.07 47.17 49.13 19.32 18.37 19.85 46.70 43.92
T=200 87.57 89.57 83.60 78.50 92.90 53.87 52.25 48.22 92.28 84.59

(0.7, 0.4, -0.9)
T=50 33.65 32.49 35.20 43.73 10.84 7.80 10.09 13.51 9.54 17.65

T=100 46.56 52.95 47.85 46.85 28.49 11.88 13.11 15.43 26.33 39.06
T=200 77.65 86.19 81.50 75.98 73.33 26.06 30.67 30.03 71.93 70.84

(0.9, 0.4, -0.9)
T=50 46.28 45.29 47.03 53.87 4.69 7.76 10.88 14.82 4.05 12.01

T=100 62.05 68.43 65.82 63.41 8.65 4.92 12.64 14.83 7.95 37.03
T=200 83.79 93.43 92.66 89.81 24.18 19.51 23.01 25.51 22.99 60.14
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Figure 2: (a) Plot of ϵt; (b) ACF plot of ϵt; (c)PACF plot of ϵt.

4.3 Simulation Example

A series {ϵt} following a 1-ESTAR(2) model is generated by a simulation. The first 50 observations
were discarded. Figure 2(a) shows the plot of {ϵt} while its autocorrelation function plot and partial
autocorrelation function plot are shown in Figure 2(b) and (c).

ϵt = 0.1ϵt−1 + 0.9ϵt−2 + (0.4ϵt−1 − 0.5ϵt−2)
[
1 − exp(−0.01ϵ2t−1)

]
+ ηt,

ηt ∼ N(0, 1), ϵ−1 = ϵ0 = 0,

t = 1, 2, · · · , T .
From Figure 2(a), {ϵt} seems stationary with equilibrium zero, even though for some periods, it

takes quite a long time to return to zero. From the autocorrelation plot in Figure 2(b), the spikes are
slowly falling to zero. From the partial autocorrelation plot in Figure 2(c), only the first two spikes
are significant with the values of the spikes are around 0.8 indicating p = 2 is the appropriate lag for
the models. However, to make a conclusion that the residuals series is a stationary series, more formal
analysis is needed.

Table 9 reports summary statistics and the ADF unit root test for ϵt. It shows that the mean of ϵ̂t

is virtually zero with variance around 7.85. The ADF unit root test statistics suggest that the series
has a unit root (not stationary) on level but they are stationary on the first difference series. Using
higher lags did not change the conclusion.

Table 10 reports linearity tests results for ϵ̂t. The first linearity test employed is a RESET test (see
Ramsey, 1969). The null hypothesis of linearity of the residuals from an AR(2) for ϵ̂tis tested against
the alternative hypothesis of general model misspecification involving a higher-order polynomial to
represent a different functional form. Under the null hypothesis, the statistic is distributed as X 2(q)
with q is equal to the number of higher-order terms in alternative model. Table 10 reports the result
from applying the RESET test where the alternative model with a quadratic and a cubic terms are
included. The null hypothesis cannot be rejected, suggesting that a linear AR(2) process for ϵ̂t is not
misspecified.
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Table 9: Summary Statistics and ADF unit root test

Summary Statistics ϵt

Minimum -6.7124 Maximum 7.1589 Mean -2.6666e-011 Variance 7.8493
ADF unit root test

ϵt Lags ∆ϵ̂t Lags
-1.8733 1 -16.114** 1

Note: For the ADF test, ** superscript indicates significance at 1% level, based on critical values in
Fuller (1976).

Table 10: Linearity tests on residuals ϵ̂t

RESET Test F(2,294) = 1.5296 [0.2183] Lags used = 2
Linearity tests based on Terasvirta (1994)
d LMG LM3 LME

1 2.1067 [0.0525]* 0.0431 [0.9578] 3.1592 [0.0145]**
2 1.4760 [0.1862] 0.0091 [0.9909] 2.2246 [0.0664]*
ESTAR unit root tests comparison
d Fnl FV PP AKSS

k=1 k=2 k=3 k=1 k=2 k=3
1 14.45*** 17.12** 20.61* 1.45 6.41 6.74 -1.19

Note: * and ** superscripts indicate significance at 5% and 1% level, respectively. The numbers in []
are the p-values.

The second linearity test is based on Terasvirta (1994). The test can also be used to discriminate
between ESTAR or LSTAR models since the third-order terms disappear in the Taylor series expansion
of the ESTAR transition function. We use this test to analyse whether the series ϵ̂t is a linear AR(2)
model or a nonlinear ESTAR(2) or LSTAR(2) model. If ϵ̂t follows a LSTAR(2) model, the artificial
regression will be as follow:

ϵ̂t = ϕ0,0 +
2∑

j=1

(
ϕ0,j ϵ̂t−j + ϕ1,j êt−j ϵ̂t−d + ϕ2,j êt−j ϵ̂

2
t−d + ϕ3,j êt−j ϵ̂

3
t−d

)
+ error (39)

Keeping the delay parameter d ≤ 2 fixed, testing the null hypothesis

H0 : ϕ1,j = ϕ2,j = ϕ3,j = 0,

∀j ∈ {1, 2} against its complement is a general test (LMG) of the hypothesis of linearity against
smooth transition nonlinearity. Given that the ESTAR model implies no cubic terms in the artificial
regression (i.e.: ϕ3,j = 0) if the true model is an ESTAR model, but ϕ3,j ̸= 0 if the true model is an
LSTAR model, testing the null hypothesis that

H0 : ϕ3,1 = ϕ3,2 = 0,

against its complement provides a test (LM3) of ESTAR nonlinearity against LSTAR-type nonlin-
earity. Moreover, if this restriction cannot be rejected at the chosen significance level, then a more
powerful test (LME) for linearity against ESTAR-type nonlinearity is obtained by testing the null
hypothesis

H0 : ϕ1,j = ϕ2,j = 0| ϕ3j = 0,

∀j ∈ {1, 2} against its complement. From this test, the statistics LMG, LM3 and LME with d = 1
are higher than the test statistics with d = 2, indicating that d = 1 is more preferred. Using d = 1,
the LMG test statistic is significant at 10% significant level, the LM3 test statistic is not significant
and the LME test statistic is significant at 5% significant level, indicating that êt follows a nonlinear
ESTAR(2) model 8.

8Note that this test uses ESTAR or LSTAR models with only one equilibrium. Therefore there is no k in the notation.

17



As in Table 9 the ADF unit root test does not confirm that ϵt is a stationary series, we use our
ESTAR unit root test Fnl explained in Section 4. For comparison, we include the ESTAR unit root
test of Venetis et al. (2009) denoted FV PP and the augmented KSS test (denoted as AKSS, Kapetanios
et al. (2003)). For the Fnl and FV PP tests, we test for k = 1, 2, 3 and d = 1 with all at a 5% significant
level. Following assumptions in Section 4 for k-ESTAR(2) unit root tests. The unrestricted regression
for Fnl will be:

∆ϵ̂t = θ∗1,1 ∆ϵ̂t−1 +
2(k−1)∑

s=0

γ1,s ϵ̂s+3
t−1 +

2(k−1)∑
s=0

γ2,s ϵ̂s+2
t−1∆ϵ̂t−1 + η∗

t (40)

where θ∗1,1 = −θ1,2, γ1,s = θδs(θ2,1+θ2,2), γ2,s = θδsθ
∗
2,1, θ∗2,1 = −θ2,2 and η∗ = ηt+R

[∑2
j=1 θ2,j yt−j

]
and R is the remainder.

The unrestricted regression for FV PP will be:

∆ϵ̂t = θ∗1,1 ∆ϵ̂t−1 +
2(k−1)∑

s=0

γ1,s ϵ̂s+3
t−1 + η∗∗

t (41)

where η∗∗
t =

∑2(k−1)
s=0 γ2,s ϵ̂s+2

t−1∆ϵ̂t−1 + η∗
t .

Under the null hypothesis, the Fnl and FV PP tests will:

∆ϵ̂t = θ∗1,1 ∆ϵ̂t−1 + ηt. (42)

This equation will be the restricted regression for the Fnl and FV PP tests. The calculated F tests
from the Fnl and FV PP are compared with the critical values in Table 1.

For the AKSS test, we only consider for Case 1 because the mean of ϵ̂t is zero and there is no
significant time trend in the series. For this test, the lagged first difference (∆ϵ̂t−1) is included to
overcome the autocorrelation, so that the regression model for the AKSS test is

∆ϵ̂t = δ1ϵ̂
3
t + δ2∆ϵ̂t−1 + ηt. (43)

The hypothesis for the AKSS test is

H0 : δ1 = 0 vs H1 : δ1 < 0. (44)

Then, the calculated t-test for δ1 in (43) is compared with the critical values of the AKSS test.
The critical value for the t-test of AKSS test is -2.22 obtained from Table 1 in Kapetanios et al.
(2003). The null hypothesis for the AKSS test concludes that ϵ̂t has a unit root without a drift. On
the other hand, the alternative hypothesis for the AKSS test concludes that ϵ̂t is a globally stationary
1-ESTAR(2) model.

From the ESTAR tests results in Table 10, the FV PP and AKSS tests cannot confirm that ϵ̂t is a
stationary series but our test, the Fnl tests can identify that it is a nonlinear stationary ESTAR(2)
model. As the most significant level is at k = 1, suggest that ϵ̂t follows a 1-ESTAR(2) model with
d = 1, i.e.:

ϵ̂t = θ1,0 + θ1,1 ϵ̂t−1 + θ1,2 ϵ̂t−2 + (θ2,0 + θ2,1 ϵ̂t−1 + θ2,2 ϵ̂t−2)
(
1 − exp

(
−θ2(ϵ̂t−1 − e1)2

))
+ ηt, (45)

where ηt is the error term and e1 is the equilibrium point.

5 Unit Root Test Analysis for a k-ESTAR(p) model

Unlike the k-ESTAR(2) model, the Fnl test for k-ESTAR(p) model in (18) involves nuisance parame-
ters Π. To deal with this circumstance, we propose two methods. The first is a bootstrap method as
an approximation to the asymptotic distribution of Fnl, and the second is approximation of critical
values obtained by assuming Π = I(p−1)×(p−1).

5.1 Bootstrap Method

A bootstrap approximation can be used to calculate critical values and p-values. For a review on boot-
strapping time series, see Li and Maddala (1996) and for bootstrap applications as approximations of
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the asymptotic distributions of unit root test, see Caner and Hansen (2001) and Eklund (2003). Caner
and Hansen (2001) analysed a unit root test for a threshold autoregressive (TAR) model involving a
nuisance parameter function and suggested a bootstrap method to approximate the null distribution.
Eklund (2003) analysed a unit root test for a 2-LSTAR(2) model. To overcome the problem of large
inverse matrices, he followed the bootstrap method in Caner and Hansen (2001). Using the bootstrap
method, Caner and Hansen (2001) and Eklund (2003) found fairly good results both in size and power
tests. Having similar to STAR models and using a F test statistic as in Eklund (2003), in this section
we also follow the bootstrap method in Eklund (2003).

Bootstrap method for k-ESTAR(p) models:

(B1) Calculate the Fnl statistic from the sample data based on (13) as an unrestricted model and
(14) as a restricted model (see the calculation of the Fnl test statistic in Section 4 in the case of
k-ESTAR(2) models).

(B2) Under the null hypothesis, yt has a unit root as in (14), i.e.:

∆yt =
p−1∑
j=1

θ∗1,j ∆yt−j + ϵt, t = 1, · · · , (T − p). (46)

Let θ̂
∗

= (θ̂∗1,1, . . . , θ̂
∗
1,(p−1))

′ and N(µ̂ϵ, σ̂
2
ϵ ) be the estimates of θ∗ = (θ∗1,1, . . . , θ

∗
1,(p−1)) and

N(µϵ, σ
2
ϵ ) which is the distribution of the errors ϵt in (46) imposing the null hypothesis.

(B3) Let ϵb
t be a random draw from N(µ̂ϵ, σ̂

2
ϵ ) and generate the bootstrap time series

yb
t = yb

t−1 +
p−1∑
j=1

θ̂∗1,j ∆yb
t−j + ϵb

t , t = 1, · · · , (T − p). (47)

Initial values for the resampling can be set to sample values of the de-meaned series. The
distribution of the series yb

t is called the bootstrap series distribution of the data. The Fnl test
statistic is calculated from the resampled series yb

t as in item (B1).

(B4) Repeating this resampling operation J times yields the empirical distribution of F b
nl, which is the

bootstrap distribution of Fnl, completely determined by θ̂
∗

and N(µ̂ϵ, σ̂
2
ϵ ). For a large number

of independent F b
nl tests, estimated from J resampled series, the bootstrap p-value, defined by

pb = P (F b
nl > Fnl) can be approximated by the frequency of simulated F b

nl that exceeds the
observed value of Fnl.

5.2 Approximation of Critical Values Assuming Π = I(p−1)×(p−1)

Given the difficulty in obtaining the asymptotic null distribution of the test statistic, Eklund (2003)
also suggested obtaining critical values by assuming the parameter in the null hypothesis equal zero.
Under the null, his model is ∆yt = δ1∆yt−1 + ϵt. Assuming δ1 = 0 means that under the null, ∆yt

are uncorrelated. Using the same argument, Π = I means that under the null, ∆yt are uncorrelated
as (ρ1, . . . , ρ(p−2))′ = 0. If (ρ1, . . . , ρ(p−2))′ are not far from 0, these critical values may be a good
approximation of critical values for the asymptotic null distribution. As an example, assuming Π =
I2×2, the critical values based on the asymptotic null distribution in (18) for k-ESTAR(3) models are
tabulated in Table 11. We only consider k-ESTAR(3) models but for p > 3, we can follow the same
procedure.

Table 11: Asymptotic critical values of Fnl test statistics for k-ESTAR(3) models with Π = I2×2.

Significance Level
0.1 0.05 0.01

k=1 7.124863 8.758735 12.306371
k=2 17.82701 20.35429 25.65715
k=3 26.86799 29.96162 36.30965

Note: Simulations were based on samples size T=10,000 and 50,000 replications.
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5.3 Monte Carlo Experiments

Monte Carlo experiments are conducted for k-ESTAR(3) models to compare the power of the Fnl test
to detect non-linearity with tests based on FV PP , AKSS and ADF. We only consider k-ESTAR(3)
models as for p > 3, we can follow the same procedure. Consider (9) for a k-ESTAR(3) model with
θ1,0 = 0,

∑p
j=1 θ1,j = 1 and θ2,0 = 0 so that e1 = 0 as follow,

yt =
3∑

j=1

θ1,j yt−j +

 3∑
j=1

θ2,j yt−j

G∗(θ, e, yt−d) + ϵt (48)

where θ > 0 and {ϵt} is a stationary and ergodic martingale difference sequence with variance σ2
ϵ .

Using the same assumptions for (3), (48) can be arranged to become

∆yt =
2∑

j=1

θ∗1,j ∆yt−j +

 3∑
j=1

θ2,jyt−1 +
2∑

j=1

θ∗2,j ∆yt−j

G∗(θ, e, yt−d) + ϵt, (49)

where θ∗i,1 = −(θi,2 + θi,3), θ∗i,2 = −θi,3, i = 1, 2.
Recalling the Taylor approximation for G∗(θ, e, yt−d) around θ = 0 in (12), (49) becomes,

∆yt =
2∑

j=1

θ∗1,j ∆yt−1 +
2(k−1)∑

s=0

γ1,s yt−1 ys+2
t−d +

2(k−1)∑
s=0

2∑
j=1

γ2,sj ys+2
t−d ∆yt−j + ϵ∗t , (50)

where ϵ∗t = ϵt + R. If θ = 0, yt in (48) is linear in term of yt−1, yt−2 and yt−3 and ϵ∗t = ϵt since the
remainder R ≡ 0.

Testing the null hypothesis of a unit root (H0 : θ = 0) against alternative of a globally stationary
k-ESTAR(3) model is equivalent to testing,

H0 : γ1,s = γ2,sj = 0, for all s and j in (50) against its complement .

5.3.1 The Size of Alternative Tests

In this simulation study, we want to know the probability that the proposed unit root test Fnl rejects
H0 with a pre-set significance level of 5% if the true underlying series is a linear unit root AR(3)
model. If the size of alternative test is around 5% or less, it means the test is good in detecting the
true underlying series. We also compare the results with the tests based on FV PP , AKSS and ADF.
To obtain the test sizes, we generate the null model of k-ESTAR(3) models, i.e.:

∆yt = θ∗1,1 ∆yt−1 + θ∗1,2 ∆yt−2 + ϵt (51)

where θ∗1,1 = −(θ1,2 + θ1,3), θ∗1,2 = −θ1,3 and ϵt is drawn from the standard normal distribution. In
particular, we choose a broad range of parameter values for θ∗1,1 and θ∗1,2 so that ∆yt in (51) follows
an AR(2) model. To fulfill the stationarity conditions of an AR(2) model, the parameters θ∗1,1 and
θ∗1,2 should be: (i) −1 < θ∗1,2 < 1, (ii) θ∗1,1 + θ∗1,2 < 1 and (iii) θ∗2,1 − θ∗1,2 < 1.

For computational purposes, the regression model in (51) becomes the restricted model for Fnl

and FV PP . The unrestricted model for Fnl is the regression models in (50) while the unrestricted
model for FV PP is:

∆yt =
2∑

j=1

θ∗1,j ∆yt−1 +
2(k−1)∑

s=0

γ1,s yt−1 ys+2
t−d + ϵ∗t . (52)

The bootstrap method is quite time consuming. Furthermore, when we apply the Fnl tests for k >
1, sometimes they fail due to singularity problems. This happens because under the null hypothesis,
some nonlinear terms in (13) will be virtually zero. Therefore, for bootstrap method we only report
results for k = 1. For the second method in Section 5.2 assuming Π = I2×2, the Fnl statistic is
compared to the critical values in Table 11.

For the FV PP test, as it does not depend on p, the critical values for k-ESTAR(3) models are the
same as the critical values for k-ESTAR(2) models in Table 1. For the AKSS test and the ADF test,
we include ∆yt−1 and ∆yt−2 to overcome the autocorrelation in the error term, so that the regression
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model for the AKSS test is

∆yt = δ1yt−1y
2
t−d + δ2∆yt−1 + δ3∆yt−2 + error (53)

and the regression model for the ADF test is

∆yt = δ1yt−1 + δ2∆yt−1 + δ3∆yt−2 + error. (54)

The null and alternative hypothesis for the AKSS test and ADF test are

H0 : δ1 = 0 vs H1 : δ1 < 0. (55)

Then, the calculated t-tests for δ1 are compared with the critical values of the AKSS test and
ADF test. The null hypothesis for the AKSS test and the ADF test conclude that yt has a unit root
without a drift. On the other hand, the alternative hypothesis for the AKSS test concludes that yt is
a globally stationary 1-ESTAR(1) model while the ADF test concludes that yt is a stationary linear
ARMA model. The sizes based on a 5% significant level are presented in Table 12.

In Table 12, F b
nl denotes the Fnl test statistic with k = 1 using the bootstrap method described

in Section 5.1. The data is generated from (51) with T = 250. The rejection of the null hypothesis
percentages are based on critical values from 500 bootstrap series and then the simulations are repeated
by 500 independent replications. For the other Fnl test statistics are based on the second method. For
Fnl, FV PP , AKSS and ADF tests, the data are generated from (51) with T = 250 and the rejection
of the null hypothesis percentages are based on 10,000 independent replications.

Similar to the size of alternative test for k-ESTAR(2) model, for all cases, the rejection probabilities
for the AKSS are less than or around 5%. It is followed by the ADF test with the rejection probabilities
are close to or slightly higher than 5%. If we compare the results of Fnl tests using the bootstrap
method in the second column and using the second method for k = 1 in the third column, generally
the second method seems to produce better results as its values are close to or slightly higher than 5%.
Furthermore, its highest value is 5.39 for parameter values (-0.9, -0.9) while the highest value from
the F b

nl is 6.4 for parameter values (0, -0.7). Comparing the Fnl tests and the FV PP tests results,
generally FV PP tests are better than the Fnl tests. This is not surprising as the FV PP tests involve
less variables derived from the nonlinear term than the Fnl tests.

5.3.2 The Power of Alternative Tests

In this simulation study, we want to know the probability that the proposed unit root test Fnl rejects
H0 with a pre-set significance level if the true underlying series is a globally stationary nonlinear k-
ESTAR(3) model. This probability can be defined as the power of alternative test. In this simulation
study, we use a 5% significance level. We also compare the results with other tests, i.e. FV PP , AKSS
and ADF. To evaluate the power of tests against globally stationary k-ESTAR(3) model, samples from
the model in (48) are generated with ϵt drawn from a standard normal distribution. The procedure
to calculate the rejection probabilities of the null hypothesis is the same as the procedure in obtaining
the size of the alternative tests. The simulation results are summarised in Tables 13 and 14.

The data for Table 13 are simulated with k = 1, i.e. e1 = 0. From Table 13, comparing the
F b

nl test statistics and the Fnl test statistics for k = 1, we see that the two statistics have similar
values. Thus, we conclude that the power of both methods are equal. The probabilities for the Fnl

and FV PP tests with k = 1 are the highest compared to other k. Apparently, with large samples, the
tests are able to detect the true number of equilibrium (for this case, k = 1). The Fnl test shows more
power to detect the alternative compared to the other methods when θ∗1,2 close to -1. For example, for
(θ∗1,1, θ

∗
1,2) = (−0.9,−0.9), (θ2,1, θ2,2, θ2,3) = (0.4, 0,−0.5), and k = 1, the Fnl test can detect almost

30% while the FV PP , the AKSS and the ADF are around 0.55%, 0.49% and 2.24% respectively.
The data for Table 14 are simulated with k = 2, i.e. e1 = 0, e2 = 3. Generally, the patterns are

similar to k = 1. The results from the F b
nl test and the Fnl test for k = 1, are still not much different.

Generally, for (θ2,1, θ2,2, θ2,3) = (0, 0,−0.9) and (θ2,1, θ2,2, θ2,3) = (0.4, 0,−0.9), the probabilities for
k = 2 are the highest compared to other k when we use the Fnl tests while for (θ2,1, θ2,2, θ2,3) =
(0.4, 0,−0.5) the probabilities for k = 1 are the highest. The FV PP tests still have the highest
probabilities with k = 1 for all three combinations of (θ2,1, θ2,2, θ2,3). Apparently, the Fnl tests are
more able to recognise the true number of equilibriums (for this case, k = 2) compared to the FV PP

tests. The Fnl test shows more power to detect the alternative compared to the other methods when
θ∗1,2 close to -1. For example, for (θ∗1,1, θ

∗
1,2) = (−0.9,−0.9), (θ2,1, θ2,2, θ2,3) = (0.4, 0,−0.5), and k = 2,
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Table 12: The size of alternative tests (in percentage)

(θ∗11, θ
∗
12) F b

nl Fnl FV PP AKSS ADF
k=1 k=2 k=3 k=1 k=2 k=3

(0,0) 5.1 4.89 5.11 5.21 5.14 5.00 4.34 4.66 4.97
(-0.2,-0.2) 5.4 4.94 5.12 5.12 5.0 3.96 3.61 4.53 4.98
(-0.5,-0.5) 5.2 5.17 4.67 4.77 4.25 3.03 3.07 3.75 5.00
(-0.7,-0.7) 5.6 5.19 4.85 4.97 3.76 2.59 2.50 3.33 4.98
(-0.9,-0.9) 4.9 5.39 5.73 5.83 3.23 2.12 2.23 2.80 5.03

(0.2,0.2) 4.8 4.85 5.29 5.74 5.35 6.01 5.42 4.88 4.93
(-0.3,0) 5.3 4.93 5.29 5.51 5.16 4.32 3.84 4.72 4.96

(-0.5,-0.2) 5.5 4.97 5.13 5.08 4.89 3.64 3.48 4.31 5.00
(-0.8,-0.5) 4.9 4.86 4.79 4.63 3.94 3.08 2.89 3.49 5.00

(-1,-0.7) 4.5 4.8 4.52 4.73 3.50 2.61 2.67 3.04 5.03
(-1.2,-0.9) 3.0 5.02 4.28 4.60 2.85 1.97 1.88 2.43 5.09
(-0.1,0.2) 5.6 4.84 5.29 5.58 5.30 5.31 4.54 4.77 4.99
(0.2,0.5) 4.8 5.11 5.82 7.50 5.54 6.47 6.85 4.95 4.72
(-0.7,0) 4.7 5.21 5.63 5.53 4.74 3.42 3.08 4.28 4.99

(-0.9,-0.2) 4.6 5.21 5.25 4.94 4.40 3.19 2.89 3.81 5.08
(-1.2,-0.5) 4.7 5.27 4.71 4.41 3.75 2.64 2.46 3.36 5.00
(-1.4,-0.7) 5.6 4.72 4.00 4.39 3.17 2.14 1.99 2.77 5.04
(-1.6,-0.9) 5.3 4.43 3.60 3.87 2.27 1.39 1.49 1.90 5.17
(-0.5,0.2) 4.7 5.05 6.01 6.10 5.08 4.14 3.67 4.69 5.02
(-0.2,0.5) 3.6 4.89 6.21 6.72 5.64 5.53 4.81 5.01 4.86

(0.3,0) 4.9 4.85 5.24 5.44 5.25 5.51 4.88 4.74 4.92
(0.1,-0.2) 5.3 4.90 5.12 5.15 5.12 4.39 4.20 4.58 4.92

(-0.2,-0.5) 6.2 5.18 4.83 4.92 4.59 3.33 3.03 4.10 4.98
(-0.4,-0.7) 5.7 5.13 4.74 4.91 4.03 2.94 2.61 3.54 5.00
(-0.6,-0.9) 5.1 4.95 4.77 5.05 3.09 2.16 2.08 2.69 5.06

(0.5,0.2) 4.7 5.05 5.60 6.83 5.39 6.36 6.78 4.82 4.84
(0.7,0) 4.6 5.0 5.72 6.71 5.48 6.00 6.48 4.83 4.89

(0.5,-0.2) 5.0 4.97 5.32 5.39 5.09 5.22 4.72 4.69 4.89
(0.2,-0.5) 5.9 5.01 4.97 5.01 4.61 3.84 3.48 4.17 4.91

(0,-0.7) 6.4 5.25 4.72 5.12 4.07 3.10 2.88 3.66 5.08
(-0.2,-0.9) 5.7 5.30 4.88 5.10 3.66 2.25 2.11 3.21 5.14

the Fnl test has power almost 85.7% while the FV PP , the AKSS and the ADF are around 6.17%,
0.18% and 1.73% respectively.

6 Conclusion

This paper has extended the work of Kapetanios et al. (2003) and Venetis et al. (2009) by considering
a unit root test for a k-ESTAR(p) model with a different approach. By using this approach, the
singularity problem in Venetis et al. (2009) can be avoided. This approach will be able to enhance
the power of test. However, for a k-ESTAR(p) model, p > 1, a problem with nuisance parameters
emerges. To solve the problem, we suggest two methods, namely a bootstrap method and critical values
approximation method assuming there is no autocorrelation in ∆yt. From Monte Carlo simulations for
k-ESTAR(3) models, the bootstrap method is time consuming and if the underlying series is actually
a linear unit root AR(3) model (under the null hypothesis), it may result in a singularity problem.
Therefore, we favour to the critical values approximation method to the bootstrap method. For some
cases, where the parameters are close to a unit root, simulation results show that our approach are
better than the results from Venetis et al. (2009) , Kapetanios et al. (2003) and the Augmented
Dickey-Fuller (ADF) tests Dickey and Fuller (1979, 1981) in term of identifying the nonlinearity.

Acknowledgement The authors would like to thank John Rayner for his comments.
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Table 13: The power of alternative tests (in percentage), θ = 0.01, e1 = 0, d = 1 and T = 250.

(θ∗1,1, θ
∗
1,2) F b

nl Fnl FV PP AKSS ADF
k=1 k=2 k=3 k=1 k=2 k=3

(θ2,1, θ2,2, θ2,3) = (0, 0,−0.9)
(0,0) 99.8 99.62 84.53 66.23 100 96.28 83.20 100 100

(-0.2,-0.2) 90.2 89.30 43.57 29.19 97.08 53.93 30.67 96.67 98.47
(-0.5,-0.5) 53.2 49.89 18.51 13.84 64.17 13.82 8.97 62.49 60.04
(-0.7,-0.7) 38.4 36.03 14.60 11.54 39.27 77.75 5.52 37.75 32.75
(-0.9,-0.9) 40.0 41.61 19.21 14.72 20.42 4.19 3.18 19.31 20.27

(θ2,1, θ2,2, θ2,3) = (0.4, 0,−0.9)
(0,0) 98.6 97.59 69.38 50.82 99.45 76.92 49.55 99.33 99.89

(-0.2,-0.2) 74.0 71.97 29.25 20.12 82.13 20.37 10.19 80.60 84.98
(-0.5,-0.5) 35.8 32.46 13.18 10.68 29.49 4.34 3.36 27.70 26.16
(-0.7,-0.7) 25.0 24.84 11.12 9.29 11.93 2.26 2.24 11.17 12.50
(-0.9,-0.9) 34.6 35.90 17.47 14.18 2.70 1.25 1.46 2.51 5.30

(θ2,1, θ2,2, θ2,3) = (0.4, 0,−0.5)
(0,0) 70.0 67.00 35.98 26.09 60.26 10.16 5.21 58.22 63.75

(-0.2,-0.2) 31.6 30.98 14.09 10.75 15.20 2.94 2.37 13.97 13.56
(-0.5,-0.5) 15.0 16.72 8.27 6.80 3.90 1.41 1.63 3.65 5.71
(-0.7,-0.7) 14.6 15.59 8.06 7.26 2.04 1.02 1.34 1.91 4.19
(-0.9,-0.9) 26.8 27.77 14.46 12.67 0.55 0.87 1.34 0.49 2.24

Table 14: The power of alternative tests (in percentage), θ = 0.01, e1 = 0, e2 = 3, d = 1 and T = 250.

(θ∗1,1, θ
∗
1,2) F b

nl Fnl FV PP AKSS ADF
k=1 k=2 k=3 k=1 k=2 k=3

(θ2,1, θ2,2, θ2,3) = (0, 0,−0.9)
(0,0) 100 99.98 99.98 99.96 99.98 99.98 99.98 99.98 100

(-0.2,-0.2) 98.8 98.26 99.11 98.47 99.79 98.34 98.36 99.78 99.59
(-0.5,-0.5) 77.4 79.22 90.24 85.68 90.44 74.66 75.24 89.81 85.72
(-0.7,-0.7) 69.2 71.82 85.99 81.49 76.69 54.04 53.60 75.54 73.22
(-0.9,-0.9) 100 83.99 93.62 93.17 53.82 27.44 27.38 52.55 75.31

(θ2,1, θ2,2, θ2,3) = (0.4, 0,−0.9)
(0,0) 97.6 97.32 97.44 97.46 97.19 97.27 97.13 97.15 100

(-0.2,-0.2) 99.4 98.56 98.44 97.73 99.59 87.28 78.27 99.51 98.46
(-0.5,-0.5) 76.0 74.37 88.63 85.50 73.04 28.86 28.28 71.44 72.26
(-0.7,-0.7) 71.2 70.14 87.22 85.09 39.06 17.00 17.60 37.60 58.36
(-0.9,-0.9) 85.4 86.57 96.19 96.27 9.50 14.20 16.64 9.04 56.65

(θ2,1, θ2,2, θ2,3) = (0.4, 0,−0.5)
(0,0) 100 99.76 98.81 98.22 97.38 82.69 66.58 97.09 99.87

(-0.2,-0.2) 92.8 92.66 79.78 80.03 64.49 15.72 9.13 62.73 81.79
(-0.5,-0.5) 70.2 72.17 62.62 62.42 11.43 4.39 4.26 10.70 32.67
(-0.7,-0.7) 68.6 72.05 67.61 65.01 2.62 3.52 4.39 2.33 12.61
(-0.9,-0.9) 85.6 85.27 85.68 84.15 0.26 6.17 8.21 0.18 1.73
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A Appendices

A.1 Proof of Theorem 1

First, we prove that yt/
√

T ⇒ λW (s) for t ≤ sT < t + 1 as T → ∞. Since {ϵt} follows Assumption 1,∑t
i=1 ϵi√
T

⇒ N(0, sσ2
ϵ ) = σϵW (s), t = 1, 2, . . . , T, (56)

where W (s) is a standard Brownian motion with variance s, s ∈ [0, 1] (see Hong and Phillips, 2010).

Let yt = yt−1 + ηt where ηt =
∑∞

j=0 cjϵt−j where {ηt} and {ϵt} follow Assumption 1. Using the
BN decomposition,

ηt = C(1)ϵt + ϵ̃t−1 − ϵ̃t, (57)

where ϵ̃t = C̃(L)ϵt =
∑∞

j=0 c̃jϵt−j and c̃j =
∑∞

k=j+1 ck.

From (57),
yt√
T

=
∑t

i=1 ηi√
T

= C(1)
∑t

i=1 ϵi√
T

+
ϵ̃0√
T

− ϵ̃t√
T

. (58)

Using Markov’s inequality 9,

P

(
ϵ̃2t
T

> a

)
<

E(ϵ̃2t )
Ta

→ 0, as T → ∞, (59)

for a positive real number a, because E(ϵ̃2t ) < ∞. 10 Similar result happens for ϵ̃0. Thus,

yt√
T

=
∑t

i=1 ηi√
T

=
C(1)

∑t
i=1 ϵi√

T
+

ϵ̃0√
T

− ϵ̃t√
T

⇒ C(1)σϵW (s) by (56) and (59)
= λW (s), as T → ∞. (60)

Given the result of (60), we start to prove Theorem 1.

(a) and (b): The proofs can be found in Venetis et al. (2009).

(c) Under H0, T−1
∑T

t=p+1 ∆yt−i∆yt−j = T−1
∑T

t=p+1 ηt−iηt−j . Now, for given i, and j where
i, j = 1, . . . , (p − 1),

T−1
T∑

t=p+1

ηt−iηt−j → E(ηt−iηt−j) = γ|j−i| as T → ∞. (61)

If i = j,

T−1
T∑

t=p+1

η2
t−i → E(η2

t−i) = γ0 as T → ∞. (62)

(d) Under H0, T−(q/2+1)
∑T

t=p+1 yq
t−d∆yt−i∆yt−j = T−(q/2+1)

∑T
t=p+1 yq

t−dηt−iηt−j . Now, for given

9Markov’s inequality: P (|X| ≥ a) ≤ E(|X|)/a for given a random variable X and a positive real number a. However,
we use the square of random variable instead of the absolute value.

10E(eϵ2t ) = σ2
ϵ

P∞
j=0 ec2j = σ2

ϵ

P∞
j=0 |ecj |2 < ∞ by Assumption 1 and Lemma 1.
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i and j where i, j = 1, . . . , (p − 1), and i ≥ j ≥ d,

T−(q/2+1)
T∑

t=p+1

yq
t−dηt−iηt−j

= T−(q/2+1)
T∑

t=p+1

(
yt−i−1 +

i−d∑
k=0

ηt−d−k

)q

ηt−iηt−j

= T−(q/2+1)
T∑

t=p+1

yq
t−i−1ηt−iηt−j

+T−(q/2+1)
T∑

t=p+1

[
q∑

s=1

(
q
s

)
yq−s

t−i−1

(
i−d∑
k=0

ηt−d−k

)s

ηt−iηt−j

]
(63)

=
T∑

t=p+1

(
yt−i−1√

T

)q (ηt−iηt−j − E(ηt−iηt−j))
T

+
E(ηt−iηt−j)

T

T∑
t=p+1

(
yt−i−1√

T

)q

+T−(q/2+1)
T∑

t=p+1

[
q∑

s=1

(
q
s

)
yq−s

t−i−1

(
i−d∑
k=0

ηt−d−k

)s

ηt−iηt−j

]
. (64)

Let wt =
(∑i−d

k=0 ηt−d−k

)s

ηt−iηt−j . For fixed q and s,

T−(q/2+1)
T∑

t=p+1

yq−s
t−i−1wt (65)

= T−s/2
T∑

t=p+1

(
yt−i−1√

T

)q−s
wt

T

= T−s/2
T∑

t=p+1

[(
yt−i−1√

T

)q−s
wt − E(wt)

T
+

E(wt)
T

(
yt−i−1√

T

)q−s
]

.

(66)

Since s ≥ 1,
E(wt)

T

(
yt−i−1√

T

)q−s

⇒ E(wt)λq−s

∫
W q−s

and

E(wt) = E

[(
i−d∑
k=0

ηt−d−k

)s

ηt−iηt−j

]
< ∞. 11

Thus, for any constant a > 0, we have

P

(
T∑

t=p+1

(wt − E(wt))2

T 2
> a

)
≤

E
[∑T

t=p+1(wt − E(wt))2
]

T 2a
, Markov’s inequality

=

∑T
t=p+1 E(wt − E(wt))2

T 2a

=
(T − p)V ar(wt)

T 2a

≤ V ar(wt)
Ta

→ 0 as T → ∞ and V ar(wt) < ∞;

11As wt is a function of ηt−1, . . . , ηt−(p−1) which are stationary processes, then wt is also a stationary process. As a
stationary process, E(wt) < ∞ and V ar(wt) < ∞.
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and ∣∣∣∣∣
T∑

t=p+1

(
yt−i−1√

T

)q−s
wt − E(wt)

T

∣∣∣∣∣
≤

√√√√ T∑
t=p+1

(
yt−i−1√

T

)2(q−s)
√√√√ T∑

t=p+1

(wt − E(wt))2

T 2
, Cauchy-Schwarz inequality

⇒

√∫
W 2(q−s)

√
op(1) = op(1), as T → ∞. (67)

Therefore,

T−(q/2+1)
T∑

t=p+1

[
q∑

s=1

(
q
s

)
yq−s

t−i−1

(
i−d∑
k=0

ηt−d−k

)s

ηt−iηt−j

]
= op(1). (68)

As E(ηt−iηt−j) = γ|j−i| < ∞, the first term of (64) converges to op(1). Thus,

T−(q/2+1)
T∑

t=p+1

yq
t−dηt−iηt−j ⇒ γ|j−i|λ

∫
W q, T → ∞.

If d > i ≥ j, recalling yt−d = yt−i−1 −
∑d−i−1

k=1 ηt−i−k, the same result is obtained as follow:

T−(q/2+1)
T∑

t=p+1

yq
t−dηt−iηt−j

= T−(q/2+1)
T∑

t=p+1

(
yt−i−1 −

d−i−1∑
k=1

ηt−i−k

)q

ηt−iηt−j

= T−(q/2+1)
T∑

t=p+1

yq
t−i−1ηt−iηt−j

+T−(q/2+1)
T∑

t=p+1

[
q∑

s=1

(−1)s

(
q
s

)
yq−s

t−i−1

(
d−i−1∑
k=1

ηt−i−k

)s

ηt−iηt−j

]

=
T∑

t=p+1

(
yt−i−1√

T

)q
ηt−iηt−j − E(ηt−iηt−j)

T
+

E(ηt−iηt−j)
T

T∑
t=p+1

(
yt−i−1√

T

)q

+T−(q/2+1)
T∑

t=p+1

[
q∑

s=1

(−1)s

(
q
s

)
yq−s

t−i−1

(
d−i−1∑
k=1

ηt−i−k

)s

ηt−iηt−j

]

⇒ γ|j−i|λ
q

∫
W q (69)

as the first and the last term of (69) are op(1).

(e) Under H0,

T−((q+1)/2+1)
T∑

t=p+1

yt−1y
q
t−d∆yt−i = T−((q+1)/2+1)

T∑
t=p+1

yt−1y
q
t−dηt−i.
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Now, for given d and i, i = 1, . . . , (p − 1), and if d ≤ i,

T−((q+1)/2+1)
T∑

t=p+1

yt−1y
q
t−dηt−i

= T−((q+1)/2+1)
T∑

t=p+1

yt−i−1 +
i∑

j=1

ηt−j

yt−i−1 +
i−d∑
j=0

ηt−d−j

q

ηt−i

= T−((q+1)/2+1)
T∑

t=p+1

yq+1
t−i−1ηt−i + T−((q+1)/2+1)

T∑
t=p+1

yq
t−i−1ηt−i

i∑
j=1

ηt−j


+T−((q+1)/2+1)

T∑
t=p+1

 q∑
s=1

(
q
s

)
yq−s+1

t−i−1

i−1∑
j=0

ηt−j−1

s

ηt−i


+T−((q+1)/2+1)

T∑
t=p+1

 i∑
j=1

ηt−j

q∑
s=1

(
q
s

)
yq−s

t−i−1

i−1∑
j=0

ηt−j−1

s

ηt−i


(70)

Now, we need to show that all terms in (70) are op(1).

(i) As E(ηtηs) ̸= 0 for t ̸= s, the BN decomposition in (57) is used as follows (see Hong and
Phillips, 2010),

T∑
t=p+1

(
yt−i−1√

T

)q+1
ηt−i√

T

=
T∑

t=p+1

(
yt−i−1√

T

)q+1
ϵt−iC(1)√

T
−

T∑
t=p+1

(
yt−i−1√

T

)q+1(
ϵ̃t−i − ϵ̃t−i−1√

T

)
.

27



By noting that

T∑
t=p+1

(
yt−i−1√

T

)q+1(
ϵ̃t−i − ϵ̃t−i−1√

T

)

=
(

yT−i√
T

)q+1
ϵ̃T−i√

T
−
(

yT−i√
T

)q+1
ϵ̃T−i√

T
+

T∑
t=p+1

(
yt−i−1√

T

)q+1(
ϵ̃t−i − ϵ̃t−i−1√

T

)

=
(

yT−i√
T

)q+1
ϵ̃T−i√

T

−
T∑

t=p+1

[(
yt−i√

T

)q+1

−
(

yt−i−1√
T

)q+1
]

ϵ̃t−i√
T

−
(

yp−i√
T

)q+1
ϵ̃p−i√

T

= op(1) −
T∑

t=p+1

[(
yt−i√

T

)q+1

−
(

yt−i − ηt−i√
T

)q+1
]

ϵ̃t−i√
T

− op(1) by (59)

≈ −(q + 1)
T∑

t=p+1

(
yt−i√

T

)q
ηt−iϵ̃t−i

T

= −(q + 1)
T∑

t=p+1

(
yt−i√

T

)q (
ηt−iϵ̃t−i − E(ηt−iϵ̃t−i)

T

)

−(q + 1)
T∑

t=p+1

(
yt−i√

T

)q
E(ηt−iϵ̃t−i)

T

= op(1) − (q + 1)
T∑

t=p+1

(
yt−i√

T

)q
E(ηt−iϵ̃t−i)

T
similar way with (67)

⇒ −(q + 1)Ληηλq

∫
W q (71)

where E(ηt−iϵ̃t−i) =
∑∞

h=1 E(η0ηh) = Ληη. 12

Therefore,

T∑
t=p+1

(
yt−i−1√

T

)q+1
ηt−i√

T

⇒
∫

(λW )(q+1)λdW −
(
−(q + 1)Ληηλq

∫
W q

)
by (60) and (71)

= λ(q+2)

∫
W (q+1)dW + (q + 1)Ληηλq

∫
W q,

and

T−1/2
T∑

t=p+1

(
yt−i−1√

T

)q+1
ηt−i√

T
= op(1).

12For ηt and ϵt satisfying Assumption 1, we have

E(ηt−ieϵt−i) = E

0

@

∞
X

j=0

cjϵt−i−j

∞
X

j=0

∞
X

k=j+1

ckϵt−i−j

1

A =
∞

X

j=0

E(ϵ2t−i−j)cj

∞
X

k=j+1

ck = σ2
ϵ

∞
X

j=0

cj

∞
X

k=j+1

ck.

∞
X

h=1

E(η0ηh) =
∞

X

h=1

E

0

@

∞
X

j=0

cjϵ−j

∞
X

j=0

cjϵh−j

1

A =
∞

X

j=0

E(ϵ2−j)cj

∞
X

h=1

ch+j = σ2
ϵ

∞
X

j=0

cj

∞
X

k=j+1

ck.

Therefore, E(ηt−ieϵt−i) =
P∞

h=1 E(η0ηh) = σ2
ϵ

P∞
j=0 cj

P∞
k=j+1 ck ≤ σ2

ϵ

P∞
j=0 |cj |

P∞
k=j+1 |ck| ≤ σ2

ϵ (
P∞

j=0 |cj |)2 <
∞.
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(ii) For given i = 1, . . . , (p − 1),

T−((q+1)/2+1)
T∑

t=p+1

yq
t−i−1ηt−i

i∑
j=1

ηt−j


=

i∑
j=1

T−1/2
T∑

t=p+1

(
yt−i−1√

T

)q
ηt−iηt−j

T

=
i∑

j=1

T−1/2
T∑

t=p+1

(
yt−i−1√

T

)q [
ηt−iηt−j − E(ηt−iηt−j)

T
+

E(ηt−iηt−j)
T

]
(72)

⇒ op(1) as T → ∞.

Using similar method used in (67), the first term of (72) can be shown t be op(1) and

T∑
t=p+1

(
yt−i−1√

T

)q
E(ηt−iηt−j)

T
⇒ γ|j−i|λ

q

∫
W q.

Therefore, the last term of (72) will be

T−1/2
T∑

t=p+1

(
yt−i−1√

T

)q
E(ηt−iηt−j)

T
⇒ op(1).

Using similar procedure, the last two terms of (70) are also op(1). Therefore, (e) is hold.

(f) For a given d ≥ 1,

T−(q+2)/2
T∑

t=p+1

yt−1y
q
t−dϵt

= T−(q+2)/2
T∑

t=p+1

yt−1

yt−1 −
d−1∑
j=0

ηt−d−j

q

ϵt

= T−(q+2)/2
T∑

t=d+1

y
(q+1)
t−1 ϵt

+T−(q+2)/2
T∑

t=p+1

 q∑
s=1

(−1)s

(
q
s

)
yq−s+1

t−1

d−1∑
j=0

ηt−d−j

s

ϵt


=

T∑
t=p+1

(
yt−1√

T

)(q+1)
ϵt√
T

+ op(1) similar way with (63)

⇒
∫

(λW )(q+1)σϵdW by (56) and (60)

= σϵλ
(q+1)

∫
W (q+1)dW.

(g) For any fixed i where i = 1, . . . , (p − 1), under H0,
∑T

t=p+1 ∆yt−iϵt =
∑T

t=p+1 ηt−iϵt.

E

(
1√
T

T∑
t=p+1

ηt−iϵt

)
=

1√
T

T∑
t=p+1

E(ηt−i)E(ϵt) = 0
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as ηt−i and ϵt are independent and

V ar

(
1√
T

T∑
t=p+1

ηt−iϵt

)

=
1
T

T∑
t=p+1

E(η2
t−i)E(ϵ2t ) as ηt−i and ϵt are independent

=
(T − p)

T
γ0σ

2
ϵ as ηt−iϵt are identic for each t

→ γ0σ
2
ϵ as T → ∞.

Since E(ηt−iϵt|ϵt−1, ϵt−2, . . .) = 0, {ηt−iϵt} is MDS. Using Central Limit Theorem,

1√
T

T∑
t=p+1

ηt−iϵt ⇒ N(0, γ0σ
2
ϵ ) =

√
γ0σϵWi(1). (73)

Note that,

Cov(ηt−iϵt, ηt−jϵt) for i, j = 1, . . . , (p − 1), i ̸= j, for all t

= E(ηt−iηt−jϵ
2
t )

= E(ηt−iηt−j)E(ϵ2t ) as (ηt−iηt−j) and (ϵ2t ) are independent
= γ|j−i|σ

2
ϵ .

Therefore, there is correlation between Wi(1) and Wj(1). Furthermore,

Cov(ηt−iϵt, ηs−jϵs) for i, j = 1, . . . , (p − 1), i ̸= j, for all t ̸= s

= E(ηt−iηs−jϵtϵs)
= E(ηt−iηs−j)E(ϵt)E(ϵs) as (ηt−iηs−j), (ϵt) and (ϵs) are independent
= 0.

(h) Under H0, T−(q+1)/2
∑T

t=p+1 yq
t−d∆yt−iϵt =

∑T
t=i+1 yq

t−dηt−iϵt. Now, for given d, and i where
i = 1, . . . , (p − 1), d ≥ 1,

T−(q+1)/2
T∑

t=p+1

yq
t−dηt−iϵt

= T−(q+1)/2
T∑

t=p+1

yt−1 −
d−1∑
j=0

ηt−d−j

q

ηt−iϵt

= T−(q+1)/2
T∑

t=p+1

yq
t−1ηt−iϵt

+T−(q+1)/2
T∑

t=p+1

 q∑
s=1

(−1)s

(
q
s

)
yq−s

t−1

d−1∑
j=0

ηt−d−j

s

ηt−iϵt


=

T∑
t=p+1

(
yt−1√

T

)q (
ηt−iϵt√

T

)
+ op(1) similar way with (63) (74)

⇒
∫

(λW )q(
√

γ0σϵ)dWi by (56) and (73) (75)

=
√

γ0σϵλ
q

∫
WdWi

Note that as {ηt−iϵt} is MDS and
∑T

t=1(ηt−iϵt/
√

T )2 < ∞, then based on Theorem 2.1 in
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Hansen 1992, the first term of (74) will converge to (75).

A.2 Proof of Theorem 2

Consider the asymptotic distribution of the F-test statistics in (17) by testing the null hypothesis
H0 : Rb = 0 where R = [0 I] and b = (b1 b2)′. Under the null hypothesis of H0 : θ = 0, ϵ∗t = ϵt, so
that the sampling error of b̂2 is given by

b̂2 − b2 = (X ′
2M1X2)−1X ′

2M1ϵ

where
X ′

2M1X2 = X ′
2X2 − X ′

2X1(X ′
1X1)−1X ′

1X2

and
X ′

2M1ϵ = X ′
2ϵ − X ′

2X1(X ′
1X1)−1X ′

1ϵ

Let

DT = diag

T−4/2, T−5/2, · · · , T−(2k+2)/2, T−3/2, · · · , T−3/2︸ ︷︷ ︸
p−1

, T−4/2, · · · , T−4/2︸ ︷︷ ︸
p−1

, · · · ,

T−(2k+1)/2, · · · , T−(2k+1)/2︸ ︷︷ ︸
p−1

 .

Thus, the Fnl statistics in (17) becomes

Fnl =
1

σ̂2
ϵ∗

(DT X ′
2M1ϵ)′(DT X ′

2M1X2DT )−1(DT X ′
2M1ϵ). (76)

In the following, we derive the asymptotic distribution of Fnl. Firstly, we consider the asymptotic
distributions of DT X ′

2M1X2DT and DT X ′
2M1ϵ.

(i) Rewrite DT X ′
2M1X2DT as following

DT X ′
2M1X2DT = DT X ′

2X2DT − 1√
T

DT X ′
2X1

(
1
T

X ′
1X1

)−1

X ′
1X2DT

1√
T

. (77)

Let us define 1
T X ′

1X1 =
1
T

∑T
t=p+1(∆yt−1)2 1

T

∑T
t=p+1 ∆yt−1∆yt−2 · · · 1

T

∑T
t=p+1 ∆yt−1∆yt−(p−1)

1
T

∑T
t=p+1 ∆yt−1∆yt−2

1
T

∑T
t=p+1(∆yt−2)2 · · · 1

T

∑T
t=p+1 ∆yt−2∆yt−(p−1)

...
...

. . .
...

1
T

∑T
t=p+1 ∆yt−1∆yt−(p−1)

1
T

∑T
t=p+1 ∆yt−2∆yt−(p−1) · · · 1

T

∑T
t=p+1(∆yt−(p−1))2

 .

Under the null hypothesis and by using the results in Theorem 1,

1
T

X ′
1X1 ⇒


γ0 γ1 · · · γp−2

γ1 γ0 · · · γp−3

...
...

...
...

γp−2 γp−3 · · · γ0

 = γ0


1 ρ1 · · · ρp−2

ρ1 1 · · · ρp−3

...
...

...
...

ρp−2 γp−3 · · · 1

 = γ0Π (78)

where ρi = γi/γ0, for i = 1, . . . , (p − 2).
Let

DT X ′
2X2DT =

[
A1 A2

A′
2 A3

]
where

A1 =


1

T 4

∑T
t=p+1 y2

t−1y
4
t−d · · · 1

T (2k+6)/2

∑T
t=p+1 y2

t−1y
2k+2
t−d

...
. . .

...
1

T (2k+6)/2

∑T
t=p+1 y2

t−1y
2k+2
t−d · · · 1

T (4k+4)/2

∑T
t=p+1 y2

t−1y
4k
t−d

 ,
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A2 =
[

A21 A22 · · · A2(2k−1)

]
with

A2i =


1

T (6+i)/2

∑T
t=p+1 yt−1y

i+3
t−d∆yt−1 · · · 1

T (6+i)/2

∑T
t=p+1 yt−1y

i+3
t−d∆yt−(p−1)

1
T (7+i)/2

∑T
t=p+1 yt−1y

i+4
t−d∆yt−1 · · · 1

T (7+i)/2

∑T
t=p+1 yt−1y

i+4
t−d∆yt−(p−1)

...
. . .

...
1

T (2k+4+i)/2

∑T
t=p+1 yt−1y

i+2k+1
t−d ∆yt−1 · · · 1

T (2k+4+i)/2

∑T
t=p+1 yt−1y

i+2k+1
t−d ∆yt−(p−1)

 ,

and

A3 =


A31 A32 A33 · · · A3(2k−1)

A32 A33 A34 · · · A3(2k)

A33 A34 A35 · · · A3(2k+1)

...
...

...
. . .

...
A3(2k−1) A3(2k) A3(2k+1) · · · A3(4k−3)


[(p−1)(2k−1)]×[(p−1)(2k−1)]

with

A3i =


1

T (5+i)/2

∑T
t=p+1 yi+3

t−d(∆yt−1)2 · · · 1
T (5+i)/2

∑T
t=p+1 yi+3

t−d∆yt−1∆yt−(p−1)

...
. . .

...
1

T (5+i)/2

∑T
t=p+1 yi+3

t−d∆yt−1∆yt−(p−1) · · · 1
T (5+i)/2

∑T
t=p+1 yi+3

t−d(∆yt−(p−1))2

 .

Under the null hypothesis and by using the results in Theorem 1,

A1 ⇒


λ6
∫

W 6 λ7
∫

W 7 · · · λ(2k+4)
∫

W (2k+4)

λ7
∫

W 7 λ8
∫

W 8 · · · λ(2k+5)
∫

W (2k+5)

...
...

. . .
...

λ(2k+4)
∫

W (2k+4) λ(2k+5)
∫

W (2k+5) · · · λ(4k+2)
∫

W (4k+2)


(2k−1)×(2k−1)

, (79)

A2 ⇒ 0(2k−1)×(p−1)(2k−1)

and

A3 ⇒


Πγ0λ

4
∫

W 4 Πγ0λ
5
∫

W 5 · · · Πγ0λ
(2k+2)

∫
W (2k+2)

Πγ0λ
5
∫

W 5 Πγ0λ
6
∫

W 6 · · · Πγ0λ
(2k+3)

∫
W (2k+3)

...
...

. . .
...

Πγ0λ
(2k+2)

∫
W (2k+2) Πγ0λ

(2k+3)
∫

W (2k+3) · · · Πγ0λ
(4k)

∫
W (4k)

 .

Let us define
1√
T

DT X ′
2X1 =

[
B1

B2

]
where

B1 =


1

T 5/2

∑T
t=p+1 yt−1y

2
t−d∆yt−1 · · · 1

T 5/2

∑T
t=p+1 yt−1y

2
t−d∆yt−(p−1)

1
T 6/2

∑T
t=p+1 yt−1y

3
t−d∆yt−1 · · · 1

T 6/2

∑T
t=p+1 yt−1y

3
t−d∆yt−(p−1)

...
. . .

...
1

T (2k+3)/2

∑T
t=p+1 yt−1y

2k
t−d∆yt−1 · · · 1

T (2k+3)/2

∑T
t=p+1 yt−1y

2k
t−d∆yt−(p−1)


and

B2 =

 B21

...
B2(2k−1)


with
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B2i =


1

T (3+i)/2

∑T
t=p+1 yi+1

t−d(∆yt−1)2 · · · 1
T (3+i)/2

∑T
t=p+1 yi+1

t−d∆yt−1∆yt−(p−1)
1

T (3+i)/2

∑T
t=p+1 yi+1

t−d∆yt−2∆yt−1 · · · 1
T (3+i)/2

∑T
t=p+1 yi+1

t−d∆yt−2∆yt−(p−1)

...
. . .

...
1

T (3+i)/2

∑T
t=p+1 yi+1

t−d∆yt−(p−1)∆yt−1 · · · 1
T (3+i)/2

∑T
t=p+1 yi+1

t−d(∆yt−(p−1))2

 .

Under the null hypothesis and by using the results in Theorem 1,

B1 ⇒ 0(2k−1)×(p−1),

B2 ⇒

 Πγ0λ
2
∫

W 2

...
Πγ0λ

2k
∫

W 2k


(p−1)(2k−1)×(p−1)

.

Thus,

1√
T

DT X ′
2X1 ⇒


0(2k−1)×(p−1)

Πγ0λ
2
∫

W 2

...
Πλ2k

∫
W 2k

 . (80)

1√
T

DT X ′
2X1

(
X ′

1X1

T

)−1

X ′
1X2DT

1√
T

⇒


0(2k−1)×(p−1)

Πγ0λ
2
∫

W 2

...
Πγ0λ

2k
∫

W 2k

 1
γ0

Π−1
[

0(p−1)×(2k−1) Πγ0λ
2
∫

W 2 · · · Πγ0λ
2k
∫

W 2k
]

=


0(2k−1)×(2k−1) 0(2k−1)×(p−1) · · · 0(2k−1)×(p−1)

0(p−1)×(2k−1) γ0λ
4(
∫

W 2)2Π · · · γ0λ
2k+2

∫
W 2

∫
W 2kΠ

0(p−1)×(2k−1) γ0λ
5
∫

W 2
∫

W 3Π · · · γ0λ
2k+3

∫
W 3

∫
W 2kΠ

...
...

. . .
...

0(p−1)×(2k−1) γ0λ
2k+2

∫
W 2

∫
W 2kΠ · · · γ0λ

4k(
∫

W 2k)2Π

 .

Thus,

DT X ′
2M1X2DT = DT X ′

2X2DT − 1√
T

DT X ′
2X1

(
X ′

1X1

T

)−1

X ′
1X2DT

1√
T

⇒
[

C1 0
0 C2

]
= △F2(W )△ (81)

where C1 is the asymptotic distribution of A1 in (79), C2 is the asymptotic distribution of A3 − B2,

△ = diag

λ3, λ4, · · · , λ2k+1,
√

γ0λ
2, · · · ,

√
γ0λ

2︸ ︷︷ ︸
p−1

, · · · ,
√

γ0λ
2k, · · · ,

√
γ0λ

2k︸ ︷︷ ︸
p−1

 (82)

and F2(W ) is defined in Theorem 2.

(ii) DT X ′
2M1ϵ can be written as

DT X ′
2M1ϵ = DT X ′

2ϵ −
1√
T

DT X ′
2X1

(
1
T

X ′
1X1

)−1 1√
T

X ′
1ϵ. (83)
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The first term of (83) is

DT X ′
2ϵ =


E1

E21

...
E2(2k−1)


where

E1 =


T−2

∑T
t=p+1 yt−1y

2
t−dϵt

...
T−(2k+2)/2

∑T
t=p+1 yt−1y

2k
t−dϵt

⇒

 σϵλ
3
∫

W 3dW
...

σϵλ
(2k+1)

∫
W (2k+1)dW

 , (84)

E2i =


T−(1+i/2)

∑T
t=p+1 yi+1

t−2∆yt−1ϵt

...
T−(1+i/2)

∑T
t=p+1 yi+1

t−1∆yt−(p−1)ϵt

⇒


√

γ0σϵλ
i+1
∫

W i+1dW1

...√
γ0σϵλ

i+1
∫

W i+1dW(p−1)



For the second term of (83),

1√
T

X ′
1ϵ =


T−1/2

∑T
t=p+1 ∆yt−1ϵt

T−1/2
∑T

t=p+1 ∆yt−2ϵt

...
T−1/2

∑T
t=p+1 ∆yt−(p−1)ϵt

 ⇒


√

γ0σϵW1(1)√
γ0σϵW2(1)

...√
γ0σϵW(p−1)(1)

 (85)

Thus, gathering (80), (78) and (85),

1√
T

DT X ′
2X1

(
X′

1X1
T

)−1

X ′
1ϵ

1√
T

⇒


0

Πγ0λ
2
∫

W 2

...
Πγ0λ

2k
∫

W 2k

 1
γ0

Π−1


√

γ0σϵW1(1)√
γ0σϵW2(1)

...√
γ0σϵW(p−1)(1)

 =


0

D1

...
D(2k−1)

 (86)

where

Di =


√

γ0σϵλ
i+1
∫

W i+1W1(1)
...√

γ0σϵλ
i+1
∫

W i+1W(p−1)(1)


Thus,

DT X ′
2M1ϵ = DT X ′

2ϵ −
1√
T

DT X ′
2X1

(
X ′

1X1

T

)−1

X ′
1ϵ

1√
T

=


G1

G21

...
G2(2k−1)

⇒ σϵ△F1(W ) (87)

where G1 has the same asymptotic distribution with E1 in (84),

G2i = E2i − Di ⇒


√

γ0σϵλ
i+1
(∫

W i+1dW1 − W1(1)
∫

W i+1
)

...√
γ0σϵλ

i+1
(∫

W i+1dW(p−1) − W(p−1)(1)
∫

W i+1
)
 ,

△ and F1(W ) are defined in (82) and Theorem 2 respectively.
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Thus, under H0, the asymptotic distribution of Fnl can be determined using the following results,

Fnl =
1

σ̂2
ϵ∗

(
b̂2 − b2

)′
(X ′

2M1X2)
(
b̂2 − b2

)
=

1
σ̂2

ϵ∗
(DT X ′

2M1ϵ)′(DT X ′
2M1X2DT )−1(DT X ′

2M1ϵ)

⇒ 1
σ̂2

ϵ∗
(σϵ△F1(W ))′ (△F2(W )△)−1 (σϵ△F1(W ))

=
σ2

ϵ

σ̂2
ϵ∗

(F1(W ))′ △△−1 (F2(W ))−1 △−1△ (F1(W ))

= (F1(W ))′(F2(W ))−1F1(W ). (88)

The final result in (88) is obtained because under H0, ϵ∗ = ϵ and σ̂2
ϵ∗ is a consistent estimator of σ2

ϵ∗ .
Thus, σ̂2

ϵ∗ is also a consistent estimator of σ2
ϵ .
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