
University of Wollongong
Research Online

University of Wollongong in Dubai - Papers University of Wollongong in Dubai

2010

Operating system designs in future wireless sensor
networks
Mohamed Watfa
University of Wollongong, mwatfa@uow.edu.au

Mohamed Moubarak

Ali Kashani
American Univ. of Beirut

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
Watfa, M., Moubarak, M. & Kashani, A. 2010, 'Operating system designs in future wireless sensor networks', Journal of Networks, vol.
10, no. 1, pp. 1201-1214.

Operating System Design in Future Wireless

Sensor Networks

Mohamed K. Watfa
University of Wollongong in Dubai, UAE

Email: Mohamed.Watfa11@gmail.com

Mohamed Moubarak and Ali Kashani
American University of Beirut, Beirut, Lebanon

Email: {mm27, ak13}@aub.edu.lb

Abstract— Traditional operating systems do not take into

consideration the limitations in space and energy of wireless

sensor networks. Thus, contemporary architectural

demands in terms of power, heat, size and cost will not be

satisfactorily met by such uniprocessing design. Also, the

transition to multithreaded, multi-core designs places a

greater responsibility on programmers and software for

improving performance which is becoming increasingly

important as sensor nodes are migrating towards dual

processor designs. By analyzing and summarizing the

activity of a system, one could locate sections of code that

have a potential to generate enhanced performance. First,

this paper studies the differences between different

operating system designs introducing a thread-driven

scheduling algorithm which focuses on the value of

preemption to overcome the energy tradeoff brought by

event-driven systems. We then devise efficient techniques

that will enable us to locate sections in OS code that could

behave more efficiently when parallelized, especially in

terms of energy consumption. Finally, we provide

simulation results that will validate our proposed

techniques.

Index Terms— Design, Energy consumption, Multi-core,

Parallelism, TinyOS, Wireless Sensor Networks

I. INTRODUCTION

Recent advances in computing technology, wireless

technology, digital electronics, and MEMS (Micro-

Electro-Mechanical-Systems) have led to the creation of a

new class of low cost, low power, small sized,

multifunctional devices. These devices are called sensor

nodes, nodes, or sensors. In essence, they are wireless,

battery powered, smart sensors that have the ability to

locally process data, communicate in short distances, and

form ad hoc wireless networks with other sensors.

Existing operating systems do not meet the requirements

imposed by current and future sensor networks and hence

the work on applicable operating systems has begun.

Based on “Optimizing the Value of Preemption in Embedded Sensor

Nodes”, by M. Watfa and S. Moubarak which appeared in the

Proceedings of the International Conference on Embedded Systems and

Applications (ESA'08), Las Vegas 2008.

The de facto operating system for wireless sensor nodes

is TinyOS [1]. TinyOS has a simple design, similar to

that of network interfaces. Hence as expected, TinyOS is

event-driven. The scheduler in TinyOS is a simple non-

preemptive FIFO scheduler. That is, tasks run in order of

arriving and run to completion, without being preempted

by other tasks. Another embedded operating system

designed for wireless sensor nodes is MOS [2]. Unlike

TinyOS, MOS is thread-driven. That is, tasks are

preempted by the scheduler for other (higher priority)

tasks to run. This provides the aspect of virtualization

desired in operating systems. Although other operating

systems also exist in the field such as SOS [3], all

operating systems conform to one of two design

philosophies, event-driven and thread-driven. The choice

of which design to adopt is not made abruptly, instead, it

is thoroughly investigated since it has a significant impact

on the performance of the system in its remaining life

time. The importance of choosing among an event-driven

system and a thread-driven one has motivated us to

contribute to the field. Any application, algorithm or

protocol will have to conform to the chosen design, hence

carrying with it the design’s advantages and

disadvantages. Making the choice at an early stage

obliges the designer to go back to existing results of prior

experiences and theoretical analysis. Event-driven

systems are assumed to perform better under constrained

environments. Yet they lack some system functionality

and impose their own difficulties. However, thread-

driven systems provide high concurrency with

preemption, allowing the use of real-time applications.

Previous research has shown the ability of such systems

to outperform event-driven ones. Yet, in some cases such

as high system load, the thread-driven approach tends to

consume more energy. Designers will then have to

prioritize energy consumption and high concurrency. The

thread-driven approach has more scope for optimization,

therefore is chosen to overcome the energy consumption

tradeoff imposed by event-driven systems. The first part

of this paper studies the differences between different

operating system designs introducing a thread-driven

scheduling algorithm focusing on the value of preemption

to overcome the energy tradeoff brought by event-driven

systems.

JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010 1201

© 2010 ACADEMY PUBLISHER
doi:10.4304/jnw.5.10.1201-1214

As multi-core processors uncover their way through

embedded devices, it is interesting to see how embedded

software could adapt to such technology. The rapid

advance in the technology of multi-processors in

embedded devices proposes the possibility of multi-

processor wireless sensor nodes in the near future. WSN

operating systems however are not designed to make use

of multi-processors on a single chip. To analyze the

performance of WSN operating systems on multi-

processors, it is thus of extreme importance to locate

potential parallelism first. Sensor node architectures such

as the Instra-Node are heading towards multi-threaded or

dual processor designs. This is not the case, however,

with sensor nodes software yet. Parallelizing software for

future multi-core sensor nodes offers the challenge of

deciding where to parallelize code. This is a delicate step

towards making full use of future sensor node hardware

while achieving maximum performance. The second part

of this paper aims at establishing a level of appreciation

for the role of performance evaluation in locating

potential parallelism to improve system performance.

When mentioning potential parallelism, we refer to

sections in a program that can be separated or divided

among different threads or CPU-cores to improve the

performance of the global system.

To summarize, our contribution in this paper is

multifold and involves the following:

1- We define the notions of event-driven and thread-

driven systems and investigate the differences

between each model.

2- We introduce a simple and energy efficient

preemption algorithm targeting single core

embedded wireless sensor network operating

systems resulting in a significant decrease in the

number of context switches.

3- We illustrate the significance of multi-

core/processor system architecture in current

sensor operating system designs.

4- We provide an algorithm that identifies potential

parallelism in existing single-threaded wireless

sensor node applications.

The rest of this paper is organized as follows: In section

2, we provide some definitions and terminologies used

through out the paper. Related research work is

summarized in Section 3. Section 4 presents an optimzed

OS scheduler. Section 5 dicusses some evaluation criteria

of parallelized systems. A parallelized algorithim is

presented in Section 6. We present the imulation results

in Section 7 and conclude this paper in Section 8.

II. DEFINITIONS

A. Events and Threads

Before investigating the difference between the

event-driven design and the thread-driven one, we will

describe the two designs according to the existing

operating systems. This is because some authors describe

an event-driven system with a preemptive scheduler, but

since our existing event-driven operating systems do not

adopt that kind of scheduler, we will describe our event-

driven model as non-preemptive as well. Any comparison

that will be done later will be based on the design

described in this section. We will start with the event-

driven approach.

Event-driven models consist of event handlers that

continuously wait for events to issue tasks such as packet

arrivals to be processed. Since tasks may arrive at a pace

faster than that of the processor, tasks are queued. The

scheduler of the event-driven model selects the tasks

from the queue to be processed in a FIFO fashion. The

selected task is then put on the processor and processed to

completion, uninterrupted by other tasks. After the

completion of the entire task, the scheduler can select the

next task to process and so on as depicted in Figure 1.

Figure 1. Event-driven execution model allows one process at a time.

Figure 2. A thread-driven execution model simulates parallel execution

on several CPUs.

Thread-driven systems on the other hand deal with

tasks in a different way as depicted in Figure 2. When a

task is created, it is queued. The scheduler selects a

thread from the queue in any fashion; let us assume a

round robin scheduler, like the one in MOS. The thread is

put on the processor for a certain time slot after which the

thread is preempted (interrupted) and another thread is

put on the processor. By allowing multiple threads to

execute preemptively, the system acts as if there are

multiple processors, one for each thread. This increases

concurrency, however, the cost of preemption (context

switches) is very expensive in terms of time, energy and

1202 JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER

memory. Another problem is that threads executing may

share a resource. Semaphores or monitors should be used

to insure safety and a reliable flow. Using the thread-

driven design also allows a thread that is waiting for an

I/O device to be blocked, allowing other threads to

execute while the I/O request is processed. This approach

increases the processor utilization. Furthermore, a

separate stack has to be maintained for each thread. Stack

analysis techniques are used to predict the size of the

stack on MMU-less hardware. Thus multi-threading is a

package containing stack management, memory

management on thread creation, and preemptive

scheduling.

Event-driven programming has been highly

advertized in recent years as the best way to approach

concurrent applications [4]. However, after more research

has been done, it has been shown that the latter belief is

not completely true. The arguments in favor of the event-

driven model are that it uses an inexpensive (non-

preemptive) scheduling technique, it requires no stack

management and provides a safe control flow (no locks

and semaphores) [4]. Moreover, event-driven systems are

highly portable since they do not require the extra stack

support for multi-threading. They also have a smaller

memory stamp. However, in [5], the authors have shown

that event-driven systems could still have the same

performance of thread-driven systems.

Programmer Experience

According to [6], event programming is tedious,

unstructured, and repetitive. In the event-driven design,

the event loop is in control and not the programmer. So,

the programmer will have to chop a program into a series

of short programs. This is also required in order not to

allow a long running task to monopolize the entire

system. However, in a thread-driven implementation, the

programmer is not concerned whether his program

monopolizes the system or not, since the system itself

will take care of that through its preemptive nature.

Bounded Buffer Producer-Consumer Problem

Due to the RAM limitations in embedded wireless

sensors, the buffers are sufficiently small for the bounded

buffer producer-consumer problem to occur in an event-

driven system. When an event is filling up a buffer in an

event-driven system, the buffer will not be emptied by a

consumer unless the current event or the producer is done

putting all the data it got on to the buffer. The buffer may

be full for a time long enough to lose data such as packets

that could not find space in the buffer. However, in a

preemptive or thread-driven system, the buffer will be

occasionally emptied by other events running virtually in

parallel, avoiding the problem of producer-consumer

bounded buffer. In event-driven systems, long lived tasks

may exist under high system load due to the complexity

of applications running.

Disadvantages of Preemption

Preemption has played an important role in drawing the

line between event-driven systems and thread-driven

ones. Several research papers show that all the fears of

multi-threading comes from preemption [6 and 7]. To

elaborate, let us look at the disadvantages of the thread-

driven approach. One argument against the thread-driven

approach is the difficulty in writing code that handles

synchronization through semaphores or monitors [7]. The

reason why locks are needed as a form of synchronization

is because threads may be using shared variables while

they run preemptively. In other words, if an event-driven

system had a preemptive scheduler, then that system

would also have to take synchronization into account.

Thus, the question whether the control flow is event-

driven or thread-driven is orthogonal to the question of

whether those threads and events were preemptively

scheduled.

To illustrate the motivation behind our work, we

performed some experiments to compare the performance

of TinyOS and MOS under high system load as shown in

Figure 3. Experiments comparing TinyOS and MOS have

shown that under high system load, MOS consumes more

energy. In these experiments, a tree binary topology is

assumed. Depending on the tree position n in the tree, a

sensor node might process varying amounts of packets.

The behavior of a single node is emulated by applying a

certain traffic pattern. The node under test was given

varying sensing task lengths and a set of forwarding tasks

to emulate each tree position n, hence each node was

stressed depending on whether it is a leaf node or a

forwarding node. The idle time was measured at every

position n in the tree as an indication of the amount of

energy conserved. The difference in idle time is directly

related to context switches or preemption, since under

high system load, the number of incoming packets

increases the number of interrupts. Under low system

load, MOS offers better concurrency, prediction, and

equal energy consumption as the event-driven TinyOS.

Figure 3. As traffic increases, MOS tends to spend more energy than

TinyOS Due to the overhead of context switches.

JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010 1203

© 2010 ACADEMY PUBLISHER

B. Tiny OS

To meet the tight constraints of WSNs, TinyOS

adopted the event-driven approach as the concurrency

model and is currently the standard OS for WSNs.

TinyOS was designed to have a very small memory

stamp, where the core OS could fit in less than 200 bytes

of memory. TinyOS’ event-driven choice was based on

the fact that it cuts down on stack sizes since one process

could run at a time. Another fact it is that it eliminates

unnecessary context switches which are infamous for

their energy inefficiency. TinyOS is entirely made of a set

of reusable system components and an energy efficient

scheduler and hence has no kernel. Each component is

made up of four parts, a set of commands, event handlers,

a bundle of tasks and a fixed size frame for storage. The

commands and events a component supports must be

predefined to enhance modularity. Components in

TinyOS are arranged hierarchically with low level

components closest to hardware and higher level

components form the application layer as shown in

Figure 4.

Figure 4. Visual representation of a TinyOS component. Upside-down

triangles represent command handlers, triangles represent event

handlers, upward dashed arcs represent signaled events and downward

solid arcs represent issued commands.

Components are of three types:

1. Hardware abstraction components: These are the

lowest level components that map the physical

hardware to the TinyOS component model. One

such component is the RFM radio component which

manipulates the pins connected to the RFM

transceiver.

2. Synthetic hardware components: These components

simulate the behavior of hardware. For example, the

Radio Byte component performs data encoding and

decoding that can be performed by hardware. These

components lie on top of the latter.

3. High level software components: These components

form the application layer and are responsible for

data management and routing. Data fusion

applications fall into this category as well.

Since components are organized, some form of

‘wiring’ or binding is required to make inter-component

protocols clear. This is provided by a component through

its commands and events. As mentioned earlier, a TinyOS

component is made up of commands, events, tasks and a

frame. Commands are the set of function calls or services

that a component will request from other components.

Event handlers implement the handling of results returned

from previous commands. Those results are triggered by

the component that provided the service in a form of

event to indicate completion of the service. Commands

and events cannot block. Tasks on the other hand are a

form of deferred computation. Most computational work

is done through tasks. A component defines the tasks that

it may post. When a task is posted, it is buffered until the

scheduler runs it, which is a simple FIFO scheduler.

When no tasks are pending, the scheduler puts the CPU in

sleeping mode for energy efficiency. Only one task could

run at a time and each runs to completion. Tasks may be

preempted by commands or events. A task should not be

long in order not to delay other tasks. Finally, the fixed

size frame is used to depict the state of the component by

storing parameters. The fixed size and static allocation of

the frame allow for simpler memory management at

compile time.

C. The Multi-* Technology

The “Multi” prefix has been significantly introduced

throughout the modern advancements and improvements

in computer and communication context. Recently,

terminologies such as: multiprocessor, multicore,

multitask and multithreading have been ambiguous in

terms of architecture, structure, functionality and

purposes.

In what follows, we will be giving a complete

definition for each of the concepts mentioned above to

make the idea more clear and precise.

1. Multiprocessor Technology: Multiprocessor

system can be defined as comprising 2 or more

independent central processing units (CPUs),

which only share a common back-end data bus

interface. One of the drawbacks of such

architecture is the implementation cost in terms of

multiple chips and bus requirements.

2. Multicore Technology: Multicore, or on chip-level

multiprocessor, can be defined as multiple

processors (CPUs) on a single hardware chip. Each

processor has its own L1 cache, while the L2

cache, the main memory unit (MMU) and the data

bus interface as shared among the multiple

processors. The significance in multicore

technology is that performance similar to that of

multiprocessor system can be achieved for lower

cost since much of the computing resources

mentioned earlier are not duplicated but shared.

3. Multi-task Technology: Multitasking is a method

in which multiple tasks/processes, which are

programs under execution, share common

processing resources such as CPU and the MMU.

Originally dependent on multiprocessor

technology, multitasking required 2 or more

processors for tasks to run simultaneously. Early

operating systems were “single task” systems,

1204 JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER

meaning that only a single task/process can be

executed at a time (e.g. Win 3.11). However,

modern operating systems (e.g. Windows XP,

UNIX, Mac OS, etc…) give the impression of

parallel-multitasking execution by efficient

scheduling of running applications and switching

between them in an optimal time-slots assignment

manner as if actual multi-tasking is taking place.

The multiprocessor/core environment is

transparent to the application where the operating

system acts as an interface, mapping and

scheduling tasks over available processors.

4. Multithread Technology: Taking multitasking into

a higher level, multithreading divides selected

operations within a single task and map them onto

individual threads. Furthermore, these threads will

be executed in parallel on multiprocessor/core. The

advantage of such technique is that efficiency and

performance is pushed even further along each

task, process and thread.

III. RELATED WORK

The related research work can be divided into two

different focus groups:

A. OS Design Related Work

In [8], the authors make a first attempt at optimizing

the low level implementation of thread-driven operating

systems, in order to achieve event-driven performance.

First, the authors perform stack analysis and used control

flow information created at compile time to predict the

size of the stack. Then, they provided a single stack

implementation for all running threads, as opposed to the

traditional technique of creating a stack for each thread,

thus cutting down on space. The authors also tackle

energy consumption by coming up with a new scheduling

technique that depends on a variable timer, as opposed to

the traditional fixed quantum, thus saving on computation

latency. However, they did not take into account the large

overhead produced by context switches. Their results still

perform worse than event-driven systems, but with a

great improvement compared to other thread-driven

systems. Our work is greatly motivated and influenced by

the works of [9] and [7]. In [9], the authors make a first

step in studying the cost of preemption. The authors

present a theoretical scheduling model which

incorporates the cost of preemption. They show that

preemptive algorithms, such as shortest remaining

processing time, are theoretically optimal but are

impractical because they do not take into consideration

the cost of context switches. Moreover, the authors

provide an algorithm, “wait to preempt”, which

aggregates arriving processes and then runs them after a

certain amount of work is done, which depends on the

cost of preemption. However the authors aim at

minimizing total flow time, which is the total time that

the jobs spend in the system since arrival until they are

run to completion. The cost of preemption introduced

does not depend on energy consumed or on the CPU

cycles. The algorithm is strictly based on the size of

processes and also assumes the knowledge of the size of

the smallest process. The authors in [7] comparatively

evaluate the performance of MOS and TinyOS. Their

work measures the memory foot-print, event processing

and energy efficiency of the two operating systems. The

experiments aimed at comparing the performance of

event-driven systems against thread-driven ones. The

results show that the event-driven system, specifically

TinyOS, has smaller memory foot-print and better energy

consumption at high system loads. Whereas the thread-

driven MOS has better real time performance and

predictability with similar energy consumption at low

system loads. According to these results, a tradeoff exists

when choosing among those systems. The same authors

in [7] attempted to overcome this tradeoff later on in [10]

and [11]. In [10], the authors focus on improving energy

efficiency in MOS by tuning its preemptive scheduler.

Their modifications included removing the idle thread,

which ran whenever no tasks are runnable. Also, time

slicing between equally prioritized threads was removed.

If needed, the user should explicitly include it. Finally the

linked list queues were replaced by a single array, which

makes addition and deletion costly. This tuning technique

is specific to MOS and not to thread-driven systems like

ours; however it improves the energy efficiency of MOS.

B. Multi-Core Related Work

Recent developments in hardware solutions in terms of

fully programmable media processing devices allow the

re-use of design efforts that would dramatically decrease

the production and design costs. In [12], the authors

suggest a novel approach for exploiting the advances and

improvements in consumer-electronics industry in terms

of exploiting parallelism using a multiprocessor

architecture as an infrastructure for executing a most

resource demanding application recently encountered in

high definition multimedia: H.264 decoding. They

suggested partitioning the H.264 application over the

multi-processor environment in a data-partitioning

fashion rather than the functional partitioning, since a

comparison between the 2 approaches concluded that the

former ensures: locality of data, load balancing of data

among the multiple processors, system scalability without

the need to rewrite the software, simplicity of

implementation. The experimentation resulted with a

conclusion that the proposed data partitioning scheme

leads to a significant bandwidth reduction of 65% over

the traditional functional scheme. After proposing the

data partitioning schema as a solution for H.264

decoding, a single specific data partition size and shape

was considered which is a staircase shape.

In [13], the authors introduce two techniques for

aiding programmers in parallelizing loops via “loop

profiling”. When trying to parallelize sequential code, a

logical first step might be to find which loops are doing

the most work. The concept of loop-centric profiling aims

to give the programmer a more complete view of where

time is spent in a program. Loop-centric profiling is

JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010 1205

© 2010 ACADEMY PUBLISHER

similar in nature to the traditional call graph, but also

identifies parent-child relationships and self/total

execution counts for loops in addition to functions. In

[14], the authors propose a Multi-Processor Operating

Systems (MPOS) emulation framework for Multi-

Processor Systems-On-Chips (MPSoCs) that provide

efficient evaluation of thermal management strategies at

the architectural and OS levels. A MPOS framework,

based on the Field Programmable Gate Array (FPGA), is

proposed which consists of 4 cores with a customized

version of uClinux (Linux for embedded system) running

on each. A Task Migration module and a Communication

Module along with the OSs comprise the HW/SW

abstraction layer. Using hardware sniffers, a built-in

library calculates the temperature of each core. A

proposed thermal-aware policy initiates a task migration

process based on the temperature threshold attained by a

currently executing core. Whenever a core reaches this

threshold, the task is migrated to another colder core, thus

maintaining the overall temperature of the MPSoC. The

authors suggested installing OS on every core, which

affects the overall performance due to the OS-OS

communication overhead and the increase in the design

complexity. Tasks on the same processor share a common

private memory space, where tasks running on different

cores communicate via shared memory space. This

design adds significant overhead when migrating tasks

between cores, in which lots of data transmission will be

involved and most of the bandwidth will be consumed. In

[15], the authors discuss three possible techniques for

loosening the constraints forced by control flow on

parallelism: speculative execution, control dependence

analysis, and executing multiple flows of control

simultaneously. Simulations of execution trace are used

to evaluate such techniques to find out the limits of

parallelism for machines that utilize different

combinations of these techniques. The ultimate goal is to

design an Oracle machine where branch outcomes are

known in advance, thus no instructions have to wait for

branches to be resolved. Since such a machine is

unrealistic in terms of hardware resources and

complexity, such techniques need to be examined.

IV. OPTIMIZED PREEMPTION TECHNIQUES

As mentioned earlier, we first start with a single core

design where the main fears of multi-threading come

from the value of preemption and therefore tackle this

problem by introducing an energy efficient preemption

optimization. We give an example of a research effort that

aimed at analyzing the performance of WSN EOSs.

Precisely the aim of the research was to analyze the

performance of only a part of the operating system which

is the scheduler. Our algorithm aims at optimizing the

number of context switches in thread-driven systems,

under high system loads. This is done by directly

optimizing the number of preemptions. There are two

scenarios that need to be taken into consideration under

high system load. First, when sensing tasks are timely.

When smaller tasks arrive, the longer sensing task will be

continuously preempted as shown in Figure 5. This

causes preemption overhead, and is worse when tasks are

longer. The second scenario does not involve the size of

incoming tasks; instead it involves the frequency at which

they arrive. At high frequencies, processes tend to

preempt each other irrelative of their sizes.

Figure 5. Without taking into consideration the size of the process,

scheduling may cause context switch overhead.

Figure 6. Using our algorithm, only one context switch is needed in the

same scenario of Figure 5.

Taking these scenarios into consideration, our

algorithm works as follows. First, run processes

preemptively in a round robin fashion. After some work

has been done, preempt the currently running process if it

is long, and run small processes to completion without

preemption. Again after some work has been done, go

back to step one of the algorithm and repeat. The

algorithm presented depends on three values, , and .

 represents the size of a small process, the size of a

long process and denotes a certain amount of work

done. The idea as illustrated in Figure 6 is to create

preemption free periods without affecting concurrency by

differing small processes and running them to

completion. The following sections elaborate on the

choice of , and .

1206 JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER

A. Process Sizes and

Accurately determining the size of a process is almost

impossible yet is a very crucial piece of information.

Several scheduling algorithms used in the field depend on

the size of a process. One approach to predict the size of

the process is called aging. The size of a process depends

on the amount of time it has spent on the CPU during

previous runs. Hence the update is continuously updated.

Formally, assume a process spent time T0 on the first run

and T1 on the second run. The new estimate is the

weighted sum of these two runs, that is aT0 + (1 - a)T1,

where a is the chosen weight. However our approach in

determining the size of a process is simpler and is based

on the quantum size. and are discussed in more detail

later.

B. Work Done

The proposed algorithm mainly depends on the value .

The value denotes the time when the scheduling

algorithm should adapt to optimize the number of context

switches. This is done by the scheduler entering a

preemption free period. In this period, small processes are

run to completion with respect to each other. This is

because small processes are handled quickly and easily.

After another , the scheduler returns to its original state,

allowing longer processes to run. The algorithm is

illustrated in Figure 7. The value could be tuned for

better performance and could be determined based on

experimentation. Our choice of is discussed in the

following section. Using this approach, we might incur

some delay in terms of the amount of time processes wait

to be scheduled. To optimize this latency, one method that

can be used to increase latency is by enhancing the CPU

utilization. When the clock interrupt handler determines

the end of a quantum a context switch occurs. However,

the clock will keep issuing interrupts at a certain rate.

Since most of these interrupts are unhandled, a

considerable amount of energy is wasted in triggering

them. To overcome this problem, a variable timer was

implemented such that the rate at which interrupts occur

depends on an upcoming timeout request. The variable

timer manages timeout requests from threads and sets the

clock-tick rate as such. Variable timers are not feasible in

conventional OSs where the number of threads is very

large. However, in networked nodes, the number of

threads is small enough to allow for a variable timer.

C. Implementation

In this section, we discuss implementation specifics,

namely the choices of the values , and . Before doing

so, we need to present the two different types of context

switches, voluntary and involuntary. A voluntary context

switch occurs when a job or process gives up its time

quantum voluntarily due to an IO request for example. An

involuntary context switch on the other hand is when a

process uses up its quantum but still has work to do. In

this case the kernel preempts the process to place another

one. We are only interested in optimizing the value of

involuntary context switches. We mentioned previously

that we use the quantum to determine the size of a

process.

Figure 7. After each quantum, we check if a certain amount of work is

done. If so, check if the running process is long (). If so, preempt it and

run only small processes () to completion without preemption.

Figure 8. Short and long processes and are identified by quantum

size.

JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010 1207

© 2010 ACADEMY PUBLISHER

This is done as follows. On each clock tick, the

kernel checks if the current process has used up its

quantum. Processes are given a fixed quantum and are

not preempted before the quantum is done. A process may

require more than one quantum to finish. So if the kernel

determines the end of the current process’ quantum, the

kernel will preempt the process causing an involuntary

context switch. The scheduler will place the preempted

process in the appropriate place in the scheduling queue

and pick another process to run. When a process is

preempted for an IO request, the quantum that it used is

recorded. So when the process gets its request and is put

back on the CPU, it is not given a full quantum again. It

is only given the remaining quantum it had left. However,

if the process was preempted due to an involuntary

context switch, it is given a full quantum again as shown

in Figure 8. Thus, we have the notion of a small process

and a large process depending on the remaining quantum

size. More precisely, if a process has a full quantum, it’s a

long process ; otherwise it’s a short process . As for the

value of , we represent the work done in terms of time

spent. Another possibility would be to represent the work

done as a ratio of preemption cost and the size of the

smallest task. However, for the sake of simplicity, we use

the value of to be 100 quanta. In other words, every 100

quanta, the scheduler readapts to optimize preemption.

Example of our context switch aware scheduler.

Interrupt Handler {

 if (elapsed == quantum) {

 Scheduler (++)} }

Scheduler {

 if (< 100){

 Optimize ()}…

}

Optimize {

 PickShortProcs () }

V. EVALUATION CRITERIA OF PARALLELIZED SYSTEMS

Parallelism suffers from several challenges that limit

the transformation of uniprocessor, single-threaded

applications to parallelized multi-threaded systems.

In performing such a transformation process, the

following constraints are significant:

Inter-core/processor communication: When dealing

with multicore environment, intercore

communication must be taken into consideration

especially in terms of time and clock cycles latency

which is evident when two or more cores are

sharing common resources or data. Several

approaches should be carefully measured for

minimizing such a delay.

Data Dependency: Parallelism is tightly related with

the data dependence concept. Any transformation

approach should respect such dependence for the

parallelization to be successful. Data that is

produced and consumed should be exactly in the

same order as in the original pre-transformed

application. In terms of load-store order, data

dependency can be in the following forms:

1. True Dependence:

a.X = ...

b. ... = X

The dependence ensures that the second statement

receives the value computed by the first. This type of

dependence is also known as flow dependence.

2. Anti Dependence:

a.... = X

b.X = ...

The dependence prevents the interchange of a and b,

which could lead to a incorrectly using the value

computed by b.

3. Output Dependence:

Both statements write into the same location

a.X = ...

b.X = ...

This dependence prevents an interchange that might

cause a later statement to read the wrong value. For

example, in the code fragment:

c.X = 1

d. ...

e.X = 2

f.W = X * Y

Statement e should not be allowed to move before

statement c for Y to be incorrectly multiplied by 1, rather

than 2, in f. This type of dependence is called output

dependence.

Control Dependency: Besides data dependency,

control dependency is a critical issue to be

considered when parallelizing. Statements which will

not be executed unless the corresponding predicate

(conditional branch) is resolved are considered to be

control dependent on that predicate. Consider the

following simple example:

if (a < 0)

b = 1;

c = 2;

While the assignment b = 1 is executed only if a < 0, the

assignment c = 2 is always executed regardless of the

value of a. We say that b = 1 is control dependent on the

1208 JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER

condition a < 0 and that c = 2 is control independent. We

refer to the branch on which an instruction is control

dependent as its control dependence branch.

VI. METHODOLOGY AND PROPOSED PARALLELIZED

ALGORITHM

We define the problem of locating potential parallelism in

the EOS as a framework which consists of three stages:

1. Creating an abstract model

2. Partitioning the abstract model

3. Analyze the performance of the partitioned system

The first stage involves representing the actual code of

the OS as an annotated acyclic graph. This approach

abstracts away some unnecessary details in the code that

helps to generalize the problem. In this case, we use a

control flow graph (CFG) [16] as a representation. The

second step is based on the abstract model. Using one of

the techniques mentioned earlier (data or functional), the

abstract model is divided into threads. Since the abstract

model represents the code, then the code itself is

partitioned by partitioning the CFG. The final step

involves evaluating the performance of the partitioned

system. The results of this stage indicate whether there is

a potential in parallelizing the system in hand. In the

following section, we will be presenting the proposed

algorithm in details.

Our goal is to come up with an algorithm that

identifies potential parallelism in existing single-threaded

wireless sensor node applications. Figure 9 presents a

snapshot of the 2 main components of the algorithm. As

an example, we will be examining a multimedia image

encoding application for wireless sensor networks used

for surveillance and monitoring purposes. The algorithm

proposed is solely based on information flow analysis via

data/control dependency in which the control flow and

data/control dependency is carefully examined to identify

data definitions/usage in the application’s code. Such an

image encoder is characterized as a resource demanding

application which may suffer significantly from

limitations and constraints in the wireless sensor

networks context such as limited energy and resources.

The main advantage of parallelizing single-threaded

applications into multi-threaded counterparts on a

multicore system is that the number of per core execution

cycles is reduced significantly, causing each core in the

system to operate at lower frequencies and thus leading to

a reduction in the overall energy consumption and

performance. In achieving this improvement, our

algorithm will be the first step in identifying whether

parallelism exists in current single-threaded applications.

After feeding the image encoder into our algorithm, a

CFG, control flow graph consisting of nodes/blocks and

edges flowing between nodes, is first generated. Each

node/block consists of one or more instruction level

statements/instructions that are tightly related to each

other. Next, a PDG, the program dependence graph

constructed by identifying control and data dependencies

between the nodes/blocks, is generated on which our

proposed algorithm will be working. Figures 11a and 11b

represent the CFG and the PDG respectively.

Figure 9. Lines 1-5: Initialization statements; Lines 6-14: identify and

initialize the first extracted thread of independent nodes; Lines 15-32:

the thread extraction process starts; Line 34-55: The main function

responsible of extracting threads.

JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010 1209

© 2010 ACADEMY PUBLISHER

The algorithm is comprised of three major steps:

1. Initialize three main variables: We start by intializing

a set of StartingNodes, VisitedNodes, and

ExtractedThreads. StartingNodes is a set containing

one of more nodes having the maximum number of

incoming edges. A large number of incoming edges

illustrates the significance of this node with respect

to other nodes in terms of data/control dependency

and thus should be included in at least one of the

extracted threads. VisitedNodes is a set that is

incrementally updated with the recently visited node

along the proposed scenario. The ExtractedThreads

is the main variable, which represents a list of lists of

nodes. Each list is a thread containing the selected

nodes that the algorithm has chosen to be included

due to their dependency.

2. Grouping: Next, all independent nodes having no

data/control dependency with other nodes are

grouped together into a single thread which is going

to be the first thread to be executed separately on one

of the cores. Selecting such nodes is based on

choosing the nodes with their InDegree = OutDegree

= 0. When working with graphs, InDegree is used to

identify the number of incoming edges to a certain

node, while OutDegree is the number of outgoing

edges.

3. Iterative Selection: Left with the most significant

nodes along with their data/control dependencies, we

start by iteratively picking nodes from the

StartingNodes set to be included in the next extracted

thread, in this case node B0. One of the direct

dependent nodes, B1, on B0 is considered for the

first iteration and then recursively, we check if there

are any nodes depending on B1 but not directly

depending on B0. B6 is the only node depending on

B1 which will be added to the current thread along

with B0 and B1. Each time a node is passed over, it

is marked as visited by adding it to the VisitedNodes

set. Now, the current node being visited is B6, we

recursively keep on checking for every node the set

of nodes it is depending on and the set of nodes

depending on it. For example, node B6 does not have

any node depending on it but it directly depends on

B3. B3 only has node B4 depending on it while it is

directly depending on B2.

However, when reaching node B2, B9 is not going to

be included even though it depends on B2 because it

directly depends on the starting node B0 and it is going

to be passed over during the next iteration. Since all the

dependencies in this iteration are covered, a second

thread is extracted, consisting of 6 nodes strictly

depending on each other: B0->B1->B6->B3->B4->B2.

With node B9 being the only unvisited node depending

on B0, the same scenario will be executed which gives a

third and final thread consisting of B0->B9->B2->B1 as

depicted in Figure 11.

 (a) (b)

Figure 10. The CGF (a) and PDG (b). Red edges represent control

dependency, while black represent data dependency.

Figure 11. The final output. 3 separate threads sharing nodes marked in

green. Such nodes could be synchronized using any inter-thread

communication mechanism.

Note that no restrictions or validations are imposed on

the nodes which the current node is directly depending on

when passed over recursively. This is due to the fact that

a node will not be able to be executed unless the nodes it

depends on are included in the same thread. However,

nodes that are depending on it may not be necessarily

included in the same thread and would definitely be

included in the one of the next extracted threads. As a

result, since we managed to extract more than one thread,

including the first thread containing the independent

nodes, we can conclude that parallelism exists and the

single-threaded application can be mapped into a multi-

core/processor system.

1210 JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER

VII. EXPERIMENTAL ANALYSIS

Our simulation analysis is divided into two main

experiments:

A. Experiment 1
In the first experiment, we study the performance of our

optimized scheduler. We have implemented a benchmark

suite that simulates a system under high load. Our

benchmark assumes a tree topology as shown in Figure

12. Nodes with larger height h, have more work to

process, while nodes with lower h are less loaded. To

simulate the load relative to the position in the tree, the

benchmark uses two variables, the frequency fs at which

packets arrive and the sensing duration ls. By varying

these values, the position hi in the routing tree is

simulated. In our simulation, we are only interested in

nodes that experience high system loads, illustrated in

Figure 13. This is because the overhead of context

switches only appear then. In our benchmark, high

system load is represented by values of fs and ls being

300000 CPU cycles and 1000 ms respectively. Moreover,

4 copies of the benchmark were run at once, to simulate

the existence of 4 neighboring nodes. Our benchmarking

suite was run for one minute before and after

implementing our scheduling algorithm. The performance

of the system was monitored and plotted to show the

change in energy consumption and the affect on event

processing.

Figure 12. Network routing topology forming a tree. The greater the

height h, the closer the node is to the sink or the root. The high system

load area is the area of interest.

Energy Consumption

We have shown in previous sections the effect of context

switches on the energy efficiency of a system. The more

the context switches, the more energy is consumed. We

argue that if we decrease the number of context switches

while still doing the same amount of work, we obtain

better energy consumption. From the OS perspective,

energy is not measured by the amount of current

dissipated, instead it is measured by idle time. The energy

efficiency of an OS is how much it can provide idle time

for the CPU. By sparing the CPU some of its cycles, the

result is better energy consumption. In the first

experiment, the number of CPU cycles spent is plotted

before and after our implementation.

The results illustrated in Figure 13 are an indication

of % idle time. The amount of CPU cycles spent after our

optimization is less than those spent without it. This is

because we reduced the number of context switches and

therefore reduced the total amount of processing the CPU

has to perform. In the time frame of the experiment, the

same amount of packets was delivered before and after,

and the same length of sensing tasks as well. Yet, due to

the reduction in the number of times the CPU has to

switch between processes, the CPU does less work. This

is a direct indication of both idle time and energy

consumption, i.e. the less the cycles, the more the CPU is

idle and the more energy is conserved.

Figure 13. Number of CPU ticks decreased using our algorithm.

In the second experiment, the total number of context

switches is monitored. As mentioned earlier, we simulate

packets coming from 4 different neighbors. The amount

of processing done for each neighbor is monitored and

the number of context switches is calculated as well. In

Figure 14, the number of context switches due to each

neighbor is plotted before and after our optimization. A

significant decrease in the number of context switches is

shown due to our optimization. This is expected since our

algorithm is able to reduce context switches by more than

70 percent. That is the total number of context switches

due to processing packets coming from all neighbors.

Figure 14. The number of context switches is optimized.

JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010 1211

© 2010 ACADEMY PUBLISHER

Event Processing

Although we have optimized preemption, this was

expected to incur an overhead in terms of delay. Our next

experiments investigate this delay and its effect on event

processing. Figure 15 presents the effect of our

optimization on the predictability or real-time operation

of the system. The average processing time is calculated

and plotted before and after our optimization. The

average is the total processing time spent for all

neighbors divided by the number of neighbors. The delay

incurred by our algorithm hence would be the difference

between the average processing time before and after. As

shown in the plot this difference is very small, hence

event processing is slightly affected. This delay is

affected by the choice of the parameter discussed in

earlier sections.

Figure 15. Event processing is slightly effected by the optimization.

We were also interested in investigating the relation

between the size of processes and behavior of context

switches. As the number of long processes increases, the

number of context switches is expected to increase.

Moreover, our algorithm has more potential for

conserving energy when there are enough small processes

to run without preempting longer tasks. For example, if

the number of short processes is small, the scheduler will

go back to its default (round-robin) state before the

amount of work has been done. Otherwise the scheduler

will cause a deadlock. If small processes cannot cover the

period , the scheduler will be running long and short

processes as if it is a round-robin scheduler since it will

always go back to its default state. However, we know

this is not often the case at high system load. This is

illustrated in Figure 16. The number of context switches

increases steadily and at a low rate as small processes

arrive. At time = 40 sec, a significant decrease in the

number of short processes causes a rapid increase in the

number of context switches. The plot also shows that the

percentage of small processes is not very high. This

means that the number of voluntary context switches is

low, and the overhead is due to involuntary context

switches. Since short processes have smaller quanta,

processes that perform voluntary context switches are

fewer. This is because a smaller quantum is a result of a

voluntary context switch in the first place. Hence

voluntary context switches do not dominate the overhead

of preemption which justifies our focus on involuntary

context switches.

Figure 16. The relation between percentage of short processes and

context switch behavior

B. Experiment 2

In the second experiment, we analyze and predict the

performance of our proposed parallel algorithim. Our

software partitioning assumes multi CPUs on the

hardware level. If this is not the case, partitioning will

have a negative effect on the system by overwhelming it

with threads. As a result energy consumption will

increase dramatically and the concurrency will be much

more complicated and unstable. On the other hand, by

having multiple CPUs, we are exploiting the potential

that TinyOS has for better performance. We illustrate how

a sensor node’s performance would change using our

partitioning algorithm, as the number of CPUs increases.

As the number of CPUs or cores increases, tasks are

scheduled accordingly, resulting in fewer cycles per core.

For example, if we partitioned a task into 4 threads,

having one core would have to execute all 4 threads.

Moreover, having 4 cores would require each core to

execure a single task with fewer context switches. Fewer

context switches result in better energy consumption.

Figure 17. Energy is consumed due inter-thread communication.

Threads communicate when passing variables which justiies why

functional partitioning consumes more synchronization energy.

1212 JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER

Context switching due to multiple tasks is the dominating

cause of CPU cycles and thus energy consumption. Since

fewer tasks run on each core, fewer context switches are

required. Scheduling algorithms may also be adapted to

minimize these context switches. Again, as the number of

tasks on each single CPU decreases, context switches will

also decrease resulting in better energy consumption. As the

cost of context switching diminishes, what dominates is the

cost of inter-thread communication. Inter-thread

communication occurs when two threads sharing a variable

communicate the value of that variable. Another example is

two functions communicating parameters. In this case,

communication overhead will appear if we used functional

partitioning. Inter-thread communication overhead is not

analogous to context switch overhead. That is, inter-thread

communication overhead does not increase as the number of

threads increase. It actually depends on the partitioning

technique used to partition a task into threads. Data

partitioning for example produces more threads than

functional partitioning. However, it requires less inter-thread

communication since the technique itself removes

dependencies within a task. The functional partitioning

divides a task into separate functions; in this case there is

more scope for communication and the predicted results for

the simulation are presented in Figure 17.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we study the evolution of operating

system designs or future wireless sensor nodes. We first

show that the value of preemption has a great impact on

the design and implementation of operating systems. We

introduced a simple and energy efficient preemption

algorithm targeting embedded wireless sensor network

operating systems. We implemented our algorithm on an

embedded operating system and evaluated its

performance. Our algorithm is general and portable in the

sense that it can be applied on any preemptive platform.

Moreover, we have showed a significant decrease in the

number of context switches using our algorithm. Our

algorithm also maintains the predictable nature of the

preemptive system. We also illustrated the significance of

multi-core/processor system architecture in current

hardware designs, especially with the current trend in

wireless sensor network devices being pushed along the

same line of production. We presented the importance of

migrating existing WSN applications into multi-threaded

applications capable of taking full advantage of multi-

processor architecture. Our algorithm was able to extract

multiple threads out of single-threaded applications,

where data and control dependency were carefully

examined and analyzed for preserving such dependencies

in the extracted threads. Expected improvements in terms

of lower execution per core cycles and energy

consumption were examined.

As part of our future work, we are to provide a

deeper investigation on the effect of our algorithm on

processing latency. We also intend to investigate different

values for and its effect on delay. A theoretical analysis

of our algorithm would be provided in an extended

version of this paper. An investigation involving more

Wireless sensor OSs is required to determine other

bottlenecks. Our future work also includes the simulation

of our results on multi-processor sensor nodes. We also

need to investigate the consequences of such migration

on the network level and check whether such migration

would affect the overall network performance.

REFERENCES

[1] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.

Pister, “System Architecture Directions for Networked

Sensors,” Proceedings of the ninth international

conference on Architectural support for programming

languages and operating systems , ACM Press, New York,

USA, November 2000, pp. 93-104.

[2] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth. B.

Shucker, C. Gruenwald, A. Torgerson, and R. Han, “MOS:

An Embedded Multithreaded Operating System for

Wireless Micro Sensor Platforms,” ACMKluwer Mobile

Networks and Applications Journal, Special Issue on

Wireless Sensor Networks, Kluer Academic Publishers,

Hingham, USA, August 2005, pp. 563-579.

[3] C. Han, R. Kamur, R. Shea, E. Kohler, and M. Srivastava,

“A dynamic operating system for sensor ndoes,”

Proceedings of the third international conference on

Mobile systems, applications, and services, ACM Press,

New York, USA, June 2005, pp. 163-176.

[4] R. Behren, J. Condit, and E. Brewer, “Why Events Are A

Bad Idea (for high-concurrency servers),” Proceedings of

HotOS IX: The ninth Workshop on Hot Topics in

Operating Systems , USENIX Association, Hawaii, USA,

May 2003, pp. 19-24.

[5] H. Lauer and R. Needham, “On the Duality of Operating

System Structures,” Proceedings of the second

international Symposium on Operating Systems, IR1A,

Rocquencourt, France, October 1978; reprinted in

Operating Systems Review, April 1979, pp. 3-19.

[6] A. Gustafsson, “Threads Without the Pain,” Queue, ACM

Press, New York, USA, November 2005, pp. 34-41.

[7] C. Duffy, U. Roedig, G. Herbert, and C. Sreenan, “An

Experimental Comparison of Event Driven and Multi-

Threaded Sensor Node Operator systems,” Proceedings of

the fifth Annual IEEE International Conference on

Pervasive Computing and Communications Workshops,

IEEE computer society, White Plains, New York, USA,

March 2007, pp. 267-271.

[8] H. Kim and H. Cha, “Multithreading optimization

techniques for sensor network operating systems,”

Wireless Sensor Networks, Springer, Heidelberg, Berlin,

April 2007, pp. 293-308.

[9] Y. Bartal, S. Leonardi, G. Shallom, and R. Sitters, “On the

value of preemption in scheduling,” Approximation
Randomization, and combinational Optimization.

Algorithms and Techniques, Springer, Heidelberg, Berlin,

August 2006, pp. 39-48.

[10] C. Duffy, U. Roedig, G. Herbert, and C. Sreenan,

“Improving the Energy Efficiency of the MANTIS

Kernel.” Proceedings of the fourth IEEE European

Workshop on Wireless Sensor Networks, IEEE Computer

Society Press, Delft, Netherlands, January 2007.

[11] C. Duffy, U. Roedig, G. Herbert, and C. Sreenan, “Adding

Preemption to TinyOS” Proceedings of the fourth
workshop on embedded networked sensors, ACM Press,

Cork, Ireland, June 2007.

JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010 1213

© 2010 ACADEMY PUBLISHER

[12] Erik B. van der Tol, Egbert G. T. Jaspers, Rob H.

Gederblom, “Mapping of H.264 Decoding on a

Multiprocessor Architecture”

[13] Salvatore Carta, Michele Pittau, Andrea Acquavia, Pablo

G. Del Valle, David Atienza, Giovanni De Micheli,

Fernando Rincon, Luca Benini, Jose M. Memdias, “Multi-

Processor Operating System Emulation Framework with

Thermal Feedback for Systems-on-Chip”, GLSVLSI 2007
[14] Yang Yu, Loren J. Rittle, Jason B. LeBrun, Vartika Bhandari

“Supporting Concurrent Applications in Wireless Sensor

Networks,” Proceedings of the 4th international conference on

Embedded Networked Sensor Systems – SenSys ‘06

[15] Monica S. Lam and Robert P. Wilson, “Limits of Control

Flow on Parallelism”, ACM, 199

[16] Mary Jean, Harrold Gregg ,Rothermel Alex Orso,

“Representation and Analysis of Software”

Dr. Mohamed K. Watfa is

currently in the college of Computer

Science and Engineering at the

University of Wollongong in Dubai.

Before that he was at the Computer

Science department at the American

University of Beirut (AUB). He

received his Ph.D. from the School

of Electrical and Computer

Engineering at the University of

Oklahoma in Norman, OK, USA

in 2006 and was of the youngest PhD holders in the history of

the university. He obtained his BS in Computer Science from

American University of Beirut in 2002 and his Masters degree

in Engineering Science from the University of Toledo, OH,

USA in 2003. He was one of the youngest PhD holders to

graduate from his university at the age of 23. He was also on the

dean’s honors list and was given a number of prestigious awards

and scholarships. His research interests include wireless sensor

networks, intelligent systems, Vehicular Ad-hoc Networks,

wireless networking, resource management, energy issues,

tracking, routing, and performance measures. He is the author of

a number of books, the guest editor of a number of international

journals, and the organizer of a number of international

conferences. He also held a position as a lead network engineer

at different networking companies. He is a professional member

of the ACM and IEEE. He has more than 40 journal and

conference publications ranked among the top in his research

domain.

Mohamed A. Moubarak is a

Software Engineer at Consolidated

Contractors Company. He received his

B.S and M.S degrees in computer

science from the American University

of Beirut (AUB), Beirut, Lebanon. He

is the author of the book chapter,

Embedded Operating Systems in

Wireless Sensor Networks (coauthored

with Mohamed K. Watfa) which

appeared in the book Guide to

Wireless Sensor Networks. His current research interests

include wireless sensor networks, embedded operating systems,

performance evaluation and benchmarking, scheduling

algorithms.

Ali H. Kashani is a

telecommunication engineer at MHD

Telecom S.A.R.L. He received his B.S

& M.S in computer science from the

American University of Beirut (AUB),

Beirut, Lebanon. His research interests

include wireless sensor networks,

clustering and routing in MANETs,

energy efficiency in wireless ad-hoc

networks, and parallel & multi-threaded distributed algorithms

on multi-core systems.

1214 JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER

