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Abstract— Traditional operating systems do not take into 

consideration the limitations in space and energy of wireless 

sensor networks. Thus, contemporary architectural 

demands in terms of power, heat, size and cost will not be 

satisfactorily met by such uniprocessing design. Also, the 

transition to multithreaded, multi-core designs places a 

greater responsibility on programmers and software for 

improving performance which is becoming increasingly 

important as sensor nodes are migrating towards dual 

processor designs. By analyzing and summarizing the 

activity of a system, one could locate sections of code that 

have a potential to generate enhanced performance. First, 

this paper studies the differences between different 

operating system designs introducing a thread-driven 

scheduling algorithm which focuses on the value of 

preemption to overcome the energy tradeoff brought by 

event-driven systems. We then devise efficient techniques 

that will enable us to locate sections in OS code that could 

behave more efficiently when parallelized, especially in 

terms of energy consumption. Finally, we provide 

simulation results that will validate our proposed 

techniques. 

Index Terms— Design, Energy consumption, Multi-core, 

Parallelism, TinyOS, Wireless Sensor Networks 

I. INTRODUCTION

Recent advances in computing technology, wireless 

technology, digital electronics, and MEMS (Micro-

Electro-Mechanical-Systems) have led to the creation of a 

new class of low cost, low power, small sized, 

multifunctional devices. These devices are called sensor 

nodes, nodes, or sensors. In essence, they are wireless, 

battery powered, smart sensors that have the ability to 

locally process data, communicate in short distances, and 

form ad hoc wireless networks with other sensors. 

Existing operating systems do not meet the requirements 

imposed by current and future sensor networks and hence 

the work on applicable operating systems has begun.  

Based on “Optimizing the Value of Preemption in Embedded Sensor 

Nodes”, by M. Watfa and S. Moubarak which appeared in the 

Proceedings of the International Conference on Embedded Systems and 

Applications (ESA'08), Las Vegas 2008.

The de facto operating system for wireless sensor nodes 

is TinyOS [1]. TinyOS has a simple design, similar to 

that of network interfaces. Hence as expected, TinyOS is 

event-driven. The scheduler in TinyOS is a simple non-

preemptive FIFO scheduler. That is, tasks run in order of 

arriving and run to completion, without being preempted 

by other tasks. Another embedded operating system 

designed for wireless sensor nodes is MOS [2]. Unlike 

TinyOS, MOS is thread-driven. That is, tasks are 

preempted by the scheduler for other (higher priority) 

tasks to run. This provides the aspect of virtualization 

desired in operating systems. Although other operating 

systems also exist in the field such as SOS [3], all 

operating systems conform to one of two design 

philosophies, event-driven and thread-driven. The choice 

of which design to adopt is not made abruptly, instead, it 

is thoroughly investigated since it has a significant impact 

on the performance of the system in its remaining life 

time. The importance of choosing among an event-driven 

system and a thread-driven one has motivated us to 

contribute to the field. Any application, algorithm or 

protocol will have to conform to the chosen design, hence 

carrying with it the design’s advantages and 

disadvantages. Making the choice at an early stage 

obliges the designer to go back to existing results of prior 

experiences and theoretical analysis. Event-driven 

systems are assumed to perform better under constrained 

environments. Yet they lack some system functionality 

and impose their own difficulties. However, thread-

driven systems provide high concurrency with 

preemption, allowing the use of real-time applications. 

Previous research has shown the ability of such systems 

to outperform event-driven ones. Yet, in some cases such 

as high system load, the thread-driven approach tends to 

consume more energy. Designers will then have to 

prioritize energy consumption and high concurrency. The 

thread-driven approach has more scope for optimization, 

therefore is chosen to overcome the energy consumption 

tradeoff imposed by event-driven systems. The first part 

of this paper studies the differences between different 

operating system designs introducing a thread-driven 

scheduling algorithm focusing on the value of preemption 

to overcome the energy tradeoff brought by event-driven 

systems. 
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As multi-core processors uncover their way through 

embedded devices, it is interesting to see how embedded 

software could adapt to such technology. The rapid 

advance in the technology of multi-processors in 

embedded devices proposes the possibility of multi-

processor wireless sensor nodes in the near future. WSN 

operating systems however are not designed to make use 

of multi-processors on a single chip. To analyze the 

performance of WSN operating systems on multi-

processors, it is thus of extreme importance to locate 

potential parallelism first. Sensor node architectures such 

as the Instra-Node are heading towards multi-threaded or 

dual processor designs. This is not the case, however, 

with sensor nodes software yet. Parallelizing software for 

future multi-core sensor nodes offers the challenge of 

deciding where to parallelize code. This is a delicate step 

towards making full use of future sensor node hardware 

while achieving maximum performance. The second part 

of this paper aims at establishing a level of appreciation 

for the role of performance evaluation in locating 

potential parallelism to improve system performance. 

When mentioning potential parallelism, we refer to 

sections in a program that can be separated or divided 

among different threads or CPU-cores to improve the 

performance of the global system.  

To summarize, our contribution in this paper is 

multifold and involves the following: 

1- We define the notions of event-driven and thread-

driven systems and investigate the differences 

between each model. 

2- We introduce a simple and energy efficient 

preemption algorithm targeting single core 

embedded wireless sensor network operating 

systems resulting in a significant decrease in the 

number of context switches. 

3- We illustrate the significance of multi-

core/processor system architecture in current 

sensor operating system designs. 

4- We provide an algorithm that identifies potential 

parallelism in existing single-threaded wireless 

sensor node applications.  

The rest of this paper is organized as follows: In section 

2, we provide some definitions and terminologies used 

through out the paper. Related research work is 

summarized in Section 3. Section 4 presents an optimzed 

OS scheduler. Section 5 dicusses some evaluation criteria 

of parallelized systems. A parallelized algorithim is 

presented in Section 6.  We present the imulation results 

in Section 7 and conclude this paper in Section 8. 

II.  DEFINITIONS

A.  Events and Threads 

Before investigating the difference between the 

event-driven design and the thread-driven one, we will 

describe the two designs according to the existing 

operating systems. This is because some authors describe 

an event-driven system with a preemptive scheduler, but 

since our existing event-driven operating systems do not 

adopt that kind of scheduler, we will describe our event-

driven model as non-preemptive as well. Any comparison 

that will be done later will be based on the design 

described in this section. We will start with the event-

driven approach.  

Event-driven models consist of event handlers that 

continuously wait for events to issue tasks such as packet 

arrivals to be processed. Since tasks may arrive at a pace 

faster than that of the processor, tasks are queued. The 

scheduler of the event-driven model selects the tasks 

from the queue to be processed in a FIFO fashion. The 

selected task is then put on the processor and processed to 

completion, uninterrupted by other tasks. After the 

completion of the entire task, the scheduler can select the 

next task to process and so on as depicted in Figure 1. 

Figure 1. Event-driven execution model allows one process at a time. 

Figure 2. A thread-driven execution model simulates parallel execution 

on several CPUs.  

Thread-driven systems on the other hand deal with 

tasks in a different way as depicted in Figure 2. When a 

task is created, it is queued. The scheduler selects a 

thread from the queue in any fashion; let us assume a 

round robin scheduler, like the one in MOS. The thread is 

put on the processor for a certain time slot after which the 

thread is preempted (interrupted) and another thread is 

put on the processor. By allowing multiple threads to 

execute preemptively, the system acts as if there are 

multiple processors, one for each thread. This increases 

concurrency, however, the cost of preemption (context 

switches) is very expensive in terms of time, energy and 
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memory. Another problem is that threads executing may 

share a resource. Semaphores or monitors should be used 

to insure safety and a reliable flow. Using the thread-

driven design also allows a thread that is waiting for an 

I/O device to be blocked, allowing other threads to 

execute while the I/O request is processed. This approach 

increases the processor utilization. Furthermore, a 

separate stack has to be maintained for each thread. Stack 

analysis techniques are used to predict the size of the 

stack on MMU-less hardware. Thus multi-threading is a 

package containing stack management, memory 

management on thread creation, and preemptive 

scheduling.  

Event-driven programming has been highly 

advertized in recent years as the best way to approach 

concurrent applications [4]. However, after more research 

has been done, it has been shown that the latter belief is 

not completely true. The arguments in favor of the event-

driven model are that it uses an inexpensive (non-

preemptive) scheduling technique, it requires no stack 

management and provides a safe control flow (no locks 

and semaphores) [4]. Moreover, event-driven systems are 

highly portable since they do not require the extra stack 

support for multi-threading. They also have a smaller 

memory stamp. However, in [5], the authors have shown 

that event-driven systems could still have the same 

performance of thread-driven systems. 

Programmer Experience

According to [6], event programming is tedious, 

unstructured, and repetitive. In the event-driven design, 

the event loop is in control and not the programmer. So, 

the programmer will have to chop a program into a series 

of short programs. This is also required in order not to 

allow a long running task to monopolize the entire 

system. However, in a thread-driven implementation, the 

programmer is not concerned whether his program 

monopolizes the system or not, since the system itself 

will take care of that through its preemptive nature. 

Bounded Buffer Producer-Consumer Problem 

Due to the RAM limitations in embedded wireless 

sensors, the buffers are sufficiently small for the bounded 

buffer producer-consumer problem to occur in an event-

driven system. When an event is filling up a buffer in an 

event-driven system, the buffer will not be emptied by a 

consumer unless the current event or the producer is done 

putting all the data it got on to the buffer. The buffer may 

be full for a time long enough to lose data such as packets 

that could not find space in the buffer. However, in a 

preemptive or thread-driven system, the buffer will be 

occasionally emptied by other events running virtually in 

parallel, avoiding the problem of producer-consumer 

bounded buffer. In event-driven systems, long lived tasks 

may exist under high system load due to the complexity 

of applications running. 

Disadvantages of Preemption

Preemption has played an important role in drawing the 

line between event-driven systems and thread-driven 

ones. Several research papers show that all the fears of 

multi-threading comes from preemption [6 and 7]. To 

elaborate, let us look at the disadvantages of the thread-

driven approach. One argument against the thread-driven 

approach is the difficulty in writing code that handles 

synchronization through semaphores or monitors [7]. The 

reason why locks are needed as a form of synchronization 

is because threads may be using shared variables while 

they run preemptively. In other words, if an event-driven 

system had a preemptive scheduler, then that system 

would also have to take synchronization into account. 

Thus, the question whether the control flow is event-

driven or thread-driven is orthogonal to the question of 

whether those threads and events were preemptively 

scheduled. 

To illustrate the motivation behind our work, we 

performed some experiments to compare the performance 

of TinyOS and MOS under high system load as shown in 

Figure 3. Experiments comparing TinyOS and MOS have 

shown that under high system load, MOS consumes more 

energy. In these experiments, a tree binary topology is 

assumed. Depending on the tree position n in the tree, a 

sensor node might process varying amounts of packets. 

The behavior of a single node is emulated by applying a 

certain traffic pattern. The node under test was given 

varying sensing task lengths and a set of forwarding tasks 

to emulate each tree position n, hence each node was 

stressed depending on whether it is a leaf node or a 

forwarding node. The idle time was measured at every 

position n in the tree as an indication of the amount of 

energy conserved. The difference in idle time is directly 

related to context switches or preemption, since under 

high system load, the number of incoming packets 

increases the number of interrupts. Under low system 

load, MOS offers better concurrency, prediction, and 

equal energy consumption as the event-driven TinyOS. 

Figure 3. As traffic increases, MOS tends to spend more energy than 

TinyOS Due to the overhead of context switches. 
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B.  Tiny OS 

To meet the tight constraints of WSNs, TinyOS 

adopted the event-driven approach as the concurrency 

model and is currently the standard OS for WSNs. 

TinyOS was designed to have a very small memory 

stamp, where the core OS could fit in less than 200 bytes 

of memory. TinyOS’ event-driven choice was based on 

the fact that it cuts down on stack sizes since one process 

could run at a time. Another fact it is that it eliminates 

unnecessary context switches which are infamous for 

their energy inefficiency. TinyOS is entirely made of a set 

of reusable system components and an energy efficient 

scheduler and hence has no kernel. Each component is 

made up of four parts, a set of commands, event handlers, 

a bundle of tasks and a fixed size frame for storage. The 

commands and events a component supports must be 

predefined to enhance modularity. Components in 

TinyOS are arranged hierarchically with low level 

components closest to hardware and higher level 

components form the application layer as shown in 

Figure 4. 

Figure 4. Visual representation of a TinyOS component. Upside-down 

triangles represent command handlers, triangles represent event 

handlers, upward dashed arcs represent signaled events and downward 

solid arcs represent issued commands.

Components are of three types: 

1. Hardware abstraction components: These are the 

lowest level components that map the physical 

hardware to the TinyOS component model. One 

such component is the RFM radio component which 

manipulates the pins connected to the RFM 

transceiver. 

2. Synthetic hardware components: These components 

simulate the behavior of hardware. For example, the 

Radio Byte component performs data encoding and 

decoding that can be performed by hardware. These 

components lie on top of the latter. 

3. High level software components: These components 

form the application layer and are responsible for 

data management and routing. Data fusion 

applications fall into this category as well. 

Since components are organized, some form of 

‘wiring’ or binding is required to make inter-component 

protocols clear. This is provided by a component through 

its commands and events. As mentioned earlier, a TinyOS 

component is made up of commands, events, tasks and a 

frame. Commands are the set of function calls or services 

that a component will request from other components. 

Event handlers implement the handling of results returned 

from previous commands. Those results are triggered by 

the component that provided the service in a form of 

event to indicate completion of the service. Commands 

and events cannot block. Tasks on the other hand are a 

form of deferred computation. Most computational work 

is done through tasks. A component defines the tasks that 

it may post. When a task is posted, it is buffered until the 

scheduler runs it, which is a simple FIFO scheduler. 

When no tasks are pending, the scheduler puts the CPU in 

sleeping mode for energy efficiency. Only one task could 

run at a time and each runs to completion. Tasks may be 

preempted by commands or events. A task should not be 

long in order not to delay other tasks. Finally, the fixed 

size frame is used to depict the state of the component by 

storing parameters. The fixed size and static allocation of 

the frame allow for simpler memory management at 

compile time.  

C.  The Multi-* Technology 

The “Multi” prefix has been significantly introduced 

throughout the modern advancements and improvements 

in computer and communication context. Recently, 

terminologies such as: multiprocessor, multicore, 

multitask and multithreading have been ambiguous in 

terms of architecture, structure, functionality and 

purposes. 

In what follows, we will be giving a complete 

definition for each of the concepts mentioned above to 

make the idea more clear and precise. 

1. Multiprocessor Technology: Multiprocessor 

system can be defined as comprising 2 or more 

independent central processing units (CPUs), 

which only share a common back-end data bus 

interface.  One of the drawbacks of such 

architecture is the implementation cost in terms of 

multiple chips and bus requirements. 

2. Multicore Technology: Multicore, or on chip-level 

multiprocessor, can be defined as multiple 

processors (CPUs) on a single hardware chip. Each 

processor has its own L1 cache, while the L2 

cache, the main memory unit (MMU) and the data 

bus interface as shared among the multiple 

processors. The significance in multicore 

technology is that performance similar to that of 

multiprocessor system can be achieved for lower 

cost since much of the computing resources 

mentioned earlier are not duplicated but shared. 

3. Multi-task Technology: Multitasking is a method 

in which multiple tasks/processes, which are 

programs under execution, share common 

processing resources such as CPU and the MMU. 

Originally dependent on multiprocessor 

technology, multitasking required 2 or more 

processors for tasks to run simultaneously. Early 

operating systems were “single task” systems, 
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meaning that only a single task/process can be 

executed at a time (e.g. Win 3.11). However, 

modern operating systems (e.g. Windows XP, 

UNIX, Mac OS, etc…) give the impression of 

parallel-multitasking execution by efficient 

scheduling of running applications and switching 

between them in an optimal time-slots assignment 

manner as if actual multi-tasking is taking place. 

The multiprocessor/core environment is 

transparent to the application where the operating 

system acts as an interface, mapping and 

scheduling tasks over available processors. 

4. Multithread Technology: Taking multitasking into 

a higher level, multithreading divides selected 

operations within a single task and map them onto 

individual threads. Furthermore, these threads will 

be executed in parallel on multiprocessor/core. The 

advantage of such technique is that efficiency and 

performance is pushed even further along each 

task, process and thread. 

III. RELATED WORK

The related research work can be divided into two 

different focus groups: 

A.  OS Design Related Work  

In [8], the authors make a first attempt at optimizing 

the low level implementation of thread-driven operating 

systems, in order to achieve event-driven performance. 

First, the authors perform stack analysis and used control 

flow information created at compile time to predict the 

size of the stack. Then, they provided a single stack 

implementation for all running threads, as opposed to the 

traditional technique of creating a stack for each thread, 

thus cutting down on space. The authors also tackle 

energy consumption by coming up with a new scheduling 

technique that depends on a variable timer, as opposed to 

the traditional fixed quantum, thus saving on computation 

latency. However, they did not take into account the large 

overhead produced by context switches. Their results still 

perform worse than event-driven systems, but with a 

great improvement compared to other thread-driven 

systems. Our work is greatly motivated and influenced by 

the works of [9] and [7]. In [9], the authors make a first 

step in studying the cost of preemption. The authors 

present a theoretical scheduling model which 

incorporates the cost of preemption. They show that 

preemptive algorithms, such as shortest remaining 

processing time, are theoretically optimal but are 

impractical because they do not take into consideration 

the cost of context switches. Moreover, the authors 

provide an algorithm, “wait to preempt”, which 

aggregates arriving processes and then runs them after a 

certain amount of work is done, which depends on the 

cost of preemption. However the authors aim at 

minimizing total flow time, which is the total time that 

the jobs spend in the system since arrival until they are 

run to completion. The cost of preemption introduced 

does not depend on energy consumed or on the CPU 

cycles. The algorithm is strictly based on the size of 

processes and also assumes the knowledge of the size of 

the smallest process.  The authors in [7] comparatively 

evaluate the performance of MOS and TinyOS. Their 

work measures the memory foot-print, event processing 

and energy efficiency of the two operating systems. The 

experiments aimed at comparing the performance of 

event-driven systems against thread-driven ones. The 

results show that the event-driven system, specifically 

TinyOS, has smaller memory foot-print and better energy 

consumption at high system loads. Whereas the thread-

driven MOS has better real time performance and 

predictability with similar energy consumption at low 

system loads. According to these results, a tradeoff exists 

when choosing among those systems. The same authors 

in [7] attempted to overcome this tradeoff later on in [10] 

and [11]. In [10], the authors focus on improving energy 

efficiency in MOS by tuning its preemptive scheduler. 

Their modifications included removing the idle thread, 

which ran whenever no tasks are runnable. Also, time 

slicing between equally prioritized threads was removed. 

If needed, the user should explicitly include it. Finally the 

linked list queues were replaced by a single array, which 

makes addition and deletion costly. This tuning technique 

is specific to MOS and not to thread-driven systems like 

ours; however it improves the energy efficiency of MOS. 

B.  Multi-Core Related Work 

Recent developments in hardware solutions in terms of 

fully programmable media processing devices allow the 

re-use of design efforts that would dramatically decrease 

the production and design costs. In [12], the authors 

suggest a novel approach for exploiting the advances and 

improvements in consumer-electronics industry in terms 

of exploiting parallelism using a multiprocessor 

architecture as an infrastructure for executing a most 

resource demanding application recently encountered in 

high definition multimedia: H.264 decoding. They 

suggested partitioning the H.264 application over the 

multi-processor environment in a data-partitioning 

fashion rather than the functional partitioning, since a 

comparison between the 2 approaches concluded that the 

former ensures: locality of data, load balancing of data 

among the multiple processors, system scalability without 

the need to rewrite the software, simplicity of 

implementation. The experimentation resulted with a 

conclusion that the proposed data partitioning scheme 

leads to a significant bandwidth reduction of 65% over 

the traditional functional scheme. After proposing the 

data partitioning schema as a solution for H.264 

decoding, a single specific data partition size and shape 

was considered which is a staircase shape.  

In [13], the authors introduce two techniques for 

aiding programmers in parallelizing loops via “loop 

profiling”. When trying to parallelize sequential code, a 

logical first step might be to find which loops are doing 

the most work. The concept of loop-centric profiling aims 

to give the programmer a more complete view of where 

time is spent in a program. Loop-centric profiling is 
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similar in nature to the traditional call graph, but also 

identifies parent-child relationships and self/total 

execution counts for loops in addition to functions. In 

[14], the authors propose a Multi-Processor Operating 

Systems (MPOS) emulation framework for Multi-

Processor Systems-On-Chips (MPSoCs) that provide 

efficient evaluation of thermal management strategies at 

the architectural and OS levels. A MPOS framework, 

based on the Field Programmable Gate Array (FPGA), is 

proposed which consists of 4 cores with a customized 

version of uClinux (Linux for embedded system) running 

on each. A Task Migration module and a Communication 

Module along with the OSs comprise the HW/SW 

abstraction layer. Using hardware sniffers, a built-in 

library calculates the temperature of each core. A 

proposed thermal-aware policy initiates a task migration 

process based on the temperature threshold attained by a 

currently executing core. Whenever a core reaches this 

threshold, the task is migrated to another colder core, thus 

maintaining the overall temperature of the MPSoC. The 

authors suggested installing OS on every core, which 

affects the overall performance due to the OS-OS 

communication overhead and the increase in the design 

complexity. Tasks on the same processor share a common 

private memory space, where tasks running on different 

cores communicate via shared memory space. This 

design adds significant overhead when migrating tasks 

between cores, in which lots of data transmission will be 

involved and most of the bandwidth will be consumed. In 

[15], the authors discuss three possible techniques for 

loosening the constraints forced by control flow on 

parallelism: speculative execution, control dependence 

analysis, and executing multiple flows of control 

simultaneously. Simulations of execution trace are used 

to evaluate such techniques to find out the limits of 

parallelism for machines that utilize different 

combinations of these techniques. The ultimate goal is to 

design an Oracle machine where branch outcomes are 

known in advance, thus no instructions have to wait for 

branches to be resolved. Since such a machine is 

unrealistic in terms of hardware resources and 

complexity, such techniques need to be examined. 

IV. OPTIMIZED PREEMPTION TECHNIQUES

As mentioned earlier, we first start with a single core 

design where the main fears of multi-threading come 

from the value of preemption and therefore tackle this 

problem by introducing an energy efficient preemption 

optimization. We give an example of a research effort that 

aimed at analyzing the performance of WSN EOSs. 

Precisely the aim of the research was to analyze the 

performance of only a part of the operating system which 

is the scheduler. Our algorithm aims at optimizing the 

number of context switches in thread-driven systems, 

under high system loads. This is done by directly 

optimizing the number of preemptions. There are two 

scenarios that need to be taken into consideration under 

high system load. First, when sensing tasks are timely. 

When smaller tasks arrive, the longer sensing task will be 

continuously preempted as shown in Figure 5. This 

causes preemption overhead, and is worse when tasks are 

longer. The second scenario does not involve the size of 

incoming tasks; instead it involves the frequency at which 

they arrive. At high frequencies, processes tend to 

preempt each other irrelative of their sizes.  

Figure 5. Without taking into consideration the size of the process, 

scheduling may cause context switch overhead. 

Figure 6.  Using our algorithm, only one context switch is needed in the 

same scenario of Figure 5. 

Taking these scenarios into consideration, our 

algorithm works as follows. First, run processes 

preemptively in a round robin fashion. After some work 

has been done, preempt the currently running process if it 

is long, and run small processes to completion without 

preemption. Again after some work has been done, go 

back to step one of the algorithm and repeat. The 

algorithm presented depends on three values, ,  and .

 represents the size of a small process,  the size of a 

long process and  denotes a certain amount of work 

done. The idea as illustrated in Figure 6 is to create 

preemption free periods without affecting concurrency by 

differing small processes and running them to 

completion. The following sections elaborate on the 

choice of ,  and .
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A. Process Sizes  and 

Accurately determining the size of a process is almost 

impossible yet is a very crucial piece of information. 

Several scheduling algorithms used in the field depend on 

the size of a process. One approach to predict the size of 

the process is called aging. The size of a process depends 

on the amount of time it has spent on the CPU during 

previous runs. Hence the update is continuously updated. 

Formally, assume a process spent time T0 on the first run 

and T1 on the second run. The new estimate is the 

weighted sum of these two runs, that is aT0 + (1 - a)T1, 

where a is the chosen weight. However our approach in 

determining the size of a process is simpler and is based 

on the quantum size.  and  are discussed in more detail 

later. 

B. Work Done 

The proposed algorithm mainly depends on the value .

The value  denotes the time when the scheduling 

algorithm should adapt to optimize the number of context 

switches. This is done by the scheduler entering a 

preemption free period. In this period, small processes are 

run to completion with respect to each other. This is 

because small processes are handled quickly and easily. 

After another , the scheduler returns to its original state, 

allowing longer processes to run. The algorithm is 

illustrated in Figure 7. The value  could be tuned for 

better performance and could be determined based on 

experimentation. Our choice of  is discussed in the 

following section. Using this approach, we might incur 

some delay in terms of the amount of time processes wait 

to be scheduled. To optimize this latency, one method that 

can be used to increase latency is by enhancing the CPU 

utilization. When the clock interrupt handler determines 

the end of a quantum a context switch occurs. However, 

the clock will keep issuing interrupts at a certain rate. 

Since most of these interrupts are unhandled, a 

considerable amount of energy is wasted in triggering 

them. To overcome this problem, a variable timer was 

implemented such that the rate at which interrupts occur 

depends on an upcoming timeout request. The variable 

timer manages timeout requests from threads and sets the 

clock-tick rate as such. Variable timers are not feasible in 

conventional OSs where the number of threads is very 

large. However, in networked nodes, the number of 

threads is small enough to allow for a variable timer. 

C. Implementation 

In this section, we discuss implementation specifics, 

namely the choices of the values ,  and . Before doing 

so, we need to present the two different types of context 

switches, voluntary and involuntary. A voluntary context 

switch occurs when a job or process gives up its time 

quantum voluntarily due to an IO request for example. An 

involuntary context switch on the other hand is when a 

process uses up its quantum but still has work to do. In 

this case the kernel preempts the process to place another 

one. We are only interested in optimizing the value of 

involuntary context switches. We mentioned previously 

that we use the quantum to determine the size of a 

process.  

Figure 7. After each quantum, we check if a certain amount of work  is 

done. If so, check if the running process is long ( ). If so, preempt it and 

run only small processes ( ) to completion without preemption.

Figure 8.  Short and long processes  and  are identified by quantum 

size. 
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This is done as follows. On each clock tick, the 

kernel checks if the current process has used up its 

quantum. Processes are given a fixed quantum and are 

not preempted before the quantum is done. A process may 

require more than one quantum to finish. So if the kernel 

determines the end of the current process’ quantum, the 

kernel will preempt the process causing an involuntary 

context switch. The scheduler will place the preempted 

process in the appropriate place in the scheduling queue 

and pick another process to run. When a process is 

preempted for an IO request, the quantum that it used is 

recorded. So when the process gets its request and is put 

back on the CPU, it is not given a full quantum again. It 

is only given the remaining quantum it had left. However, 

if the process was preempted due to an involuntary 

context switch, it is given a full quantum again as shown 

in Figure 8. Thus, we have the notion of a small process 

and a large process depending on the remaining quantum 

size. More precisely, if a process has a full quantum, it’s a 

long process ; otherwise it’s a short process . As for the 

value of , we represent the work done in terms of time 

spent. Another possibility would be to represent the work 

done as a ratio of preemption cost and the size of the 

smallest task. However, for the sake of simplicity, we use 

the value of  to be 100 quanta. In other words, every 100 

quanta, the scheduler readapts to optimize preemption. 

Example of our context switch aware scheduler. 

Interrupt Handler { 

    if (elapsed == quantum) { 

          Scheduler ( ++)} }     

Scheduler { 

    if (  < 100){ 

          Optimize ()}… 

}     

Optimize { 

  PickShortProcs () } 

V. EVALUATION CRITERIA OF PARALLELIZED SYSTEMS

Parallelism suffers from several challenges that limit 

the transformation of uniprocessor, single-threaded 

applications to parallelized multi-threaded systems. 

In performing such a transformation process, the 

following constraints are significant: 

Inter-core/processor communication: When dealing 

with multicore environment, intercore 

communication must be taken into consideration 

especially in terms of time and clock cycles latency 

which is evident when two or more cores are 

sharing common resources or data. Several 

approaches should be carefully measured for 

minimizing such a delay. 

Data Dependency: Parallelism is tightly related with 

the data dependence concept. Any transformation 

approach should respect such dependence for the 

parallelization to be successful. Data that is 

produced and consumed should be exactly in the 

same order as in the original pre-transformed 

application. In terms of load-store order, data 

dependency can be in the following forms:  

1. True Dependence:  

a.X = ... 

b. ... = X 

The dependence ensures that the second statement 

receives the value computed by the first. This type of 

dependence is also known as flow dependence. 

2. Anti Dependence: 

a.... = X 

b.X = ... 

The dependence prevents the interchange of a and b, 

which could lead to a incorrectly using the value 

computed by b.  

3. Output Dependence: 

Both statements write into the same location 

a.X = ... 

b.X = ... 

This dependence prevents an interchange that might 

cause a later statement to read the wrong value. For 

example, in the code fragment: 

c.X = 1 

d. ... 

e.X = 2 

f.W = X * Y 

Statement e should not be allowed to move before 

statement c for Y to be incorrectly multiplied by 1, rather 

than 2, in f. This type of dependence is called output 

dependence. 

Control Dependency: Besides data dependency, 

control dependency is a critical issue to be 

considered when parallelizing. Statements which will 

not be executed unless the corresponding predicate 

(conditional branch) is resolved are considered to be 

control dependent on that predicate. Consider the 

following simple example:  

if (a < 0) 

b = 1; 

c = 2; 

While the assignment b = 1 is executed only if a < 0, the 

assignment c = 2 is always executed regardless of the 

value of a. We say that b = 1 is control dependent on the 
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condition a < 0 and that c = 2 is control independent. We 

refer to the branch on which an instruction is control 

dependent as its control dependence branch. 

VI. METHODOLOGY AND PROPOSED PARALLELIZED 

ALGORITHM

We define the problem of locating potential parallelism in 

the EOS as a framework which consists of three stages: 

1. Creating an abstract model 

2. Partitioning the abstract model 

3. Analyze the performance of the partitioned system 

The first stage involves representing the actual code of 

the OS as an annotated acyclic graph. This approach 

abstracts away some unnecessary details in the code that 

helps to generalize the problem. In this case, we use a 

control flow graph (CFG) [16] as a representation. The 

second step is based on the abstract model. Using one of 

the techniques mentioned earlier (data or functional), the 

abstract model is divided into threads. Since the abstract 

model represents the code, then the code itself is 

partitioned by partitioning the CFG. The final step 

involves evaluating the performance of the partitioned 

system. The results of this stage indicate whether there is 

a potential in parallelizing the system in hand. In the 

following section, we will be presenting the proposed 

algorithm in details.  

Our goal is to come up with an algorithm that 

identifies potential parallelism in existing single-threaded 

wireless sensor node applications. Figure 9 presents a 

snapshot of the 2 main components of the algorithm.  As 

an example, we will be examining a multimedia image 

encoding application for wireless sensor networks used 

for surveillance and monitoring purposes. The algorithm 

proposed is solely based on information flow analysis via 

data/control dependency in which the control flow and 

data/control dependency is carefully examined to identify 

data definitions/usage in the application’s code. Such an 

image encoder is characterized as a resource demanding 

application which may suffer significantly from 

limitations and constraints in the wireless sensor 

networks context such as limited energy and resources.  

The main advantage of parallelizing single-threaded 

applications into multi-threaded counterparts on a 

multicore system is that the number of per core execution 

cycles is reduced significantly, causing each core in the 

system to operate at lower frequencies and thus leading to 

a reduction in the overall energy consumption and 

performance.  In achieving this improvement, our 

algorithm will be the first step in identifying whether 

parallelism exists in current single-threaded applications. 

After feeding the image encoder into our algorithm, a 

CFG, control flow graph consisting of nodes/blocks and 

edges flowing between nodes, is first generated. Each 

node/block consists of one or more instruction level 

statements/instructions that are tightly related to each 

other.  Next, a PDG, the program dependence graph 

constructed by identifying control and data dependencies 

between the nodes/blocks, is generated on which our 

proposed algorithm will be working. Figures 11a and 11b 

represent the CFG and the PDG respectively. 

Figure 9.  Lines 1-5: Initialization statements; Lines 6-14: identify and 

initialize the first extracted thread of independent nodes; Lines 15-32: 

the thread extraction process starts; Line 34-55: The main function 

responsible of extracting threads. 
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The algorithm is comprised of three major steps: 

1. Initialize three main variables: We start by intializing 

a set of StartingNodes, VisitedNodes, and 

ExtractedThreads. StartingNodes is a set containing 

one of more nodes having the maximum number of 

incoming edges. A large number of incoming edges 

illustrates the significance of this node with respect 

to other nodes in terms of data/control dependency 

and thus should be included in at least one of the 

extracted threads. VisitedNodes is a set that is 

incrementally updated with the recently visited node 

along the proposed scenario. The ExtractedThreads 

is the main variable, which represents a list of lists of 

nodes. Each list is a thread containing the selected 

nodes that the algorithm has chosen to be included 

due to their dependency.  

2. Grouping: Next, all independent nodes having no 

data/control dependency with other nodes are 

grouped together into a single thread which is going 

to be the first thread to be executed separately on one 

of the cores. Selecting such nodes is based on 

choosing the nodes with their InDegree = OutDegree 

= 0. When working with graphs, InDegree is used to 

identify the number of incoming edges to a certain 

node, while OutDegree is the number of outgoing 

edges. 

3. Iterative Selection: Left with the most significant 

nodes along with their data/control dependencies, we 

start by iteratively picking nodes from the 

StartingNodes set to be included in the next extracted 

thread, in this case node B0. One of the direct 

dependent nodes, B1, on B0 is considered for the 

first iteration and then recursively, we check if there 

are any nodes depending on B1 but not directly 

depending on B0. B6 is the only node depending on 

B1 which will be added to the current thread along 

with B0 and B1. Each time a node is passed over, it 

is marked as visited by adding it to the VisitedNodes 

set. Now, the current node being visited is B6, we 

recursively keep on checking for every node the set 

of nodes it is depending on and the set of nodes 

depending on it. For example, node B6 does not have 

any node depending on it but it directly depends on 

B3. B3 only has node B4 depending on it while it is 

directly depending on B2. 

However, when reaching node B2, B9 is not going to 

be included even though it depends on B2 because it 

directly depends on the starting node B0 and it is going 

to be passed over during the next iteration.  Since all the 

dependencies in this iteration are covered, a second 

thread is extracted, consisting of 6 nodes strictly 

depending on each other: B0->B1->B6->B3->B4->B2. 

With node B9 being the only unvisited node depending 

on B0, the same scenario will be executed which gives a 

third and final thread consisting of B0->B9->B2->B1 as 

depicted in Figure 11. 

 (a)                                                     (b)  

Figure 10. The CGF (a) and PDG (b). Red edges represent control 

dependency, while black represent data dependency.

Figure 11. The final output. 3 separate threads sharing nodes marked in 

green. Such nodes could be synchronized using any inter-thread 

communication mechanism. 

Note that no restrictions or validations are imposed on 

the nodes which the current node is directly depending on 

when passed over recursively. This is due to the fact that 

a node will not be able to be executed unless the nodes it 

depends on are included in the same thread. However, 

nodes that are depending on it may not be necessarily 

included in the same thread and would definitely be 

included in the one of the next extracted threads. As a 

result, since we managed to extract more than one thread, 

including the first thread containing the independent 

nodes, we can conclude that parallelism exists and the 

single-threaded application can be mapped into a multi-

core/processor system. 
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VII. EXPERIMENTAL ANALYSIS

Our simulation analysis is divided into two main 

experiments: 

A.  Experiment 1 
In the first experiment, we study the performance of our 

optimized scheduler. We have implemented a benchmark 

suite that simulates a system under high load. Our 

benchmark assumes a tree topology as shown in Figure 

12. Nodes with larger height h, have more work to 

process, while nodes with lower h are less loaded. To 

simulate the load relative to the position in the tree, the 

benchmark uses two variables, the frequency fs at which 

packets arrive and the sensing duration ls. By varying 

these values, the position hi in the routing tree is 

simulated. In our simulation, we are only interested in 

nodes that experience high system loads, illustrated in 

Figure 13. This is because the overhead of context 

switches only appear then. In our benchmark, high 

system load is represented by values of fs and ls being 

300000 CPU cycles and 1000 ms respectively. Moreover, 

4 copies of the benchmark were run at once, to simulate 

the existence of 4 neighboring nodes. Our benchmarking 

suite was run for one minute before and after 

implementing our scheduling algorithm. The performance 

of the system was monitored and plotted to show the 

change in energy consumption and the affect on event 

processing. 

Figure 12.  Network routing topology forming a tree. The greater the 

height h, the closer the node is to the sink or the root. The high system 

load area is the area of interest. 

Energy Consumption

We have shown in previous sections the effect of context 

switches on the energy efficiency of a system. The more 

the context switches, the more energy is consumed. We 

argue that if we decrease the number of context switches 

while still doing the same amount of work, we obtain 

better energy consumption. From the OS perspective, 

energy is not measured by the amount of current 

dissipated, instead it is measured by idle time. The energy 

efficiency of an OS is how much it can provide idle time 

for the CPU.  By sparing the CPU some of its cycles, the 

result is better energy consumption. In the first 

experiment, the number of CPU cycles spent is plotted 

before and after our implementation. 

The results illustrated in Figure 13 are an indication 

of % idle time. The amount of CPU cycles spent after our 

optimization is less than those spent without it. This is 

because we reduced the number of context switches and 

therefore reduced the total amount of processing the CPU 

has to perform. In the time frame of the experiment, the 

same amount of packets was delivered before and after, 

and the same length of sensing tasks as well. Yet, due to 

the reduction in the number of times the CPU has to 

switch between processes, the CPU does less work. This 

is a direct indication of both idle time and energy 

consumption, i.e. the less the cycles, the more the CPU is 

idle and the more energy is conserved. 

Figure 13. Number of CPU ticks decreased using our algorithm.  

In the second experiment, the total number of context 

switches is monitored. As mentioned earlier, we simulate 

packets coming from 4 different neighbors. The amount 

of processing done for each neighbor is monitored and 

the number of context switches is calculated as well. In 

Figure 14, the number of context switches due to each 

neighbor is plotted before and after our optimization. A 

significant decrease in the number of context switches is 

shown due to our optimization. This is expected since our 

algorithm is able to reduce context switches by more than 

70 percent. That is the total number of context switches 

due to processing packets coming from all neighbors. 

Figure 14. The number of context switches is optimized. 
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Event Processing

Although we have optimized preemption, this was 

expected to incur an overhead in terms of delay. Our next 

experiments investigate this delay and its effect on event 

processing. Figure 15 presents the effect of our 

optimization on the predictability or real-time operation 

of the system. The average processing time is calculated 

and plotted before and after our optimization. The 

average is the total processing time spent for all 

neighbors divided by the number of neighbors. The delay 

incurred by our algorithm hence would be the difference 

between the average processing time before and after. As 

shown in the plot this difference is very small, hence 

event processing is slightly affected.  This delay is 

affected by the choice of the parameter  discussed in 

earlier sections. 

Figure 15.  Event processing is slightly effected by the optimization. 

We were also interested in investigating the relation 

between the size of processes and behavior of context 

switches. As the number of long processes increases, the 

number of context switches is expected to increase. 

Moreover, our algorithm has more potential for 

conserving energy when there are enough small processes 

to run without preempting longer tasks. For example, if 

the number of short processes is small, the scheduler will 

go back to its default (round-robin) state before the 

amount of work  has been done. Otherwise the scheduler 

will cause a deadlock. If small processes cannot cover the 

period , the scheduler will be running long and short 

processes as if it is a round-robin scheduler since it will 

always go back to its default state. However, we know 

this is not often the case at high system load. This is 

illustrated in Figure 16. The number of context switches 

increases steadily and at a low rate as small processes 

arrive. At time = 40 sec, a significant decrease in the 

number of short processes causes a rapid increase in the 

number of context switches. The plot also shows that the 

percentage of small processes is not very high. This 

means that the number of voluntary context switches is 

low, and the overhead is due to involuntary context 

switches. Since short processes have smaller quanta, 

processes that perform voluntary context switches are 

fewer. This is because a smaller quantum is a result of a 

voluntary context switch in the first place. Hence 

voluntary context switches do not dominate the overhead 

of preemption which justifies our focus on involuntary 

context switches. 

Figure 16. The relation between percentage of short processes and 

context switch behavior 

B.  Experiment 2 

In the second experiment, we analyze and predict the 

performance of our proposed parallel algorithim. Our 

software partitioning assumes multi CPUs on the 

hardware level. If this is not the case, partitioning will 

have a negative effect on the system by overwhelming it 

with threads. As a result energy consumption will 

increase dramatically and the concurrency will be much 

more complicated and unstable. On the other hand, by 

having multiple CPUs, we are exploiting the potential 

that TinyOS has for better performance. We illustrate how 

a sensor node’s performance would change using our 

partitioning algorithm, as the number of CPUs increases. 

As the number of CPUs or cores increases, tasks are 

scheduled accordingly, resulting in fewer cycles per core. 

For example, if we partitioned a task into 4 threads, 

having one core would have to execute all 4 threads. 

Moreover, having 4 cores would require each core to 

execure a single task with fewer context switches. Fewer 

context switches result in better energy consumption.  

Figure 17. Energy is consumed due inter-thread communication. 

Threads communicate when passing variables which justiies why 

functional partitioning consumes more synchronization energy. 

1212 JOURNAL OF NETWORKS, VOL. 5, NO. 10, OCTOBER 2010

© 2010 ACADEMY PUBLISHER



Context switching due to multiple tasks is the dominating 

cause of CPU cycles and thus energy consumption. Since 

fewer tasks run on each core, fewer context switches are 

required. Scheduling algorithms may also be adapted to 

minimize these context switches. Again, as the number of 

tasks on each single CPU decreases, context switches will 

also decrease resulting in better energy consumption. As the 

cost of context switching diminishes, what dominates is the 

cost of inter-thread communication. Inter-thread 

communication occurs when two threads sharing a variable 

communicate the value of that variable.  Another example is 

two functions communicating parameters. In this case, 

communication overhead will appear if we used functional 

partitioning. Inter-thread communication overhead is not 

analogous to context switch overhead.  That is, inter-thread 

communication overhead does not increase as the number of 

threads increase. It actually depends on the partitioning 

technique used to partition a task into threads. Data 

partitioning for example produces more threads than 

functional partitioning. However, it requires less inter-thread 

communication since the technique itself removes 

dependencies within a task. The functional partitioning 

divides a task into separate functions; in this case there is 

more scope for communication and the predicted results for 

the simulation are presented in Figure 17. 

VIII. CONCLUSIONS AND FUTURE WORK 

In this paper, we study the evolution of operating 

system designs or future wireless sensor nodes. We first 

show that the value of preemption has a great impact on 

the design and implementation of operating systems. We 

introduced a simple and energy efficient preemption 

algorithm targeting embedded wireless sensor network 

operating systems. We implemented our algorithm on an 

embedded operating system and evaluated its 

performance. Our algorithm is general and portable in the 

sense that it can be applied on any preemptive platform. 

Moreover, we have showed a significant decrease in the 

number of context switches using our algorithm. Our 

algorithm also maintains the predictable nature of the 

preemptive system. We also illustrated the significance of 

multi-core/processor system architecture in current 

hardware designs, especially with the current trend in 

wireless sensor network devices being pushed along the 

same line of production. We presented the importance of 

migrating existing WSN applications into multi-threaded 

applications capable of taking full advantage of multi-

processor architecture. Our algorithm was able to extract 

multiple threads out of single-threaded applications, 

where data and control dependency were carefully 

examined and analyzed for preserving such dependencies 

in the extracted threads. Expected improvements in terms 

of lower execution per core cycles and energy 

consumption were examined.  

As part of our future work, we are to provide a 

deeper investigation on the effect of our algorithm on 

processing latency. We also intend to investigate different 

values for  and its effect on delay. A theoretical analysis 

of our algorithm would be provided in an extended 

version of this paper. An investigation involving more 

Wireless sensor OSs is required to determine other 

bottlenecks. Our future work also includes the simulation 

of our results on multi-processor sensor nodes. We also 

need to investigate the consequences of such migration 

on the network level and check whether such migration 

would affect the overall network performance. 
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