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Abstract

The information of copy number alterations (gains and losses) in tumour genomes can be used to discovery

cancer-causing genes. The estimate of copy number can be obtained from the estimate copy number ratio. The

higher the depth of underlying sequencing data, the more accurate the estimate of copy number ratio. At the

same time, the higher depth of a sequencing data used in copy number analysis, the more cost of data analysis.

To develop a method for identifying a necessary depth of sequencing data for copy number analysis before test

data are produced is of interest. In this paper, we proposed an algorithm of equal acceptance regions for detecting

copy number ratios. This algorithm can be used to determine the depth of sequencing data required for copy

number analysis.

1 Introduction, basic assumptions and notation

The information of copy number alterations (gains and losses) in tumour genomes can be useful for discovering

cancer-causing genes. Recently, Chiang et al. (2009) and Alkan et al. (2009) have studied how to estimate

copy number alterations using massively parallel sequence data. Chiang et al. (2009) suggested using log

normal distribution to approach the distribution of log ratio of copy-number and use the approximated

distribution to work out the number of aligned reads required to ensure the power of the detection of copy
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number alterations in tumour genomes. Other different approaches for detecting copy number variation

using next generation sequencing data can be found from Xie and Tammi (2009) and Kim et al. (2010).

SegSeq, a recently proposed sequenced-based algorithm, utilizes windows defined by a predefined number

of normal reads to detect breakpoints between copy number alternation’s (CNA) (Chiang et al., 2009). Kim

et al. (2010) commented that major disadvantage of window-based approaches is that the window size must

be determined a priori and that the overall performance of the algorithm is influenced strongly by the value.

Xie and Tammi (2009) discussed the impact of window size on the confidential level of CNAs. They

identified and focused on the confidential level for testing true copy number ratio 1 only. However, they

made mistakes by applying the p-value for test H0 : r = 1 to test H0 : r = r0, where r0 ̸= 1.

The definition of tumour-normal copy-number ratio in terms of next generation sequencing data can be

found from Chiang et al. (2009). For reading convenience, the definition is briefly introduced below.

Consider a genomic window of length L within the alignable portion of a reference genome with length A.

Let aN and aT the total number of aligned sequence reads from the normal and tumour sample, respectively.

Let N and T the number of aligned sequence reads from the normal and tumour samples within the genomic

window L, respectively. N and T are two independent random variables.

We adopt Assumptions: (i) there are no copy-number alterations within a genomic window of length

L; (ii) N and T follow Poisson distributions with parameters λN = aNL/A and λT = raT L/A = rmλN ,

respectively, where m = aT /aN and r is the true copy-number ratio given by the genomic window.

The tumour-normal copy-number ratio, R, is defined as

R =
T/aT

N/aN
, if N > 0

else R is undefined. R is a random variable and r needs to be estimated. Random variable R is the ratio

of two independent variables. The probability distribution of R does not follow any well known probability

distributions.

In this paper, we derive formulas for evaluating Type I and Type II errors in detecting copy number ratios

and propose an algorithm of equal acceptance regions for detecting copy number ratios. The algorithm can

be used to determine the necessary depth of sequencing data required for copy number analysis. By using

this opportunity, we also give a detail explanation and discussion on relevant inference concepts used in copy

number analysis.

This paper consists of four sections. The relationship between the value of λN and the estimate of copy

number ratio is discussed in Section 2. Section 3 discusses hypothesis tests on copy number ratios and the
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power of the test. The algorithm of equal acceptance regions is introduced in Section 3 and its application

is presented in Section 4. Some R code used in this paper, DNACopy outputs and big tables are listed in

the Appendix.

2 Impacts of λN and λT on the estimate of copy number ratio r

In literature, the true copy number r is usually estimated through the tumour-normal ratio R. It can be

shown that R is not an unbiased estimator of r. It will be interesting to know if R is an appropriate estimator

of r. Based on the definition of R and Assumptions in Section 1, we can prove the following results:

E(R|N ̸= 0) = mλT /λN + o(1) = r + o(1) (1)

and

V ar(R|N ̸= 0) = E(R2|N ̸= 0) − (E(R|N ̸= 0))2 = r2 + o(1) − (r + o(1))2 = o(1), (2)

respectively, as λN → ∞, where aN/aT = m. The proof of (??) is presented in the Appendix A. Equation

(??) can be proved in a similar way and the proof is omitted. Therefore, both E(R)−r and V ar(R) tend to 0

as λN → ∞. Although R is not an unbiased estimator of r, but the above results guarantee that R converges

to r in probability as λN → ∞ (recall λT /λN = r/m), i.e R is an asymptotically unbiased estimator of r.

Equation (??) ensures that, if λN or λT is reasonably large, one can confidently claim that the value of R

will always appear in a close neighbourhood of true copy number ratio r.

3 Detection of copy-number alterations and the power of the detection

Based on the number of aligned sequence reads from “test” and “reference” samples, to detect whether the

true copy number ratio is r0 or not is equivalent to make a decision between null hypothesis H0 : r = r0

and alternative hypothesis H1 : r ̸= r0. A test is desirable if the test has small Type I error as well as small

Type II error. The smaller the Type II error is, the more powerful the test will be.

Since the tumour-normal ratio R converges to the true copy number ratio r in probability as λN → ∞,

it is reasonable to employ R as a test statistics for the test H0 : r = r0 vs H1 : r ̸= r0. To carry out the

test, knowing the probability distribution of R or understanding how to evaluate P (a ≤ R ≤ b) for any real

numbers 0 < a < b is necessary.

A Poisson distribution Poi(λ) can be excellently approximated by a normal distribution N(λ,
√

λ) if

λ > 1000 and can be well approximated by a normal distribution N(λ,
√

λ) if λ > 10. For next generation

sequencing data, both λN and λT are more likely to be greater than 10. Therefore, we adopt that T ∼
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N(raT L/A,
√

raT L/A) and N ∼ N(aNL/A,
√

aNL/A). Thus, the probability distribution of R can be

approximated by the distribution of the ratio of two independent normally distributed random variables.

The probability distribution of the ratio of two independent normally distributed random variables was

investigated by Hayya et al. (1975). Their results are briefly introduced below.

Denote Y and X two independent normally distributed random variables and W = Y/X. Then W has

the following properties

(i) If c.v.(X) = σX/µX ≤ 0.09 and c.v.(Y ) > 0.19, W = Y/X is approximately normally distributed at

5% significant level.

(ii) If c.v.(X) < 0.39 and c.v.(Y ) > 0.005,

Z =
µXW − µY√
σ2

XW 2 + σ2
Y

is approximately N(0, 1) at 5% significant level.

We apply Hayya et al. (1975) results to R and re-express R in the following way

R =
T/aT

N/aN
= W

aN

aT
,

where W = T/N . Denote

z(r) =
µNW − µT√
σ2

NW 2 + σ2
T

, (3)

where µT = raT L/A, µN = aNL/A, σ2
T = raT L/A and σ2

N = aNL/A. Then, if

c.v.(N) =
√

V ar(N)/E(N) = 1/
√

aNL/A < 0.39 (4)

and

c.v.(T ) =
√

V ar(T )/E(T ) =
1√

raT L/A
> 0.005, (5)

that is, λT = raT L/A < 40, 000 and λN = aNL/A > 6.5747,

z(r) =
µNW − µT√
σ2

NW 2 + σ2
T

has standard normal distribution at significance level 0.05. In this paper, we always assume that

z(r) =
µNW − µT√
σ2

NW 2 + σ2
T

∼ N(0, 1),

because (??) and (??) are always held for next generation sequencing data.
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Xie and Tammi (2009) proposed a method for detecting copy number variation using next generation

sequencing data. They mainly focused on detection of copy number ratio r = 1 and gave an interesting

discussion on the impact the length of genomic window L on the p-value of the test of H0 : r = 1 vs H1 :

r ̸= 1. However, they wrongly apply the p-value determined by the test of H0 : r = 1 vs H1 : r ̸= 1 to the

test H0 : r = r′ vs H1 : r ̸= r′ where r′ ̸= 1.

In this section, we extend Xie and Tammi’s work to general situations including detections of CNA,

determination of p-value of the detections and evaluation of the power of the detections. Unless further

notice, we always consider hypothesis test

H0 : r = r0 vs H1 : r ̸= r0, (6)

where r0 is the copy number ratio to be tested. It might take value 0 or 0.5 or 1 or 1.5 or · · · with increment

0.5.

1. Rejection Region for H0 : r = r0 vs H1 : r ̸= r0

The test statistics used for the test (??) is defined as

z(r) =
µNW − µT√
σ2

NW 2 + σ2
T

∼ N(0, 1).

Under H0,

p(z0) = P (|z(r0)| > z0) = P ((µNW − µT )2 > z2
0(σ2

T + W 2σ2
N ))

= P ((1 − Az2
0

aNL
)R2 − 2r0R + (r2

0 − r0
z2
0A

aT L
) > 0).

Thus,

• If (1 − Az2
0

aN L ) > 0, in terms of the value of R, the rejection region for H0 at significance level p(z0) is

(R > r0
1 +

√
1 − NATA

NA
)
∪

(R < r0
1 −

√
1 − NATA

NA
); (7)

• If (1 − Az2
0

aN L ) < 0, in terms of the value of R, the rejection region for H0 at significance level p(z0) is

r0
1 −

√
1 − NATA

NA
< R < r0

1 +
√

1 − NATA

NA
, (8)

where TA = 1 − (z2
0A)/(r0aT L) and NA = 1 − (z2

0A)/(aNL).

By using simulation data it can be clearly demonstrated that, for any a pre-set Type I error and fixed

aT and aN , the size of acceptance region increases as the the values of r0 increases and the overlapped area

5



between acceptance regions for r0 and r0 + 0.5 increases as the value of r0 increases. This means that power

of test will be reduced as the value of r0 increases.

2. Evaluation of the power of tests when (1 − Az2
0

aN L ) > 0

In practice, next generation sequencing data tends to give (1 − Az2
0

aN L ) > 0. Therefore, the scenario of

(1 − Az2
0

aN L ) > 0 is of interested.

In this subsection, we evaluate the powers of two types of tests below,

(1) H0 : r = r0 versus H1 : r = r0 + △r+ where △r+ > 0.

(2) H0 : r = r0 versus H1 : r = r0 + △r− where △r− < 0.

In the following discussion, the Type I errors for both tests are set to be the same α = (1 − Φ(z0)) with

z0 > 0.

Under H0 : r = r0 and given significance level α = (1 − Φ(z0)) with z0 > 0, the acceptance regions for

the above tests are determined by (??).

(i) Consider test H0 : r = r0 versus H1 : r = r0 + △r+.

Denote

U = r0
1 +

√
1 − NATA

NA
= r0

1 +

√
1 − (1 − z2

0A

aNL
)(1 − z2

0A

r0aT L
)

 /(1 − z2
0A

aNL
).

Based on (??), the condition for accepting H0 at significance level α = (1−Φ(z0)) is R ≤ U . Therefore,

type II error for the test H0 : r = r0 vs H1 : r = r0 + △r+ is

β = P (accept H0 under α = (1 − Φ(z0))|H1 : r = r0 + △r+) = P (R ≤ U |H1 is true).

The value of β can be evaluated by using the Monte Carlo method. An R function - typeIIerrorPU (in

the Appendix C) is developed for the purpose.

(ii) Consider test H0 : r = r0 versus H1 : r = r0 + △r−.

Denote

L = r0
1 −

√
1 − NATA

NA
= r0

1 −

√
1 − (1 − z2

0A

aNL
)(1 − z2

0A

r0aT L
)

 /(1 − z2
0A

aNL
).

Type II error for the test H0 : r = r0 vs H1 : r = r0 + △r− is

β = P (accept H0 under α = (1 − Φ(z0))|H1 : r = r0 + △r−) = P (R ≥ L|H1 is true),
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Table 1: The formulas used to calculate p-values
R > r0 R < r0

H1 p-value p-value
r ̸= r0 2 × (1 − Φ(z(r0)) 2Φ(z(r0))
r < r0 Φ(z(r0)) Φ(z(r0))
r > r0 1 − Φ(z(r0)) 1 − Φ(z(r0))

The value of z(r0) is calculated by (??). If R > r0, then z(r0) > 0; If R < r0, then z(r0) < 0.

which can be evaluated by using Monte Carlo method. A R function - typeIIerrorPL (in the Appendix C)

can be used for the purpose.

Using simulation data one is able to show the power of the test H0 : r = r0 vs H1 : r = r1 will decrease

as the value of r0 increases. In addition, the power of the test will increase as the difference between r0 and

r1 increases. To ensure the power of test H0 : r = r0 vs H1 : r = r1, as the value of r0 increases, a larger

value of λN = aNL/A is required. Since the size of genomic window L and the length of reference genome A

are naturally determined by underlying genome sequence, the power of test is determined by aN (or aT as

aT /aN = m), the depth of underlying sequencing data. The higher the depth sequencing data is, the more

powerful of the test will be.

3. Calculation of p-values for test statistics

In a test of statistical significance, the p-value is the probability of obtaining a test statistic at least as

extreme as the one that was actually observed such that H0 could be rejected. Consider test statistics

z(r0) =
µNW − µT√
σ2

NW 2 + σ2
T

=

√
aT L

A

R − r0√
aT

aN
R2 + r0

∼ N(0, 1)

for H0 : r = r0. The formula used to calculate p-value depends on alternative hypothesis H1 and the value

of R. Different formulas for the purpose are listed in Table 1. Different alternative hypotheses are listed

in the first column. If the p-value of z(r0) is less than significance level α > 0, the probability of wrongly

rejecting H0 : r = r0 is at most α.

From the formulas in Table 1, one cannot directly make a decision, rejecting or accepting H0, based on

the value of R. In Theorem ?? below, we derive a sufficient condition in terms of the values of aT L/A and

R for determining whether there are sufficient evidences to reject H0 : r = r0 at significance level of α.

Theorem 1 Consider a genome sequence with length A. Denote aT and aN the number aligned reads from

“Test” and “Reference” samples, respectively. Assume aT /aN = m and the length of genomic window is L.
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Table 2: The values for W1 and W2 determined by different value of r0, where Type I error is α, dr0,1 =
dr0,2 = 0.25 and aT /aN = 1.

r 0.5 1 1.5 2
W1 112.2833 270.8009 482.1577 746.3537
W2 59.4441 165.1225 323.6401 534.9969
r 2.5 3 3.5 4

W1 1063.3889 1433.2633 1855.9769 2331.5297
W2 799.1929 1116.2281 1486.1025 1908.8161

z0 = 2.57 and α = 0.01

Denote

W1(z0, r0, dr0,1,m) =
z2
0

[
m(r0 + dr0,1)2 + r0

]
d2

r0,1

(9)

and

W2(z0, r0, dr0,2,m) =
z2
0

[
m(r0 − dr0,2)2 + r0

]
d2

r0,2

(10)

where z0 is a real number, r0 > 0 and both dr0,1 and dr0,2 are positive real numbers.

Consider hypothesis test H0 : r = r0 versus H1 : r ̸= r0. If

aT L

A
> W1 and R > r0 + dr0,1 (11)

or
aT L

A
> W2 and R < r0 − dr0,2 (12)

then, there are sufficient events to reject H0 with Type I error at most 2 [1 − Φ(|z0|)].

The proof of Theorem ?? is presented in the Appendix B.

Remark: (i) For hypothesis test H0 : r = r0 versus H1 : r ̸= r0 with preset significance level 2(1−Φ(|z0|)

and pre-set interval (r0−dr0,2, r0−dr0,1), if aT L/A > max{W1,W2}, a decision on whether H0 is held or not

can be simply made based on the value of R. If R ̸∈ (r0 − dr0,2, r0 − dr0,1), H0 can be rejected with at most

Type I error 2(1 − Φ(|z0|). An example of the values of W1 and W2 based on z0 = 2.57, i.e. Type I error =

0.01, are reported in Table 2, where dr0,1 = dr0,2 = 0.25 and aT /aN = 1. (ii) In addition, Theorem ?? shows

a manner for determining a sufficient depth of testing sequencing data for test H0 : r = r0 versus H1 : r ̸= r0

with preset level of Type I error. This is demonstrated in Example 1 below. (iii) From (??) and (??), given

fixed A, W1 and W2, the shorter the window length L, the higher the depth of underlying sequencing data

is required. The window length L may be empirically estimated through prior tests or determined based on

the knowledge of analysts.
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Example 1 Assume that one wishes to detect a 50kb region of a single-copy loss in the alignable portion

of human genome (A = 2.2 × 109 for 36-bp reads) with Type I error 0.01. To achieve the result and at the

same time not to over supply data, the depth of sequencing data, i.e. the values of aT and aN , needs to be

determined before the data are produced. In this study, we let aT = aN and their values are determined

below.

For detecting a single-copy loss, we consider test H0 : r = 0.5 versus H1 : r ̸= 0.5 and apply the result

of Theorem ?? to this example. We use the value W1 = 112.2833 ≈ 113 in Table 2 to calculate the number

of aligned reads aT . Therefore, aT = W1A/L ≈ 113 × 2.2 × 109/50000 = 4.972 × 106, i.e. 4.972 million.

Based on Theorem ??, if the depths of the sequencing data for normal and tumour samples are the same

4.972 million, then, if we use rule set by Theorem ?? to carry out hypothesis H0 : r = 0.5 vs H0 : r ̸= 0.5,

the Type I error of the test is at most 0.01.

By noting that, to ensure the Type I error for the test H0 : r = r0 vs H1 : r ̸= r0 is at most 0.01, the

larger the value of r0 is, the higher the depth of underlying sequencing data is required. Given L and A

fixed, if an aT is able to ensure the Type I error for the test H0 : r = r0 vs H1 : r ̸= r0 is at most 0.01, then

this aT will be also able to ensure the Type I error for the test H0 : r = r∗ vs H1 : r ̸= r∗ is at most 0.01 for

all r∗ < r0.

Based on the above fact, we suggest an algorithm below for determining the depth of sequencing data

when we wish to detect copy number ratios 0.5, 1, · · · , r∗ simultaneously and ensure Type I and Type II

errors are at most α.

Algorithm of Equal Acceptance Region (EAR): Denote a genomic window of length by L and

reference genome length by A.

(i) Use (??) to find the W2 for r = a + 0.5, denoting by W2(a + 0.5).

(ii) Solve aT from aT L/A > W2(a + 0.5) and let aN = aT /m.

(iii) Following the rule below to make a decision on the estimate of r. If R < 0.75, the estimate of r is

0.5; if 0.75 < R < 1.25, the estimate of r is 1; · · ·, if a − 0.25 < R < a + 0.25, the estimate of r is a.

Otherwise, the estimate of r is greater than a.

If the probability of having copy number ratio greater than a is less that 0.01 and the aT is determined

based on Type I error α = 0.01, the aT will ensure all underlying tests have Type I and Type II errors

at most 0.01. This can be briefly explained as follows. The value of aT is determined by a, therefore, the
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EAR algorithm makes sure that P (R < r0 − 0.25 or R > r0 + 0.25|the true copy number ratio is r0) ≤ 0.01

for all r0 = 0, 1, · · · , a, i.e. the probability of wrongly identifying copy number given the true value of copy

number “≤ a” is less than 0.01. If the probability of having copy number ratio greater than a is less that

0.01, it will mean that the maximum probability of wrongly detecting a true copy number ratio with value

> a is less than 0.01.

Comparing to the process of carrying out hypothesis for each copy number individually, the advantage of

using the EAR algorithm to determine the estimate of r is that the process is simple and all the interested

tests can be processed simultaneously. It means that the tedious and time consuming data analysis process

can be avoided. Since the aT is used for testing copy number ratios up to r = a simultaneously, the depth

of underlying sequencing determined by the value of aT may be more than those required for the tests of

lower value copy number ratios. It means that following the AER algorithm to determine the depth of tested

sequencing data might lead to slightly over supplying data. To balance between simplicity and costs in data

analysis the algorithm provides a option.

4 Application

An application of the EAR algorithm is presented in Example 2. We use it to demonstrate that the algorithm

can benefit in providing a guideline on the level of the depth of sequencing data for copy number ratio analysis

and, consequently, benefit in reducing data analysis cost sometimes.

Example 2. A sequencing dataset of colon tumour is used in this example The data files, chom-1.tsv

to chom-Y.tsv, can be download from www.uow.edu.au/∼yanxia/bioinformatics /sequencing data/. Each

file has 6 columns with heading “chrom”, “start”, “end”, “sampleRead”, “refRead” and “ratio”. The values

under “Ratio” are the ratio (“sampleRead” ) to (“sampleRead” +“refRead”) rather than the observations

of copy number ratios. The total number of reads for tumour sample and reference sample are aT = 6460100

and aN = 59999826 respectively and the length of each Mark in the data is 3000bp.

In this example, we use the EAR algorithm to determine a∗
T and a∗

N . If a∗
T << aT and a∗

N << aN ,

we want to further check whether the sequencing data with depth (a∗
T , a∗

N ) enables to provide as much

information on copy number ratios as the sequencing data with depths (aT , aN ) does.

In this example we are interested to detect r = 0.5, 1, 1.5 and r ≥ 2 and require each test has Type I

error at most α = 0.01.

Firstly, a∗
T and a∗

N are determined in the following steps.
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Table 3: The values of W1 and W2 with m = 1.076686, dr0,1 = dr0,2 = 0.25 and 2[1 − Φ(|z0|)] = 0.01.
α = 0.01

r = 0.5 r = 1 r = 1.5 r = 2
W1 116.7310 283.1555 506.3727 787.3826
W2 59.93828 169.57016 335.99470 559.21192

r = 2.5 r = 3 r = 3.5 r = 4
W1 1123.1852 1516.7804 1967.1683 2474.3489
W2 839.22181 1176.02438 1569.61961 2020.00752

Step i Preset Type I error α = 0.01 and let m = aT /aN = 64601000/59999826 = 1.076686. For comparison

purpose, we require that a∗
T /a∗

N = m = 1.076686.

Step ii Let the range of copy number of ratios be 0.5 to 1.5.

Step iii Determine the length of genomic window L. In practice, L might be empirically determined. But

in this example, we use the colon tumour data to determine L. We apply R package DNAcopy to

the colon tumour data and identify segments of copy number ratios. We found that the lengths for

majority of segments are greater than L = 7 × 3000bp. Therefore, we choose L = 7 × 3000bp in this

study. For human genome, we use A = 2.2 × 109 (Chiang et al., 2008).

Step iv Use formulae (??) and (??) to calculate W1 and W2 for different values of r with Type I error α = 0.01.

The values of W1 and W2 are reported in Table 3. From Table 3, W ∗
2 = 559.21192 ≈ 560 is identified,

which is given by r = 2.

Step v Solve a∗
T for a∗

T L/A ≥ W ∗
2 and give a∗

T = 58666667. Therefore, a∗
N = a∗

T /m = 54488163. Both the

values of a∗
T and a∗

N are much less than aT and aN , respectively.

Secondly, we re-sample data with depth (a∗
T , a∗

N ) = (58666667, 54488163) from the original colon tumour

data, i.e. the data with (aT , aN ) = (64601000, 59999826).

Finally, we compare the copy number ratio data analysis given by the original data (with (aT , aN )) and

the subset data (with (a∗
T , a∗

N )). To save the time in evaluating information loss, as an example, we only

compare copy number ratio analysis for the data given by Chromosome 22.

We apply R package DNAcopy to both original data set and subset data. The segmental analysis reports

for both datasets are reported in the Appendix C, Tables 4 and 5. From the tables, the length of each

segment is calculated by num.mark ×3000 and the tumour-normal copy number ratio R on relevant segment

are listed under Column “seg.mean”.
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Then we applied the EAR algorithm to Column “seg.mean” in Tables 4 and 5, respectively and report

the estimates of copy number ratios for both datasets in Table 6.

Table 6 shows that the total number of mark positions where both original and subset data gave the

same estimate on copy number ratio is 11418, out of 11583. This means that both original and subset

datasets provide the same information on copy number ratio on 98.6% of the total mark positions. The total

information loss per make position, due to using subset data, is (11583 − 11418)/11583 = 0.0142 = 1.4%.

In the meanwhile, the depths of tumour sample and normal sample in the subset dataset are 10% less than

those in the original dataset. The total costs in data might be saved by 10% if data analysis is based on

subset data. This study shows that it will be possible to reduce the cost of data analysis if the depth of

testing sequencing data are determined by the EAR algorithm .
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Appendix

Appendix A: Proof of Equations ??

E(R|N ̸= 0) =
1

1 − e−λN

∞∑
n=1

∞∑
t=0

t/aT

n/aN
P (T = t)P (N = n)

=
1

1 − e−λN

∞∑
n=1

∞∑
t=0

m
t

n

λt
T

t!
e−λT

λn
N

n!
e−λN =

m

1 − e−λN
λT

∞∑
t=0

λt
T

t!
e−λT

∞∑
n=1

λn
N

nn!
e−λN

=
mλT

1 − e−λN

∞∑
n=1

λn
N

(n + 1)!
n + 1

n
e−λN =

r

1 − e−λN
(1 +

∞∑
n=1

λn
N

(n + 1)!
1
n

e−λN ).

Given the facts that limλN→∞ λk
Ne−λN = 0 for any constant k ≥ 0 and

∑∞
n=k+1

λn+1
N

(n+1)!
1
ne−λN ≤ 1/k for

k > 1, it can be shown that

lim
λN→∞

E(R|N ̸= 0) = lim
λN→∞

r

1 − e−λN
(1 +

∞∑
n=1

λn
N

(n + 1)!
1
n

e−λN ) = r.

Appendix B: The proof of Theorem ??

Under H0,

z =

√
aT L

A

R − r0√
aT

aN
R2 + r0

=

√
aT L

A

R − r0√
mR2 + r0

∼ N(0, 1)
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Therefore,

P (

√
aT L

A

R − r0√
mR2 + r0

< z0) = Φ(z0).

Given the alternative hypothesis H1 : r ̸= r0, H0 : r = r0 will be rejected at significance level 2(1 − Φ(|z0|))

if
√

aT L
A

R−r0√
mR2+r0

< −|z0| or
√

aT L
A

R−r0√
mR2+r0

> |z0|. In the following, we need to show that these two

conditions will be held respectively if corresponding condition (??) or (??) is held.

Since R−r0√
mR2+r0

is an increasing function of R, if (??) is held, then,

√
aT L

A

R − r0√
mR2 + r0

>

√
z2
0(m(r0 + dr0,1)2 + r0)

d2
r0,1

dr0,1√
m(r0 + dr0,1)2 + r0

= |z0|;

If (??) is held,√
aT L

A

R − r0√
mR2 + r0

<

√
z2
0(m(r0 − dr0,2)2 + r0)

d2
r0,2

−dr0,2√
m(r0 − dr0,2)2 + r0

= −|z0|,

as required.

Appendix C: R Functions 1. R function - typeIIerrorPU

# m=aT/aN

# LT=aT*L/A

# LN=aN*L/A

# r1 = \triangle r must be > 0

typeIIerrorPU= function(m, r0, r1, LT, LN, z0, n){

# n denotes the size of Monte Carlo

# simulation sample

# and 1-\Phi(z0) is the type I error.

set.seed(123)

U= r0*(1+sqrt(1-(1-z0^2/LN)

*(1-z0^2/(r0*LT))))/(1-z0^2/LN)

N=c()

T=c()

R=c()

count1=0

while (count1 <n){

a =rpois(1,LN)

14



if ( a>0) {

count1=count1+1

N[count1]=a

}

}

T=rpois(n, (r0+r1)*LT)

R=T/(N*m)

count=0

for(i in 1:n){

if(R[i]<= U)

count=count+1

}

q=count/n

q

}

2. R function - typeIIerrorPL

# m=aT/aN

# LT=aT*L/A

# LN=aN*L/A

# r2 = \triangle r must be < 0

typeIIerrorPL= function(m, r0, r2, LT, LN, z0, n){

set.seed(123)

L= r0*(1-sqrt(1-(1-z0^2/LN)

*(1-z0^2/(r0*LT))))/(1-z0^2/LN)

N=c()

T=c()

R=c()

count1=0

while (count1 <n){
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a =rpois(1,LN)

if ( a>0) {

count1=count1+1

N[count1]=a

}

}

T=rpois(n, (r0+r2)*LT)

R=T/(N*m)

count=0

for(i in 1:n){

if(R[i]>= L)

count=count+1

}

q=count/n

q

}

Appendix D: Analysis outputs

The DNAcopy data analysis for subset data and original data are reported in Tables 4 and 5. The final

data analysis for Example 2 is in Table 6.
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Table 4: The DNAcopy data analysis on subset data of Chromosome 22
ID chrom loc.start loc.end num.mark seg.mean
1 22 1 124 124 0.7496
2 22 125 343 219 1.0094
3 22 344 354 11 0.1581
4 22 355 836 482 1.0589
5 22 837 840 4 2.6716
6 22 841 1391 551 1.0494
7 22 1392 1404 12 0.6111
8 22 1405 1406 2 20.0000
9 22 1407 1761 355 1.1443
10 22 1762 1765 4 15.1396
11 22 1766 1829 64 0.9762
12 22 1830 1831 2 3.0685
13 22 1832 1837 6 1.5122
14 22 1838 2626 789 1.0324
15 22 2627 2629 3 0.0000
16 22 2630 3002 373 1.0332
17 22 3003 3009 7 0.2120
18 22 3010 3011 2 2.7918
19 22 3012 3934 923 1.0072
20 22 3935 3937 3 0.0000
21 22 3938 5541 1604 1.0582
22 22 5542 5543 2 20.0000
23 22 5544 11583 6040 1.0372
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Table 5: The DNAcopy data analysis on original data of Chromosome 22
ID chrom loc.start loc.end num.mark seg.mean
1 22 1 145 145 0.7631
2 22 146 254 109 1.0548
3 22 255 266 12 0.3132
4 22 267 320 54 1.0737
5 22 321 325 5 0.2941
6 22 326 343 18 1.0631
7 22 344 354 11 0.1754
8 22 355 1391 1037 1.0508
9 22 1392 1404 13 0.6685
10 22 1405 1406 2 20.0000
11 22 1407 1438 32 1.2014
12 22 1439 1441 3 13.3829
13 22 1442 1748 307 1.0010
14 22 1749 1751 3 3.2737
15 22 1752 1762 11 1.2997
16 22 1763 1765 3 13.5191
17 22 1766 1829 64 0.9262
18 22 1830 1832 3 3.7151
19 22 1833 1837 5 1.6766
20 22 1838 2626 789 1.0267
21 22 2627 2629 3 0.0000
22 22 2630 3002 373 1.0254
23 22 3003 3009 7 0.2752
24 22 3010 3011 2 2.4767
25 22 3012 5541 2530 1.0332
26 22 5542 5543 2 20.0000
27 22 5544 11583 6040 1.0344
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Table 6: The final data analysis for Example 2, where Rold and Rnew are the observations of tumour-normal
copy-number ratios obtained from the original data and subset data respectively; r̂old and r̂new are the
estimations of the true copy number rations based on the original data and subset data respectively.

start(bp) end (bp) Rold Rnew r̂old r̂new num. marks
matched

3000 37500 0.7631 0.7496 1 0.5 0
375000 438000 0.7631 1.0094 1 1 21
438000 765000 1.0548 1.0094 1 1 109
765000 801000 0.3132 1.0094 0.5 1 0
801000 963000 1.0737 1.0094 1 1 54
963000 978000 0.2941 1.0094 0.5 1 0
978000 1032000 1.0631 1.0094 1 1 18

1032000 1065000 0.1754 0.1581 0.5 0.5 11
1065000 2511000 1.0508 1.0589 1 1 482
2511000 2523000 1.0508 2.6716 1 na 0
2523000 4176000 1.0508 1.0494 1 1 551
4176000 4215000 0.6685 0.6111 0.5 0.5 13
4215000 4221000 20 20 na na 2
4221000 4317000 1.2014 1.1443 1 1 32
4317000 4326000 13.389 1.1443 na 1 0
4326000 5247000 1.001 1.1443 1 1 307
5247000 5256000 3.2732 1.1443 na 1 0
5256000 5286000 1.2997 1.1443 1.5 1 0
5286000 5289000 1.2997 15.1396 1.5 na 0
5289000 5298000 13.5191 15.1396 na na 3
5298000 5490000 0.9262 0.9762 1 1 64
5490000 5496000 3.7151 3.0685 na na 2
5496000 5499000 3.7151 1.5122 na na 1
5499000 5514000 1.6766 1.5122 na na 5
5514000 7881000 1.0267 1.0324 1 1 789
7881000 7890000 0 0 0.5 0.5 3
7890000 9009000 1.0254 1.0332 1 1 373
9009000 9030000 0.2752 0.212 0.5 0.5 7
9030000 9036000 2.4767 2.7918 na na 2
9036000 11805000 1.0332 1.0072 1 1 923

11805000 11814000 1.0332 0 1 0.5 0
11814000 16626000 1.0332 1.0582 1 1 1604
16626000 16632000 20 20 na na 2
16632000 34752000 1.0344 1.0372 1 1 6040

Notation “na” means that there is no sufficient samples from normal tissue and tumour tissue in relevant genomic window.

The estimation of copy number ratio given by the EAR algorithm for the genomic window is not reliable.
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