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_____________________________________________________________________ 

Abstract 

 

A number of nonparametric tests for the Latin square are examined. The rank 

transform method has good test sizes and powers for the 5 × 5 Latin square for various 

parameter values and error distributions. Alignment procedures are also examined and 

their use illustrated using data for replicated Latin squares. 

_____________________________________________________________________ 

 

Keywords: Aligned data, Kruskal-Wallis statistic, Rank transform statistic, 

replicated Latin square. 

 

 

1. Introduction 

 

Nonparametric tests for some of the simpler experimental designs are well 

known. Three of the best known are the Kruskal-Wallis test for the one-way layout, 

the Friedman test for randomised blocks and the Durbin test for the balanced 

incomplete block design. The test statistics for these tests are commonly given in 

textbooks such as Higgins (2004) or in software packages. For more complicated 

experimental layouts there are no such well known tests, but general nonparametric 

approaches such as (i) the rank transform and (ii) ranking after alignment methods 

have been suggested. Here we compare (i) and (ii) when applied to Latin square 

experimental designs. 

A Latin square experimental design is often used where there are two 

blocking factors. As is common these factors will be called rows and columns. If 

there are t products to compare, each product occurs once in each row and column. 

The t × t Latin square is an incomplete three way factorial design with one 

observation per cell. Only t
2
 cells are needed to evaluate the effect of products, rows 

and columns, whereas the three way factorial with one observation per cell needs t
3
 

cells. We now give an example. 
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Burns Example. 

Box, Hunter and Hunter (2005, p.170) consider the following.  
Six burn treatments, A, B, C, D, E and F, were tested on six subjects 

(volunteers). Each subject has six sites on which a burn could be applied for testing 

(each arm with two below the elbow and one above). A standard burn was 

administered at each site and the six treatments were arranged so that each treatment 

occurred once with every subject once in every position. After treatment each burn 

was covered by clean gauze; treatment C was a control with clean gauze but without 

treatment. The data are the number of hours for a clearly defined degree of partial 

healing to occur. 

 

Table 1 gives the data while Figure 1 shows the value 100 in the fifth row 

and third column is a possible outlier. Hence it may be more appropriate to use a 

nonparametric analysis than a parametric analysis. Table 2 gives some results in 

which F is the usual ANOVA (analysis of variance) statistic and the other statistics 

are defined in section 2 below.  

 

Table 1. Burn data. 

              Volunteers 
 

Position on 

arm 

1 2 3 4 5 6 

     I A B C D E F 

 32 40 72 43 35 50 

     II B A F E D C 

 29 37 59 53 32 53 

     III C D A B F E 

 40 56 53 48 37 43 

     IV D F E A C B 

 29 59 67 56 38 42 

     V E C B F A D 

 28 50 100 46 29 56 

     VI F E D C B A 

 37 42 67 50 33 48 

 

Four possible nonparametric statistics for the Latin square are the 

 Kruskal-Wallis (KW) statistic ignoring row and column effects, 

 Kruskal-Wallis (AKW) statistic that adjusts for row and column effects,  

 rank transform (RTF) statistic and 

 aligned data rank transform F statistic (ARTF) which adjusts for row and 

column effects. 

For each of the tests based on these statistics p-values can be found using the 

asymptotic 2
 or F distributions or Monte Carlo simulation. 

Another nonparametric approach we do not examine here is the use of 

permutation testing. Permutation tests are not often available in the commonly 

available software packages unless additional programming is done. The RTF and 

ARTF tests defined in section 2 and which we recommend subsequently can be 
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carried out with no additional programming for the RTF and just a little extra 

programming for the ARTF. In Table 2 and later the Monte Carlo p-values we give 

are based on random permutations of the ranks data. 

The ARTF test is included in the comparisons of section 3 because its use is 

suggested by, among others, Higgins (2004, p.310) when there are interaction terms 

in the statistical model. Section 5 looks at replicated Latin squares in which an 

interaction term is usually part of the model. The KW and AKW tests are included 

in section 3, even though extra programming is needed to obtain reasonable p-

values, as they closely related to a general nonparametric approach introduced in 

Rayner and Best (2011).  

 

 
 

Table 2. Analysis of Burn data. 

Statistic Value Asymptotic p-value Monte Carlo p-value 

KW 1.989 0.851 0.869 

AKW 5.375 0.372 0.385 

RTF 1.573 0.213 0.214 

ARFT 0.766 0.585 0.579 

F 0.585 0.711 0.728 
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In Table 2 we note the good agreement between the asymptotic and Monte 

Carlo p-values. This will not always be the case for the KW and AKW tests. The 

Monte Carlo p-value for the ANOVA F test in Table 2 is based on a permutation 

test. Notice the wide spread of p-values. In section 4 we give an example where 

some p-values are below 0.05 and others above. In section 3 we give a small size 

and power study. 

 

 

2. Definitions 

 

Following, for example, Kuehl (2000, p.281), a model for Latin square data 

is 

 

Yij =  + k + i + j + Eij 

 

for product k in row i and column j, where if there are t treatments or products to 

compare, i, j, k = 1, ..., t. Note that if any two of treatments, rows and columns are 

specified then the design specifies the other product or block. Hence it is equally 

valid to use any of the notations Yij, Yijk and Yij(k) (and similarly for Eij). The Eij are 

mutually independent N(0, 2
) random variables,  is an overall mean effect, and 

k, i and j are parameters that sum to zero, representing fixed treatment (product), 

row (block) and column (block) effects respectively. A conventional parametric test 

for differences in product effects is based on an ANOVA F test that is invalid if, for 

example, the Eij normality assumption does not hold or there are outliers as was the 

case with the burns example in the Introduction. 

To calculate the KW statistic the data yij are ranked from smallest to largest 

giving ranks rij say, where tied ranks are given an average rank. Put  

 rij(k) = rij when product k occupies the (i, j)th cell and zero otherwise,  

 kR  = rij(k ) / t
j=1

t

å
i=1

t

å  and  

 V = rij(k )

2 / (t2
j=1

t

å
i=1

t

å -1)  – t(t
2
 + 1)

2
/{4(t – 1)}. 

The statistic KW is given by  

 

KW = 



t

k

k VtRt
1

2 /}2/)1({ . 

 

To calculate the RTF statistic the rij are subjected to the usual parametric ANOVA 

and RTF is taken to be the ANOVA F statistic for between product differences. 

To calculate the ARTF statistic first align the yij to obtain  

 

yij
*
 = .... yyyy jiij   in which 

.iy  =  

t

j ij ty
1

/ , jy.  =  

t

i ij ty
1

/  and ..y  =   

t

i

t

j ij ty
1 1

/ . 
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The yij
*
 are ranked, giving rij

*
. The usual parametric ANOVA is carried out on the 

rij
*
 and ARTF is taken to be this ANOVA F statistic for between product 

differences. This alignment can useful if the model is, in fact, linear. If a different 

model is suspected, a different alignment may be more beneficial. 

To calculate the adjusted Kruskal-Wallis test statistic AKW use the rij
*
 rather 

than the rij in the formula for KW. 

Section 3 considers the 5 × 5 Latin square. 

 

 

3. Small Size and Power Study 

 

The size study displayed in Table 3 compares actual and nominal test sizes. 

Generally asymptotic critical values are used; 
2

95.0,4  = 9.4877 for the KW tests and 

F4,12,0.95 = 3.2592 for the F tests. These critical values are used, as, we suggest, this 

is what practitioners generally use. The RTF test gives sizes fractionally bigger than 

the nominal value while the ARFT test also has sizes a little greater than nominal. 

The 2
 approximation to the KW critical value gives sizes a little on the small side 

when there are no row or column effects. However when there are row and column 

effects the actual size of the KW test is much smaller than the nominal size, 

particularly for the symmetric short tailed U(0, 1) alternative. Thus, as expected, the 

KW test suffers because the row and column effects are not accounted for. The 

ANOVA F test has small actual sizes for the exponential and t2 alternatives and 

slightly large actual size for the U(0, 1) alternative. As expected it is less 

distribution free than the RTF or ARFT tests. The 2

4  approximation to the AKW 

critical values is poor and so to apply this test Monte Carlo methods are needed. 

Some may consider this a disadvantage for the use of the AKW test.  

In Table 3 parts (a), (b) and (c) the AKW (1) critical values use the 2

4  

critical value while those for AKW (2) use 12.5 as the critical value. This value was 

determined  by Monte Carlo methods because the 2

4  critical value was inadequate. 

For other sample sizes and dimensions of the Latin square Monte Carlo would again 

be needed to determine an adequate critical value. Clearly the AKW (2) sizes here 

are better. 

Table 4 giving powers for the alternatives shown is presented below. There 

are three treatment or product alternatives given in parts (i), (ii) and (iii) of Table 4 

and there are three different combinations of row and column effects given in parts 

(a), (b) and (c) of Table 4. The AKW values in Table 3 (d) and Table 4 use the 12.5 

critical value; for the other statistics the 2

4  or F4,12 critical values are used. 

Table 4 shows, as expected, that the KW test has poor power compared to 

the other tests when there are row and column effects: see (i) (b), (ii) (b) and (iii) 

(b). The F, ARFT and AKW tests have less power than the RTF and KW tests when 

there is an outlier: see (i) (c), (ii) (c) and (iii) (c). This is particularly the case for the 

U(0, 1) errors which is where the test sizes for the F, ARFT and AKW tests are less 

than they should be; see Table 3 (d). Perhaps an alignment procedure based on 
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medians rather than means would help here. Table 4 (ii) (c) shows a distinct divide. 

Overall the RTF test does well. 

 

 

Table 3. Test sizes for a sample size of 25 and a nominal significance level of 5%, 

based on 100,000 Monte Carlo simulations for various parameter configurations. 

(a) k = (0, 0, 0, 0, 0), i = j = (0.2, – 0.2, 0, 0.2, – 0.2) 

Error Distribution RTF KW AKW (1) AKW (2) F ARFT 

Normal 0.052 0.027 0.160 0.050 0.050 0.056 

Exponential 0.052 0.025 0.139 0.038 0.042 0.051 

U(0, 1) 0.053 0.002 0.162 0.051 0.055 0.051 

t2 0.053 0.031 0.135 0.035 0.033 0.050 

(b) k = (0, 0, 0, 0, 0), i = (0.2, 0, 0, – 0.2, 0), j = (0, – 0.2, 0, 0, 0.2) 

Error Distribution RTF KW AKW (1) AKW (2) F ARFT 

Normal 0.053 0.031 0.161 0.050 0.050 0.055 

Exponential 0.052 0.026 0.140 0.039 0.041 0.051 

U(0, 1) 0.053 0.009 0.162 0.053 0.055 0.058 

t2 0.053 0.034 0.135 0.036 0.033 0.052 

(c) k = i = j = (0, 0, 0, 0, 0) 

Error Distribution RTF KW AKW (1) AKW (2) F ARFT 

Normal 0.053 0.038 0.161 0.050 0.050 0.057 

Exponential 0.053 0.040 0.139 0.039 0.041 0.049 

U(0, 1) 0.052 0.036 0.163 0.052 0.053 0.056 

t2 0.052 0.036 0.133 0.036 0.033 0.050 

(d) k = i = j = (0, 0, 0, 0, 0) with outlier of 5.0 at cell (5, 5) 

Error Distribution RTF KW AKW F ARFT 

Normal 0.053 0.036 0.033 0.031 0.051 

Exponential 0.053 0.036 0.023 0.030 0.045 

U(0, 1) 0.052 0.034 0.004 0.000 0.037 

t2 0.053 0.035 0.033 0.033 0.050 

 

 

It is interesting to note in parts (a) and (b) of Table 4 that even when there 

are normal errors the nonparametric tests RTF, ARTF and AKW do as well as the 

ANOVA F test. In Table 4 (iii) the powers for the U(0, 1) alternative when k = 

(0.5, – 0.5, 0, 0.5, – 0.5) were all 1.0. If this effect is halved to k = (0.25, – 0.25, 0, 

0.25, – 0.25), a more interesting comparison can be made. 

The non-normal error distributions used in Table 4 comprised a skewed, a 

symmetric short-tailed and a symmetric long-tailed distribution. Other choices from 

these three categories could be made or entirely different error distributions such as 

bimodal distributions could have been considered. We consider those used as good 

representatives of their categories. The choice of alternatives and row/column 

effects is also somewhat arbitrary; for our choices all powers are not all zero or all 

one. Similar choices for error distributions and alternatives have been made before. 

See for example Kepner and Robinson (1984). 
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Table 4. Test powers for a sample size of 25 and a nominal significance level of 5%, 

based on 100,000 Monte Carlo simulations for various parameter configurations. 

(i) (a) k = (– 0.5, – 0.25, 0, 0.25, 0.5), i = j = (0, 0, 0, 0, 0) 

Error Distribution RTF KW AKW F ARFT 

Normal 0.19 0.16 0.17 0.19 0.19 

Exponential 0.34 0.31 0.22 0.21 0.26 

U(0, 1) 0.99 0.99 0.99 0.99 0.99 

t2 0.13 0.09 0.07 0.07 0.10 

(i) (b) k = (– 0.5, – 0.25, 0, 0.25, 0.5), i = j = (0.5, –0.5, 0, 0.5, – 0.5) 

Error Distribution RTF KW AKW F ARFT 

Normal 0.18 0.05 0.19 0.19 0.19 

Exponential 0.26 0.07 0.24 0.24 0.25 

U(0, 1) 0.94 0.05 0.99 0.99 0.99 

t2 0.10 0.06 0.06 0.06 0.09 

(i) (c) k = (– 0.5, – 0.25, 0, 0.25, 0.5), i = j = (0, 0, 0, 0, 0) outlier of 5.0 at cell (5, 5) 

Error Distribution RTF KW AKW F ARFT 

Normal 0.22 0.19 0.16 0.13 0.20 

Exponential 0.37 0.35 0.17 0.13 0.24 

U(0, 1) 0.99 0.99 0.44 0.73 0.82 

t2 0.14 0.11 0.08 0.07 0.10 

(ii)  (a) k = (0.25, 0, – 0.5, 0, 0.25), i = j = (0, 0, 0, 0, 0) 

Error Distribution RTF KW AKW F ARFT 

Normal 0.12 0.10 0.12 0.12 0.12 

Exponential 0.23 0.21 0.15 0.14 0.17 

U(0, 1) 0.85 0.85 0.82 0.90 0.85 

t2 0.09 0.07 0.06 0.05 0.08 

(ii) (b) k = (0.25, 0, – 0.5, 0, 0.25), i = j = (0.5, –0.5, 0, 0.5, – 0.5) 

Error Distribution RTF KW AKW F ARFT 

Normal 0.14 0.03 0.12 0.14 0.13 

Exponential 0.18 0.02 0.14 0.14 0.17 

U(0, 1) 0.82 0.00 0.82 0.90 0.85 

t2 0.09 0.03 0.06 0.05 0.08 

(ii) (c) k = (0.25, 0, – 0.5, 0, 0.25), i = j = (0, 0, 0, 0, 0) outlier of 5.0 at cell (5, 5) 

Error Distribution RTF KW AKW F ARFT 

Normal 0.12 0.09 0.07 0.06 0.09 

Exponential 0.21 0.19 0.06 0.05 0.10 

U(0, 1) 0.80 0.81 0.02 0.00 0.10 

t2 0.09 0.06 0.05 0.05 0.07 

(iii)  (a) k = (0.5, – 0.5, 0, 0.5, – 0.5), i = j = (0, 0, 0, 0, 0) 

Error Distribution RTF KW AKW F ARFT 

Normal 0.29 0.26 0.28 0.28 0.30 

Exponential 0.48 0.47 0.36 0.33 0.40 

U(0, 1)* 0.68 0.67 0.71 0.71 0.73 

t2 0.17 0.14 0.10 0.09 0.13 
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(iii) (b) k = (0.5, – 0.5, 0, 0.5, – 0.5), i = j = (0.5, – 0.5, 0, 0.5, – 0.5) 

Error Distribution RTF KW AKW F ARFT 

Normal 0.27 0.09 0.28 0.28 0.28 

Exponential 0.37 0.11 0.36 0.32 0.38 

U(0, 1)* 0.39 0.00 0.72 0.72 0.73 

t2 0.15 0.07 0.10 0.09 0.13 

(iii) (c) k = (0.5, – 0.5, 0, 0.5, – 0.5), i = j = (0, 0, 0, 0, 0) outlier of 5.0 at cell (5, 5) 

Error Distribution RTF KW AKW F ARFT 

Normal 0.35 0.32 0.28 0.25 0.35 

Exponential 0.54 0.53 0.32 0.25 0.42 

U(0, 1)* 0.73 0.73 0.14 0.01 0.56 

t2 0.21 0.17 0.12 0.12 0.17 

*k = (0.25, – 0.25, 0, 0.25, – 0.25) for the U(0, 1) alternative; see text. 

 

 

4. Traffic Example 

 

This example is chosen to highlight how a different choice of statistical 

method can result in quite different p-values. Kuehl (2000, p.301) considers the 

following scenario. 

 

Traffic Example. 

 A traffic engineer conducted a study to compare the total unused red light 

time for five different traffic light signal sequences. The experiment was conducted 

with a Latin square design in which blocking factors were (1) five intersections and 

(2) five time of day periods. In Table 5 the five signal sequence treatments are 

shown in parentheses as A, B, C, D, E and the numerical values are the unused red 

light times in minutes. 

 

 

Table 5. Unused red light time in minutes. 

   Time Period   

Intersection 1 2 3 4 5 

1 15.2 (A) 33.8 (B) 13.5 (C) 27.4 (D) 29.1 (E) 

2 16.5 (B) 26.5 (C) 19.2 (D) 25.8 (E) 22.7 (A) 

3 12.1 (C) 31.4 (D) 17.0 (E) 31.5 (A) 30.2 (B) 

4 10.7 (D) 34.2 (E) 19.5 (A) 27.2 (B) 21.6 (C) 

5 14.6 (E) 31.7 (A) 16.7 (B) 26.3 (C) 23.8 (D) 

 

A conventional ANOVA F test results in a p-value of 0.05 right on the 

border of the commonly used significance level. However Figure 2 indicates the 

value 19.2 at intersection 2 and time period 3 might be an outlier and so this p-value 

is possibly in error. The RTF test results in a p-value of 0.03, the ARFT 0.07 and the 

KW 0.80. If, as in section 3, we have decided to use the RTF test, then we would 

decide there were significant differences. Use of the ARFT and KW tests would 

suggest no sequence differences. 
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As before, the distribution of AKW is not always well approximated by 2
. 

However if we are prepared to calculate a Monte Carlo p-value, here we find 0.01 

for the AKW test. In this case the AKW test is most sensitive of the tests 

considered. 

 

 

5. Replicating Latin Squares 

 

For Latin squares of size 3 × 3 or 4 × 4, the degrees of freedom for the error 

term in the ANOVA are unacceptably small and so such Latin squares are often 

replicated. A model for replicated Latin squares is 

 

Yijm(k) =  + k + i:m + j:m + m + ()km + Eijm(k) 
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in which  and k were defined above, Yijm(k) indicates product k is in cell (i, j) of 

the mth Latin square, Eijm(k) is the corresponding error, m is an effect due to the mth 

Latin square, and ()km is the effect of the interaction between the kth product and 

the mth Latin square. The notation i:m and j:m denotes row and column effects 

defined within the mth Latin square. 

 

Table 6. Tenderness data. 

 Square 1 Square 2 
 

Columns 1 2 3 4 5 6 7 8 

Rows         

1 D: 7 A: 7 C: 7 B: 7 A: 6 D: 7 C: 8 B: 5 

2 B: 5 C: 6 A: 5 D: 7 B: 3 A: 4 D: 5 C: 4 

3 A: 5 B: 7 D: 7 C: 6 D: 7 C: 6 B: 5 A: 6 

4 C: 8 D: 8 B: 6 A: 5 C: 5 B: 6 A: 3 D: 6 

 

Gacula et al. (2009, p.133) give the tenderness scores for pork loins 

tenderized by four different methods A, B, C and D. There are two Latin squares 

involved. The data are given in Table 6. Four animals make up the columns in each 

square and the two left loins and two right loins make up the rows. 
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As the data consists of the integers 3, 4, 5, 6, 7, 8, and as Figure 3 shows 

three possible outliers when the ANOVA residuals are plotted against the ANOVA 

fitted values, ŷijm(k )
 say, we might consider a nonparametric analysis more 

appropriate than the usual parametric ANOVA analysis. We might also use a 

nonparametric analysis if the data were originally ordered categories to which 

arbitrary scores were given. In any case ranking seems sensible here. 

If we calculate the ARTF statistic a value of 5.19 is obtained compared to the 

ANOVA F = 3.96; the corresponding p-values are 0.036 and 0.016 respectively. We 

use the ARTF test as there is an interaction term in the model Yijm(k) above. It 

appears the ARTF test is a little more sensitive than the ANOVA F test when the F 

approximation is used. To calculate the ARTF test statistic we use the aligned 

values yijm(k )

*
 rather than the yijm , the raw data, where  

 
*

)(kijmy  = )(kijmy  – ̂  – mi:̂  – mi:̂  – m̂  – km)ˆ(   

 

in which 

 

̂  = ...(.)y , mi:̂  = (.)..(.). mmi yy  , mj:̂  = (.)..(.). mjm yy  ,  

m̂  = (.)..my , km)ˆ(   = ...(.)(.)..)...()(.. yyyy mkkm  . 

 

In future work it would be interesting to check whether or not the F 

distribution approximation for the ARTF statistic works as well as it did in the 

single square case. If not, Monte Carlo methods will be needed to get p-values for 

the between products effect. This is less convenient than using the F distribution. A 

check will also need to be made on whether or not the F approximation to the 

distribution of the ARTF statistic results in lower power when there are outliers as 

was indicated in Table 4 for the single Latin square. For the present data set the 

Monte Carlo p-value for the ARTF statistic is 0.057 as opposed to 0.016 obtained 

using an F3,12 distribution; that is, at the traditional 0.05 level the F test is significant 

and the Monte Carlo test is not. Perhaps the difference in p-values is due to the 

outliers, as we have just discussed. 

 

 

6. Conclusion  

 

The rank transform method has good test sizes and powers for the 5 × 5 

Latin square for the parameter values and error distributions employed in section 3. 

Satisfactory p-values can be obtained using the F distribution. As expected the 

Kruskal-Wallis test has poor power unless alignment is used but Monte Carlo 

methods are needed to obtain satisfactory p-values. Even when there are normal 

errors the rank transform method appears to have good power. Perhaps taking ranks 

avoids ‘noise’ in the raw data and helps find real differences in the products being 

compared. We have not looked at the performance of a permutation test here but 
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perhaps like the ANOVA F test such a test might be influenced by ‘noise’ in the raw 

data. 

An example of replicated Latin squares is given where alignment is used 

prior to application of the rank transform. The alignment is meant to adjust the rank 

transform when there is interaction present. 
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