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Regression Analysis under Probabilistic Multi-Linkage 

 
Gunky Kim and Raymond Chambers 

Centre for Statistical and Survey Methodology, 
University of Wollongong, NSW, 2522, Australia 

 
Abstract 

Linkage errors can occur when probability-based methods are used to link records from two 
distinct data sets corresponding to the same target population.  Current approaches to 
modifying standard methods of regression analysis to allow for these errors only deal with the 
case of two linked data sets and assume that the linkage process is complete, i.e. all records on 
the two data sets are linked. This paper extends these ideas to accommodate the situation 
when more than two data sets are probabilistically linked and the linkage is incomplete. 

 
1. Introduction 

Data linkage is now an important research tool in many areas of scientific research. For 
example Wilkins, Shields & Rothermann (2009) describe an analysis that models the 
relationship between an individual's probability of hospitalization and length of time spent 
subsequently in hospital and his/her smoking status using a linked data set obtained by 
merging data collected in the Canadian Community Health Survey and data held in Statistics 
Canada's Hospital Person-Oriented Information database. In Australia, Brook, Rosman & 
Holman (2008) claim that linked health record data sets produced by the Western Australia 
Data Linkage Unit over the period 1995 - 2003 were used in 708 research outputs, comprising 
journal articles, reports, presentations, conference proceedings and theses. Thus, Moorin & 
Holman (2008) use merged data sets from the Western Australia mortality register and the 
hospital morbidity data system to explore patterns of health expenditure for in-patient care in 
the last 3 years of life. Similarly, Zhao, Connors, Wright & Guthridge (2008) use data 
obtained by linking a primary care chronic disease register with hospital inpatient databases to 
determine the 2005 prevalence rates of chronic diseases for the remote indigenous population 
of the Northern Territory of Australia. In all of these linkage applications, different data sets 
relating to the same individuals at different points in time are linked to provide a longitudinal 
data record for each individual, thus permitting longitudinal analysis. 
However, the use of probabilistic linkage raises issues about potential biases induced by 
linkage errors. In particular, there is always the possibility that linkage errors in the merged 
data could lead to a longitudinal record ostensibly relating to a single individual being 
actually made up of a composite of data items from different individuals. Furthermore, such 
errors are not confined to probabilistic linkage, since even if a unique identifier is thought to 
exist, and is used in the linkage process, there can still be linkage errors in the merged data 
sets. For example, Adams et al. (1997) found that use of the Social Security Number in the 
US is not adequate for complete linkage. Consequently, they use probabilistic linkage in their 
study. A similar situation is reported in Rotermann (2009).  

The Census Data Enhancement project of the Australian Bureau of Statistics (ABS) aims to 
link data from the same individuals over a number of censuses, in order to create a tool for 
research into the longitudinal dynamics of the Australian population. Initial development of 
this project included a test of the quality of the proposed linkage process, based on records 
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from a sample data set being linked with those on the census database. The results of this test 
are reported in Bishop & Khoo (2007), who state that 87 per cent of the test records were 
correctly linked when names and address were used in the matching process. These figures 
are representative of those obtained in similar Australian studies. For example, Holman, Bass, 
Rouse & Hobbs (1998) show that a linkage procedure carried out in Western Australia in 
1996-97 provided 87 per cent correct linkage, while linked hospital morbidity data in Victoria 
in 1993-1994 showed a 78-86 per cent correct match rate. Clearly, these correct match rates 
will be lower when names and addresses are not used in the matching process. This last 
scenario is the one of greatest interest as far as the ABS Census Data Enhancement Project is 
concerned, since confidentiality restrictions mean that the actual linkage will be carried out 
without name and address information. An obvious consequence of this increased error will 
be an increase in the bias and a resulting loss of efficiency when the linked Census records are 
subject to longitudinal modelling. 

Neter, Maynes & Ramanathan (1965) demonstrate that even a small amount of mismatching 
can lead to significant response errors, and Scheuren & Winkler (1993, 1997), Lahiri & 
Larsen (2005) and Chambers (2009) investigate methods for eliminating the resulting bias in 
the context of regression analysis based on data from two probabilistically linked data sets. 
However, these approaches cannot be used when the linked data are the result of 
probabilistically linking more than two data sets. In this paper we extend the results in 
Chambers (2009) and Kim & Chambers (2009) to the situation where there are more than two 
linked data sets, including the practically important case where at least one of these data sets 
is a sample from the underlying population and where linkage is incomplete. To fix things, we 
consider the case of three linked data sources. It is straightforward to extend our results to 
where more than three data sets are linked. 
1.1 Technical background and assumptions 

For notational simplicity we denote conditioning by a subscript in what follows, so the 
conditional expectation E(Y |X)  is written EX (Y)  and so on. Suppose that we are interested 
in fitting a regression model of the form EX (Y) = f (X;!),  where f  is a known function, but 
the parameter !  is to be estimated. Here Y  denotes the vector of population values of the 
response variable of interest, and X  denotes the corresponding matrix of population values 
for a set of explanatory variables, which are themselves drawn from multiple sources. In 
particular, we focus on the situation where the actual values of Y  and X  are unknown, but 
probabilistic linkage is used to reconstruct their values using the data in two or more 
population registers. Throughout this paper we shall assume that the regression model of 
interest is the linear model 

	    Y = X1!1 +X2!2 + ! = X! + !  

where Y , X1  and X2  denote data obtained from three separate population registers. The 
model errors are assumed to have zero mean and are uncorrelated given X , with 

 VarX !( ) = ! 2IN  where IN  is the identity matrix of order N, the population size. It is assumed 
that no unique identifier exists, and so these three registers cannot be perfectly linked. Instead 
the data available to fit this regression model is generated via a probabilistic linkage process, 
so linkage errors are possible. These mismatches will lead to biased estimation of ! . The aim 
of this paper is to describe a methodology that can be used to eliminate this bias. 
Without loss of generality, we take one of the three registers to be the 'benchmark' register, 
i.e. all linkage errors are defined relative to it, in the sense that this register is separately 
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linked to each of the other two registers. There are then four different linkage error scenarios 
that can then be defined: 

• Case 1: X1 is the benchmark register and the only linkage errors are those arising from 
the linkage of X1 and Y . That is, X1  and X2  are perfectly linked. 

• Case 2: X1 is the benchmark register and the only linkage errors are those arising from 
the linkage of X1 and X2 . That is, X1  and Y  are perfectly linked. 

• Case 3: Y is the benchmark register and there are linkage errors between Y and X1  
and between Y  and X2 . 

• Case 4: X1 is the benchmark register and there are linkage errors between Y and X1  
and between X1  and X2 . 

Since in Case 1 there are no linkage errors between X1  and X2 , it is equivalent to the 
situation considered in Chambers (2009) and Kim & Chambers (2009). In this article we 
focus on Case 4. See Kim & Chambers (2010) for the corresponding development for Cases 2 
and 3. 

In common with the development in Chambers (2009) and Kim and Chambers (2009), we 
make the following assumptions in this paper: 
1. All registers have complete coverage of the target population and are of size N. In 

particular, there is a unique record in each of Y , X1  and X2  that corresponds to the 
same population unit. 

2. Y , X1  and X2  can each be partitioned into Q 'match blocks' or 'm-blocks' such that 
linkage errors occur only within them. That is, records in distinct m-blocks can never 
be linked. We denote quantities associated with the qth  m-block by a subscript of q. 
Thus, the Mq  records making up the qth  m-block within X1  are denoted X1q  and so 
on. 

3. Not all records in X1  can be linked. However, this 'non-linkage' is at random, so the 
same regression model holds for the linked and non-linked records. Note that this is a 
strong assumption. See Kim and Chambers (2009). 

4. Linkage errors within a m-block are independent of any regression errors associated 
with observations from that m-block. 

5. The benchmark register X1  does not need to be fully observed. If only a sample X1s  
of population units on this register are observed, then the analyst has access to 
appropriate sample weights ws  that can be used to define consistent estimators of 
population quantities given the data for these sampled units. 

 

2. Methodological development 
Fellegi and Sunter (1969) describe an approach to optimal probability-based linkage that is 
based on maximising the probability of a declared link being correct. Unfortunately, most 
practical implementations of their approach require one to trade off the number of links made 
against their accuracy. As a consequence, any implementation of probabilistic linkage will 
result in unmade linkages or non-linkages as well as linkage errors where linkages are 
actually made. In what follows, we show that the bias caused by linkage errors can be 
corrected if we know the probability of correct linkage. In particular, we will develop efficient 
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estimators for regression coefficients in the presence of linkage error, given that more than 
two data sources have been independently linked to form the data set used in the analysis. 
Although our primary interest in this context is where a sample from one register has been 
independently linked to two other registers, we will start by considering the case where three 
registers are completely linked. 

2.1 Complete register to registers linkage 
In this sub-section we assume that all the linked data sets are registers and linkage is 
complete, i.e. linkage is one to one and onto between them. Following Chambers (2009) we 
use a superscript of * to denote quantities defined using the linked data. In particular, we 
model the relationship between the true, but unobserved, values of Y  and X2  and the 
observed linked values Y!  and X2

!  within m-block q by writing 

	   Yq
* = AqYq  and X2q

* = BqX2q  

where Aq  and Bq   are unobserved random permutation matrices that characterise the 
outcomes of the two independent linkage processes in m-block q. Note that one then has 

 Xq = (1q ,X1q ,X2q ) = (1q ,X1q ,Bq
TX2q

* )  (1) 

where 1q  is the unit vector of size Mq . Under assumption 4 above, the distributions of Aq  
and Bq  are independent of the distributions of the values making up Yq  and X2q . Hence 

	   E
X*
(X2q ) = EX* (Bq

T )X2q
* = TBqX2q

*  . 

A convenient model for the distributions of Aq  and Bq  is the exchangeable linkage errors 
(ELE) model. This is useful in the practically important situation where the person carrying 
out the linking and the person analysing the linked data are not the same, and confidentiality 
restrictions do not allow the release of all the information that was used in the linkage 
process. For example, in the Western Australian Diabetes Linkage Project, the people 
involved in creating the linkage key files were not permitted to take part in the analysis of the 
linked data. See Kelman, Bass & Holman (2002). Under the ELE model, 

 TBq = (!Bq " # Bq )Iq + # Bq1q1q
T  

where 

	   !Bq = Pr(correct linkage between X1q  and X2q )  

and 

	   ! Bq = Pr(incorrect linkage between X1q  and X2q )  

Furthermore, under this model, we have 

 Xq
E = E

X*
(Xq ) = EX* 1q ,X1q ,X2q( )!" #$ = 1q ,X1q ,TBqX2q

*( ) . (2) 

It follows that 

	   E
X*
(Yq

*) = E
X*
(AqYq ) = EX* (Aq )EX* (Yq ) = TAqEX* (Yq ) = TAqXq

E!  (3) 

where, under the ELE model, 

	   TAq = (!Aq " # Aq )Iq + # Aq1q1q
T  
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with 

 !Aq = Pr(correct linkage between X1q  and Yq )  

 ! Aq = Pr(incorrect linkage between X1q  and Yq ) . 

We now describe a method of estimating the parameter !  of the linear regression model of 
interest using an adjusted unbiased estimating function. An unbiased estimating function for 
!  when both Yq  and Xq  are available is H(!) = Gq Yq " fq( )q#  where fq = EX (Yq ) = Xq!  

and Gq  is a weighting function that depends on Xq  but not on Yq . However, we do not 

observe Yq  or Xq . Instead, their linked versions Yq
*  and Xq

!  are observed. A naive estimating 
function based on H(!)  then takes the form 

 H*(!) = Gq
" Yq

* # fq
*( )q$  

where fq
* = Xq

*!  and Gq
! = Xq

!T . Here Xq
* = (1q ,X1q ,X2q

* ) . The naive estimator is defined by 

solving H*(!) = 0 . It is easy to see that E
X*
(Yq

*) = TAqfq
E ! fq

* , where fq
E = Xq

E! . That is, the 
naive estimator is biased. On the other hand, using (2) and  (3), an unbiased estimating 
function based on the linked data is of the form 

 H!(") = Gq
! Yq

* # TAqfq
E( )q$  (4) 

and a corresponding estimator of !  can be defined as the solution !̂"  to the estimating 
equation defined by setting (4) to zero. The following Theorem states the asymptotic variance 
of !̂" . Its proof is in the Appendix. 

Theorem 1. Let f2q
* = f2iq

! ;i "q( ) = X2q
* #2 . The asymptotic variance of !̂"  is then 

 V (!̂") = Gq
"TAqXq

E
q#$% &

'
(1

Gq
"V (Yq

")Gq
"T

q#$% &
' Gq

"TAqXq
E

q#$% &
'
(1)

*+
,
-.
T

 

where V (Yq
!) = " 2Iq +VAq +VCq . Here 

 VAq = 1! "Aq( )diag "Aq ( fiq
E ! fq

E )2 + fq
E (2) ! ( fq

E )2{ };i #q$% &'  

where fq
E = fiq

E ;i !q( ) , fq
E = Mq

!1 fiq
E

i"q#  and fq
E (2) = Mq

!1 fiq
E( )2i"q# . Similarly 

 VCq = (1! "Bq ) diag Mq !1( )!1 "AqMq !1( )di + Mq (1! "Aq )dq{ };i #q$
%

&
'  

where di = !Bq ( f2iq
* " f2q

* )2 + f2q
*(2) " ( f2q

* )2 , f2q
* = Mq

!1 f2iq
*

i"q#  and f2q
*(2) = Mq

!1 f2iq
*( )2i"q# . 

Note: 

1. Given the values of TAq , TBq  and fq
E , an unbiased estimator of ! 2  is 

 
 
!! 2 = N "1 Yq

# " fq
E( )T Yq

# " fq
E( )q$ " 2 fq

E( )T Iq " TAq( ) fqEq$%
&

'
( . 
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We can therefore estimate V (Yq
!)  above by substituting !̂"  for !  in the definitions of fq

E , fBq
*  

and  !!
2  above. An estimator of the asymptotic variance V (!̂")  of !̂"  follows directly. 

2. The value of !̂"  depends on choice of the weighting function Gq
! . A popular choice is 

Gq
! = Xq

!( )T . However, there are alternative choices. For example, Lahiri & Larsen (2005) 
develop an adjusted estimator for !  that, when placed in an estimating equation framework, 

corresponds to setting Gq
! = TAqXq

E( )T . The optimal weighting function, i.e. the one that 

minimises the asymptotic variance of !̂"  (see Godambe, 1960), depends on the unknown 
model parameters and is given by 

 Gq
! = "#EX*

(Yq
*)( )T V (Yq

!)( )$1 = TAqXq
E( )T % 2Iq +VAq +VCq( )$1 . 

This suggests that an iterative approach to weighting should lead to an efficient adjusted 
estimator !̂" . Simulation studies in the next section compare the performances of the 
estimators defined by these alternative choices. 

3. The development so far has assumed that the correct linkage probabilities !Aq  and !Bq  are 
known. This will not be the case in practice, and estimates of these probabilities will need to 
be used. The actual asymptotic variance of !̂"  then depends also on the additional variability 

induced by this estimation process. If the estimators !̂Aq  and !̂Bq  of these probabilities are 
uncorrelated (e.g. if they are obtained from independent audit samples randomly selected 
from each m-block of the linked data), then the result in Theorem 1 can be extended to 

 V (!̂") =W Gq
" V (Yq

")+ JAqV (#̂Aq )JAq
T + JBqV (#̂Bq )JBq

T{ }Gq
"T

q$%& '
(W

T  

where V (!̂Aq ) , V (!̂Bq )  are the variances of  !̂Aq , !̂Bq  respectively, W = Gq
!TAqXq

E
q"#$ %

&
'1

, 

JAq = (Mq !1)
!1(MqIq ! 1q1q

T ){ } fqE  and JBq = TAq (Mq !1)
!1(MqIq ! 1q1q

T ){ } f2q" . 

2.2 Incomplete sample to registers linkage 

We now consider the more realistic case when a sample s  of records from the benchmark 
data set X1  are linked to the registers Y  and  X2 , and this linkage is incomplete - i.e. there 
are some records in the sample s  that cannot be linked, either to records in X2  register or to 
records in the Y  register, or both. When linkage is incomplete, Aq and Bq  are not 
permutation matrices because the entries for some rows in these matrices are all zero due to 
this non-linkage. However, we can still use the ideas introduced in the previous subsection. 
Let X1sq  be the set of the sample records from X1q . Also let X1slq  be the set of sample records 
in X1sq  that are linked to both X2  and to Y . The set of sample records in X1sq  that cannot be 
linked in this way are denoted by X1suq . Similarly, X1rq  denotes the set of non-sample records 
in X1q . We also assume that there exists, at least in theory, a corresponding set of 
decompositions of the set of non-sample records. In particular, X1rlq  represents the set of non-
sample records that are potentially 'linkable' to both X2  and Y . The remaining non-sampled 
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'unlinkable' records are denoted X1ruq . It immediately follows that the following partitions 
exist: 

	  

Yq
* =

Yslq
*

Ysuq
*

Yrlq
*

Yruq
*

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

=

Aslsl ,q Aslsu ,q Aslrl ,q Aslru ,q

Asusl ,q Asusu ,q Asurl ,q Asuru ,q

Arlsl ,q Arlsu ,q Arlrl ,q Arlru ,q

Arusl ,q Arusu ,q Arurl ,q Aruru ,q

'

(

)
)
)
)
)
)

*

+

,
,
,
,
,
,

Yslq

Ysuq

Yrlq

Yruq

!

"

#
#
#
#
#

$

%

&
&
&
&
&

= AqYq  

where 

	  

E(Aq |Xq
* ) = TAq =

T(slsl )Aq T(slsu )Aq T(slrl )Aq T(slru )Aq
T(susl )Aq T(susu )Aq T(surl )Aq T(suru )Aq
T(rlsl )Aq T(rlsu )Aq T(rlrl )Aq T(rlru )Aq
T(rusl )Aq T(rusu )Aq T(rurl )Aq T(ruru )Aq

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

.  

Further, because X2q
*  can be similarly partitioned into X2slq

* , X2suq
* , X2rlq

*  and X2ruq
* , one has 

	  

E(Bq |Xq
* ) = TBq =

T(sl )Bq
T(su )Bq
T(rl )Bq
T(ru )Bq

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

=

T(slsl )Bq T(slsu )Bq T(slrl )Bq T(slru )Bq
T(susl )Bq T(susu )Bq T(surl )Bq T(suru )Bq
T(rlsl )Bq T(rlsu )Bq T(rlrl )Bq T(rlru )Bq
T(rusl )Bq T(rusu )Bq T(rurl )Bq T(ruru )Bq

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

.  

The corresponding estimating function for !  based on the linked sample data is 

	  

Hsl
! (") = Gslq

! Yslq
* # T(sl )Aqfq

E( )q$
= Gslq

! Yslq
* # T(slsl )Aqfslq

E # T(slsu )Aqfsuq
E # T(slrl )Aqfrlq

E # T(slru )Aqfruq
E( ).q$

  

(5)  

Under the ELE model 

 T(slsl )Aq = Mq !1( )!1 "AqMq !1( )Islq + 1! "Aq( )1slq1slqT{ }  

 T(slsu )Aq = Mq !1( )!1 1! "Aq( )1slq1suqT  

 T(slrl )Aq = Mq !1( )!1 1! "Aq( )1slq1rlqT  

 T(slru )Aq = Mq !1( )!1 1! "Aq( )1slq1ruqT . 

In this case (5) becomes 

 Hsl
! (") = Gslq

! Yslq
* #

$AqMq #1
Mq #1

%

&'
(

)*
fslq
E #

1# $Aq

Mq #1
%

&'
(

)*
1slq1q

T fq
E

+
,
-

.-

/
0
-

1-
q2 . 

The main problem with calculating the value of this modified estimating function is 
calculating the value of 1q

T fq
E . This is a population, rather than a sample, quantity. If we 
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assume that the distribution of the values in X1slq  is the same as that of the values in X1sq , 

then we can approximate this population quantity by the weighted sample estimate  !wslq
T fslq

E , 

where  !wslq = MsqMslq
!1wslq . Here Mslq  is the number of linked sample records in the qth  m-

block, while Msq  is the total number of sampled records in this block. It immediately follows 
that the estimating function (5) can then be approximated by 

 
 
Hsl

! (") = Gslq
! Yslq

* # !T(sl )Aqfslq
E{ }q$  (6) 

where 

 
 
!T(sl )Aq = Mq !1( )!1 "AqMq !1( )Islq + 1! "Aq( )1slq !wslq

T{ } . 

Unfortunately, there is still an issue with use of (6) since, by (2), 

	   fslq
E = 1slq ,X1slq ,T(sl )BqX2q

*( )!  

where 

	   T(sl )BqX2q
* = T(slsl )BqX(sl )2q

* + T(slsu )BqX(su )2q
* + T(slrl )BqX(rl )2q

* + T(slru )BqX(ru )2q
*  

and, under the ELE model, 

 T(slsl )Bq = Mq !1( )!1 "BqMq !1( )Islq + 1! "Bq( )1slq1slqT{ }  

 T(slsu )Bq = Mq !1( )!1 1! "Bq( )1slq1suqT  

 T(slrl )Bq = Mq !1( )!1 1! "Bq( )1slq1rlqT  

 T(slru )Bq = Mq !1( )!1 1! "Bq( )1slq1ruqT . 

If we now also assume that the distribution of the values defining each column of X2slq
*  is the 

same as that of the corresponding column of X2sq
* , then the same argument used to justify 

sample weighting above leads to T(sl )BqX2q
*  being approximated by  

!T(sl )BqX2slq
*  where 

 !T(sl )Bq = Mq !1( )!1 "BqMq !1( )Islq + 1! "Bq( )1slq !wslq
T{ } . 

That is, the final form of the estimating function that can be used in this case is 

 
 
Hsl

! (") = Gslq
! Yslq

* # !T(sl )Aq !fslq
E{ }q$  (7) 

where !fslq
E = 1slq ,X1slq , !T(sl )BqX2slq

*( )! = !Xslq
E ! . 

As in the previous section, the development so far has assumed that the linkage probabilities 
!Aq  and !Bq  are known. In practice, these will be unknown and replaced by the values of 

suitable estimators !̂Aq  and !̂Bq , with variances V (!̂Aq )  and V (!̂Bq )  respectively.  The 

following Theorem sets out the form of the asymptotic variance for the solution !̂s
"  to setting  

(7) to zero. Its proof is along the same lines as that of Theorem 1. 
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Theorem 2. Under the assumption of non-informative non-linkage, i.e. when the distributions 
of the values in Yslq

*  and X2slq
*  are the same as those in Ysq

*  and X2sq
* , the asymptotic variance 

of !̂s
"  is 

 
 
V (!̂s

") = !Wsl Gslq
" V (Yslq

" )+ J(sl )AqV (#̂Aq )J(sl )Aq
T + J(sl )BqV (#̂Bq )J(sl )Bq

T{ }Gslq
"T

q$%& '
(
!Wsl
T  

where  V (Yslq
! ) = " 2Islq + !V(sl )Aq + !V(sl )Cq , J(sl )Aq = (Mq !1)

!1(MqIslq ! 1slq !wslq
T ){ } !fslqE , 

J(sl )Bq = !T(sl )Aq (Mq !1)
!1(MqIslq ! 1slq !wslq

T ){ } !f(sl )2q"  and 
 
!Wsl = Gslq

! !T(sl )Aq !Xslq
E

q"#$ %
&
'1

, with 

!f(sl )2q
! = !X(sl )2q

* "2 . Here 

 !V(sl )Aq = 1! "Aq( )diag "Aq ( !fislq
E ! !fslq

E )2 + !fslq
E (2) ! ( !fslq

E )2{ };i #slq$
%&

'
()  

where !fslq
E = !fislq

E ;i !slq( ) , !fslq
E = Mslq

!1 !fislq
E

i"slq#  and !fslq
E (2) = Mslq

!1 !fislq
E( )2i"slq# . Similarly 

 !V(sl )Cq = (1! "Bq ) diag Mq !1( )!1 "AqMq !1( ) !di + Mq (1! "Aq ) !dslq{ };i #slq$
%&

'
()  

where !di = !Bq ( fi(sl )2q
* " f(sl )2q

* )2 + f(sl )2q
*(2) " ( f(sl )2q

* )2 , f(sl )2q
* = Mslq

!1 fi(sl )2q
*

i"slq#  and 

f(sl )2q
*(2) = Mslq

!1 fi(sl )2q
*( )2i"slq# . 

 
3. Simulation results 

We used Monte Carlo simulation to compare the performances of the estimating function-
based estimators defined by different choices of the weighting function in (4) and (7). The 
data model used in the simulation was 
 Yi = 1+ 3X1i + 0.7X2i + !i . 

The values X1i  were drawn from the normal distribution with mean of 2 and a variance of 4, 
while the errors !i  were independently drawn from the standard normal distribution. The 
values X2i  were generated as X2i = 1+ 2Zi + ! i  where the values of Zi  were independently 
drawn from the same distribution as the X1i , and the values ! i  were independently distributed 
as standard normal. 
The population was generated as three m-blocks, with linkage errors generated according to 
the ELE model. In particular, the probabilities of correct linkage between Yq

*  and X1q  were 
set to !A1 = 1, !A2 = 0.95  and !A3 = 0.75  while the probabilities of correct linkage between 
X1q and X2q

*  were set to !B1 = 1, !B2 = 0.85  and !B3 = 0.8 . 

We considered the case where these probabilities are known as well as the case where they 
are estimated from small audit samples taken from each m-block. These audit samples were 
defined by taking a random sample of size 25 in the qth  m-block for !Aq  and an independent 
random sample of size 30 in the same block for !Bq . The estimate of the correct linkage 
probability in each case was the proportion of correctly linked records in the audit sample. 

Two linkage scenarios were examined in the simulations. 
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• Scenario 1: The register to registers linking case, with three m-blocks each of size 500.  
• Scenario 2: The sample to registers linking case, with three m-blocks each of size 

2000. Half of the records in each m-block were randomly assigned to be unlinkable. 
An independent random sample of size 1000 was then selected in each m-block, so 
that, on average, 500 of the sampled records were able to be linked (not necessarily 
correctly) to both registers in each simulation. 

Three methods of estimating the regression parameter ! = (1, 3,0.7)T  were considered: 

Scenario 1 
ST The naive OLS estimator based on the linked data; 
A The solution to (4) with Gq

! = TAqXq
E( )T  - the implied Lahiri-Larsen estimator; 

C The solution to (4) with Gq
! = TAqXq

E( )T " 2Iq +VAq +VCq( )#1  - the implied efficient 
estimator. 

Scenario 2 

ST The naive OLS estimator based on the linked sample data; 
A The solution to (7) with 

 
Gslq

! = !T(sl )Aq !Xslq
E( )T  - the implied Lahiri-Larsen estimator; 

C The solution to (7) with 
 
Gslq

! = !T(sl )Aq !Xslq
E( )T "̂ 2Islq + !V(sl )Aq + !V(sl )Cq( )#1  - the implied 

efficient estimator. 

The two scenarios were independently simulated 1000 times and the estimates of !  (based on 
ST, A and C) calculated using the linked data generated in each simulation. Table 1 shows the 
relative bias and RMSE for these estimators as well as the actual coverage of nominal 95 per 
cent confidence intervals based on estimates of the asymptotic variances shown in Theorems 
1 and 2. Clearly, the estimators A and C correct the bias due to incorrect linkage, with the 
implied efficient estimator C generally outperforming the Lahiri-Larsen estimator A in terms 
of relative root mean squared error. This is consistent with the results for the two-register 
complete linkage case reported in Chambers (2009). However, when ! 's are unknown, we 
see that the relative bias of C is larger than that of A. 

[Table 1 here.] 

It is noteworthy that coverage rates for the estimators A and C are consistently higher than 
95%, indicating that the estimators of the asymptotic variances of these estimators are biased 
upwards. This does not appear to happen when only two data sets are linked, see Chambers 
(2009) and Gunky & Chambers (2009).  
Figure 1 shows box plots of the distributions of estimation errors underpinning the results 
shown in Table 1. These distributions are for Scenario 2. The corresponding results for 
Scenario 1 were very similar. The overall superiority of method C, as well as the increase in 
variability when the correct linkage probabilities are estimated, is clear. 

[Figure 1 here.] 

 
4. Conclusions and further research 

In this paper we extend the linkage error adjustment technique for regression analysis initially 
developed in Chambers (2009) to accommodate the case of sample to registers linkage when 
the number of linked data sets is greater than two. Our results indicate that the estimation 
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methods based on the estimating functions (4) and (7) are successful in eliminating the bias 
induced by linkage errors, provided we know, or are able to unbiasedly estimate, the correct 
linkage probabilities. They also correct the biases introduced by both sampling and non-
linkage via the introduction of appropriate weights, assuming that these processes are non-
informative and are independent of one another. However, it is also clear that these bias 
correction methods generally lead to larger variances. 
It is important to note that the assumption of independence between the non-linkage and the 
linkage error processes is a strong one. In practice, we expect that ability to link a record from 
X1  to Ywill increase the probability of being able to link the same record from X1  to X2 . 
This implies that the ELE model needs to be extended so that the linkage error matrices Aq  
and Bq  are correlated. We are currently investigating this situation. 
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Appendix Proof of Theorem 1 
We use !"  to denote the partial differentiation operator with respect to !  and adapt standard 
arguments used to obtain the asymptotic variance of the solution to an unbiased estimating 
equation. Furthermore, we only consider the case where Gq

!  is a function of Xq
! . Then, since 

 !"H
#(") = $ Gq

#TAqXq
E

q%  

we need only to show that in large samples the variance of Yq
!  given Xq

*  can be approximated 

by V (Yq
!) = " 2Iq +VAq +VCq . Note that 

 Var
X*
(Yq

*) = E
X*

Var
X*
Yq
* Aq( ){ }+VarX* E

X*
Yq
* Aq( ){ } . (A1) 

Then, by (2) and (3), 

 E
X*
Yq
* Aq( ) = AqEX*

(Yq ) = AqXq
E! = Aqfq

E . 

Hence VAq =VarX* E
X*
Yq
* Aq( ){ } =VarX* Aqfq

E( ) . A large sample approximation to this 

variance is set out equation (16) of Chambers  (2009), and is given by 

 VAq = diag (1! "Aq ) "Aq fiq
E ! fq

E( )2 + fq
E (2) ! ( fq

E )2{ }#
$%

&
'(

. (A2) 

In order to calculate E
X*

Var
X*
Yq
* Aq( ){ } , we note that independence of Aq  and Bq  allows us 

to write 

 Var
X*
Yq
* Aq( ) = Aq E

X*
Var

X*
Yq Bq( ){ }!

"
#
$Aq

T +Aq Var
X*

E
X*
Yq Bq( ){ }!

"
#
$Aq

T  (A3) 

From (1) we see that 

 Var
X*
Yq Bq( ) = ! 2Iq  
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Hence the first term on the right hand side of (A3) is 

  Aq E
X*

Var
X*
Yq Bq( ){ }!

"
#
$Aq

T = Aq%
2IqAq

T = % 2AqAq
T = % 2Iq . (A4) 

In order to evaluate the second term on the right hand side of (A3) we note that, given 
f2q
* = X2q

* !2 , 

 VBq =VarX* E
X*
Yq Bq( ){ } =VarX* Bq

T f2q
*( )  

which has the large sample approximation 

 VBq = diag (1! "Bq ) "Bq ( fiBq
* ! fBq

* )2 + fBq
*(2) ! ( fBq

* )2{ }#$ %& = 1! "Bq( )diag di;i 'q[ ] . 

Put VCq = EX*
AqVarX* E

X*
Yq Bq( ){ }Aq

T!
"

#
$ . Then 

 VCq = EX*
Aq 1! "Bq( )diag di;i #q[ ]Aq

T$% &' = (1! "Bq )EX*
Aqdiag di;i #q[ ]Aq

T$% &' . 

Put 

 eij
Aq = !AqI(i = j)+

1" !Aq

Mq "1
I(i # j) . 

Then, using a similar argument to that underpinning equations (66)-(67) of Chambers (2009), 
we can write down the large sample approximation 

 
E
X*
Aqdiag di;i !q[ ]Aq

T"# $% = diag di
i=1

Mq

& eij
Aq ;i !q

"

#
'

$

%
(

= diag Mq )1( ))1 (*AqMq )1)di +Mq (1) *Aq )dq{ };i !q"
#

$
%

 

so the corresponding large sample approximation to VCq  is 

 VCq = 1! "Bq( )diag Mq !1( )!1 ("AqMq !1)di +Mq (1! "Aq )dq{ };i #q$
%

&
' . (5) 

Combining (A1), (A2), (A4) and (A5), the required result follows immediately. Use of this 
asymptotic variance result to estimate the variance of !̂"  follows directly. All that is required 
is an unbiased estimator of ! 2  based on the linked data. Here we note that we can write 
(Yq

* ! fq
E )T (Yq

* ! fq
E ) =U1q +U2q +U3q , where U1q = Yq

TAq
TAqYq !Yq

T fq ! fq
TYq + fq

T fq , 

U2q = Yq
T fq ! fq

T fq  and U3q = fq
TYq ! (Yq

*)T fq
E ! (fq

E )TYq
* + (fq

E )T fq
E . 

Now 

 E
X*

U1qq! = E
X*

Yq " fq( )T Yq " fq( ){ }q! = N# 2 . 

Also 

 
 
E
X*
U2q( ) = EX* fqT Yq ! fq( ){ } = EX* fqT!q( ) = 0  

while, after re-arranging terms, we have 
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 U3q = Yq
T fq

E ! (Yq
*)T fq

E{ }+ (fq
E )T fq

E ! (fq
E )TYq

*{ }+ Yq
T ! (fq

E )T{ } fq + (fq
E )T !Yq

T{ } fqE . 

We note that since E
X! Yq

T " (fq
E )T{ } fq#$ %& = EX! (fq

E )T "Yq
T{ } fqE = 0 , 

 E
X*
U3q( ) = EX*

Yq
T fq

E ! (Yq
*)T fq

E{ }+ (fq
E )T fq

E ! (fq
E )TYq

*{ }"# $% = 2(fq
E )T Iq ! TAq( ) fqE . 

Hence an unbiased estimator of ! 2
 is 

 !̂ 2 = N "1 Yq
* " fq

E( )T Yq
* " fq

E( )" 2(fqE )T Iq " TAq( ) fqE{ }q# . 

 

Table 1 Relative bias and relative RMSE (both expressed in percentage terms) for parameter 
estimates investigated in the simulation study. Empirical coverages (expressed in percentage 
terms) of normal theory-based nominal 95 per cent confidence intervals are also shown. For 
estimators A and C, these are based on estimators of the asymptotic variances of these 
estimators as shown in Theorems 1 and 2. 
 

Relative Bias Relative RMSE Coverage Estimator 
!  known !  estimated !  known !  estimated !  known !  estimated 

Scenario 1 - estimation of !0  
ST 
A 
C 

128.81 
-0.51 
0.43 

128.81 
3.73 
7.13 

129.97 
16.52 
8.02 

129.97 
32.24 
17.86 

0 
98.8 
99.0 

0 
100 
100 

Scenario 1 - estimation of !1  
ST 
A 
C 

-9.94 
0.05 

-0.07 

-9.94 
-0.35 
-0.74 

17.51 
3.03 
1.38 

17.51 
5.69 
3.03 

0 
95.6 
97.7 

0 
100 
100 

Scenario 1 - estimation of !2  
ST 
A 
C 

-19.78 
0.04 

-0.03 

-19.78 
-0.48 
-0.81 

17.76 
2.62 
1.36 

17.76 
4.07 
2.30 

0 
97.3 
97.8 

0 
100 
100 

Scenario 2 - estimation of !0  
ST 
A 
C 

129.75 
0.61 
0.71 

129.75 
4.25 
7.13 

130.98 
17.69 
8.70 

130.98 
33.48 
18.16 

0 
96.0 
97.9 

0 
100 
100 

Scenario 2 - estimation of !1  
ST 
A 
C 

-10.08 
-0.08 
-0.09 

-10.08 
-0.37 
-0.72 

17.71 
2.86 
1.39 

17.71 
5.91 
3.13 

0 
96.8 
97.8 

0 
100 
100 

Scenario 2 - estimation of !2  
ST 
A 
C 

-19.90 
-0.12 
-0.07 

-19.90 
-0.67 
-0.84 

16.88 
2.71 
1.38 

16.88 
4.18 
2.36 

0 
96.6 
98.8 

0 
100 
100 
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Figure 1 Boxplots showing the Monte Carlo distributions of the estimation errors for the 
model parameters under Scenario 2. Different estimation methods are denoted by ST, A and C 
prefixes. Left column is for !  known and right column for !  estimated. Top row is for the 
intercept !0 , middle for the slope parameter !1  and bottom for the slope parameter !2 . 
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