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Abstract 

We review the essential characteristics of the three different approaches to specifying a 

sampling strategy; the design-based approach, the model-assisted approach and the model-

based approach. We then describe a unified framework for survey design and estimation that 

incorporates all three approaches, allowing us to contrast them in terms of their concepts of 

efficiency as well as their robustness to assumptions about the characteristics of the finite 

population. Our conclusion is that although no one approach delivers both efficiency and 

robustness, the model-based approach seems to achieve the best compromise between these 

typically conflicting objectives. 

 

Key Words1: Model-based; Model-assisted; Design-based; Sample survey inference; 

Design-unbiased; Model-unbiased; Robust methods; Probability sampling; Balanced 

sampling. 
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1. INTRODUCTION 

Sample survey theory is concerned with methods of sampling from a finite population of N 

units and then making inferences about finite population quantities on the basis of the sample 

data. A method of sampling coupled with a method of estimation given the sample data is 

often referred to as a sampling strategy, and typically corresponds to a set of rules which tell 

one how to obtain a sample of units from the finite population and then how to manipulate 

the resulting sample data to estimate the value of a quantity defined for the entire population. 

In this paper we review the essential characteristics of the three different approaches to 

specifying a sampling strategy; the design-based approach, the model-assisted approach and 

the model-based approach. All three approaches are in use in major statistical agencies. 

Furthermore, the advantages and disadvantages of all three have been hotly debated in the 

sampling theory literature in recent years. See the sequence of papers Smith (1976), Smith 

(1984) and Smith (1994) for a clear and entertaining description of how this debate has 

progressed. However, with the exception of Brewer and Särndal (1983), there seems to have 

been little attempt to view all three approaches from a unified statistical perspective. 

We describe such a unified framework for survey design and estimation below. After 

embedding the above three approaches in this common framework, we then contrast them in 

terms of their concepts of efficiency as well as their robustness to assumptions about the 

characteristics of the finite population. Our conclusion is that although no one approach 

delivers both efficiency and robustness, the model-based approach seems to achieve the best 

compromise between these typically conflicting objectives.  

The paper is organised as follows. In the following section, some basic concepts of the 

statistical (as opposed to the practical) theory of sample design and estimation are introduced, 

along with the common distributional framework that underlies the development in the paper. 

In sections 3 through 5 this framework is used to characterise the statistical basis for choosing 

an efficient sampling strategy under the above three approaches. The paper concludes in 

section 6 with a discussion of how the different robustness concepts that apply within each 
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approach relate to one another within this framework, together with comments on the 

strengths and weaknesses of each. 

2. BASIC CONCEPTS 

A fundamental sample survey concept is that of a population frame. This is the list of the N 

units making up the finite population. Availability of a frame is a basic requirement 

underlying most (though not all) of sample survey theory, since sampling methods are 

usually expressed in terms of rules for deciding which elements of a list constitute the 

sample. Note that this frame requirement does not exclude multistage surveys from 

consideration, since these require access to an initial frame for selection of first stage units 

and then subsequent 'sub-frames' for selection of second and later stage units. 

In what follows it will be assumed that the frame always contains a unique identifier or 

label for each unit of the population. In many cases the frame also contains the values of one 

or more auxiliary variables associated with each unit of the finite population. We use the 

index i (and sometimes j and k as well) to denote the population labels. Without loss of 

generality we can assume these labels take the values 1, 2, .., N, so it makes sense to refer to 

the ith population unit. 

For simplicity we also assume in this paper that there is only one auxiliary variable, X 

and one survey variable Y. We put Xi  equal to the value of X for the ith population unit, with 

Yi  defined similarly. The extension to multiple Y-variables and multiple X-variables does not 

involve introduction of new concepts, but does make the notation much more complex. 

A traditional objective of most surveys is estimation of the finite population total, 

 TY = Yi
i=1

N

∑ . 

In order to estimate TY , the survey sampler (who is assumed to have access to the population 

frame) selects a sample of units from the population by identifying their labels on the frame, 

and then measures their corresponding values of Y. These sample values of Y are then 

combined with framework information to generate the required estimate of TY . 
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A convenient way of characterising this sample selection process is to assume that, for 

each unit i on the frame, the survey sampler generates a new variable S  which takes a value 

equal to the number of times that particular population unit’s Y value is observed. The set of 

labels corresponding to population units that are sampled in this way is s = i;Si > 0{ } . The 

labels of the remaining non-sampled population units then define the set r = i;Si = 0{ } . 

The distribution of these Si  values effectively defines what is generally referred to as the 

design of the sample survey. In principle at least, the survey sampler has complete control 

over (and hence complete knowledge of) this distribution. Let S denote the vector valued 

random variable corresponding to the N population values of Si  and let X denote the 

corresponding N-vector of population values of the Xi . 

Throughout, we assume that the distribution of S only depends on the known population 

values in X. That is, given X, the distribution of S is completely specified. This assumption is 

often referred to as non-informative sampling in the literature (e.g. Pfeffermann 1993). An 

immediate consequence is that, given X, the distributions of S and Y, the population N-vector 

of Y values, are independent. Note that this assumption is not appropriate in cases where the 

sampler has limited or no control over the sampling process, since in those cases there is the 

possibility of selection bias, and consequent dependence between the distributions of Y and 

S, even after conditioning on X. See Smith (1983) and Sugden and Smith (1984). 

This characterisation of the outcome of sample selection as a random vector S includes 

probability sampling as a special case. However, since there is no requirement that the 

distribution of S be non-degenerate, it also includes many so-called 'non-random' (strictly 

speaking non-probability sampling based) selection methods used by survey practitioners. 

Turning now to estimation of TY , we see that any estimator of this quantity can only be 

based on the available data, i.e. the observed sample values of Y together with relevant frame 

information (the population values of X and S). Consequently, we consider a general linear 

estimator of TY  of the form 
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 T̂Y = Wi (S,X)Yii∈s∑  

where Wi (S,X)  is a weight associated with sampled population unit i. Observe that this 

weight generally depends on the other sampled units since it depends on S and X. Also, we 

can equivalently write 

 T̂Y = Wi (S,X)SiYi
i=1

N

∑  

since Si = 0  for non-sampled population units. 

In general, we can think of the values of the Wi (S,X)  as characterising the estimation 

process in the same way that the values Si  characterised the sampling process. That is, the 

survey sampler can be considered as in principle defining a value Wi (S,X)  for each 

population unit (whether sampled or not). The value of this weight variable W may depend on 

the population values of the auxiliary variable, X, and those of the selection variable, S, but 

not those of the survey variable Y. That is, if we put W equal to the population vector defined 

by the Wi (S,X) , then W is a random vector whose distribution is completely determined by 

that of S and X. To keep our notation simple, we drop explicit referencing to S and X when 

writing down individual weights from now on, writing Wi =Wi (S,X)  in what follows. In all 

cases, however, the reader should keep in mind the dependence of these weights on the 

realised values of S and X. 

A sampling strategy corresponds to the pair (S, W). Deciding on a sampling strategy 

therefore consists of (i) given X, choosing an appropriate distribution for S, and (ii) given X 

and the distribution generated under (i), choosing an appropriate specification for W. In the 

following sections we compare and contrast three different approaches to carrying out (i) and 

(ii) above. In particular, we focus on choice of an optimal strategy in each case. 

Finally, we observe that in all cases, the inferential framework assumed is the one 

defined by the joint distribution of S, X and Y. That is, the sample space for inference is the 

one corresponding to all possible realisations of these three vectors. Consequently, all 
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relevant probabilities are defined with respect to this joint distribution, as are expectations 

and variances (both conditional and unconditional). 

3. OPTIMALITY UNDER THE DESIGN-BASED APPROACH 

This approach has its origin in Neyman’s key paper (Neyman, 1934). It also represents the 

basic underlying philosophy in most traditional sampling theory texts, e.g. Cochran (1977), 

Kish (1965). A key concept under this approach is that of design unbiasedness. That is, for 

any choice of sampling process S, the weighting process W must be such that the frequency 

weighted average value of T̂Y  over all possible samples generated under S is the actual value 

of TY . In other words, this approach restricts consideration to those weights W which ensure 

that 

 E T̂Y −TY X,Y( ) = 0  (1) 

for all values of Y and X. 

For (1) to hold for arbitrary Y and X we must have 

 E(WiSi X,Y) = 1  

or, since the distributions of both S and W are completely determined by that of X, 

 E(WiSi X) = 1 . 

A sufficient condition for this to be satisfied is clearly where 

 Wi
−1 = E(Si X)  (2) 

in which case 

 T̂Y = SiYi
E(Si X)i∈s∑ . (3) 

The design-based approach requires that all inferential probabilities be conditioned on both Y 

and X. Consequently, under this approach the efficiency of T̂Y  is measured by 

Var(T̂Y −TY X,Y) = Var(T̂Y X,Y) = Var WiSiYi X,Y
i=1

N

∑⎛⎝⎜
⎞
⎠⎟
= Cov(WiSi ,WjSj X)YiYj

j=1

N

∑
i=1

N

∑  

which, in the case of the weighting method (2) above, becomes 
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 Var(T̂Y −TY X,Y) =
Cov(Si ,Sj X)

E(Si X)E(Sj X)
YiYj

j=1

N

∑
i=1

N

∑ . (4) 

In some circumstances (e.g. where a particularly complex sampling method has been 

employed) it may be impossible to evaluate (2) exactly. In such cases condition (1) is at least 

approximately true whenever 

 Wi
−1 = Ê(Si X)  (5) 

where Ê  denotes an estimate of the conditional regression function, based on the frame 

values of X. In this case the bias of the resulting estimator T̂Y  under the design-based 

approach is 

 E T̂Y −TY X,Y( ) = E(Si X)
Ê(Si X)

−1
⎛

⎝
⎜

⎞

⎠
⎟

I=1

N

∑ Yi  (6) 

with variance 

 Var(T̂Y −TY X,Y) =
Cov(Si ,Sj X)

Ê(Si X)Ê(Sj X)
YiYj

j=1

N

∑
i=1

N

∑ . (7) 

The measure of efficiency of T̂  in this case is therefore its design-based mean squared error 

 

MSE(T̂Y X,Y) = Var(T̂Y X,Y)+ E
2 (T̂Y −TY X,Y)

=
Cov(Si ,Sj X)

Ê(Si X)Ê(Sj X)
+

E(Si X)
Ê(Si X)

−1
⎛

⎝
⎜

⎞

⎠
⎟

E(Sj X)
Ê(Sj X)

−1
⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
YiYj

j=1

N

∑
i=1

N

∑

=
E Si − Ê(Si X)( ) Sj − Ê(Sj X)( ) X{ }

Ê(Si X)Ê(Sj X)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥j=1

N

∑
i=1

N

∑ YiYj .

 

  (8) 

It is straightforward to show that if Ê  actually recovers E(SI X) , then (8) reduces to the 

earlier expression (4) for the design variance of T̂ . 

We do not explore specification of Ê  in this paper, beyond noting that many standard 

weighting methods, including post-stratification and ratio estimation, are special cases. For 

example, ratio estimation can be characterised as replacing E(Si X)  by the weighted average 
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 Ê(Si X) =
XjSj

j=1

N

∑

Xj
j=1

N

∑
. 

Irrespective of whether the Wi  are defined via (2) or via (5), the 'classic' design-based 

approach to choosing an optimal sampling strategy is to choose an appropriate distribution 

for S in order to make the mean squared error (8) above as small as possible, subject usually 

to a restriction on the sample size, or more generally, on the sum of the components of S. 

Where no restriction is placed on Y, this is an impossible task - a result first noted by 

Godambe (1955). A short proof of this famous non-existence result, essentially based on 

Basu (1971) goes as follows: Consider the population defined by Y1 > 0 and Yj = 0, j ≠ 1. In 

this case (4) is zero (and so our strategy is efficient) if we select our sample so that Pr(S1 = 

1|X) = 1, so E(S1 X)  = 1, and use the weighting scheme (2). In particular, this strategy 

remains efficient when we impose the further restriction Pr(S2 = 1|X) = 0. However, this 

restricted strategy is no longer optimal if we apply it to another population where Y2 > 0 and 

Yj = 0, j ≠ 2. Consequently, no globally optimal sampling strategy exists under the design-

based approach. Each sampling strategy needs to be looked at anew, since there is no 'gold 

standard' against which it can be compared. 

4. OPTIMALITY UNDER THE MODEL-ASSISTED APPROACH 

As the preceding paragraph makes clear, the main problem with the design-based approach to 

finding an optimal sampling strategy is that it is far too general. By specifying efficiency 

criteria in terms of the conditional distribution of T̂Y  given X and Y, this approach paints 

itself into a corner. As a consequence, almost from the very beginning of large scale 

application of design-based theory in survey sampling, practitioners have adopted  strategies 

which have small design mean squared error for those realisations of Y which are, in some 

sense, reasonable. 
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In practice, such values of Y are typically defined by assuming a model for the 

distribution of Y given X. That is, practitioners have been willing to use models in order to 

identify optimal strategies for estimating TY . However, their assessment of these strategies 

has remained design-based. 

4.1 Model-Assisted Strategies That Are Also Design-Unbiased 

The model-assisted approach is comprehensively discussed in Särndal, Swensson and 

Wretman (1992). Typically, the approach still assumes that the weighting variable W at least 

approximately satisfies (2). That is, the resulting estimator T̂Y  is design-unbiased, or 

approximately so. However, rather than attempting to specify the distribution of the sample 

design variable S by minimising the design mean squared error (8) for all possible values of 

Y, the model-assisted approach seeks to minimise the expectation of this quantity given X. 

That is, we seek a distribution for S which minimises the average value of (8) over those Y 

values 'consistent with' the known values in X. 

From (8) we see that this expected design-based mean squared error can be written 

 E MSE(T̂Y X,Y) X⎡⎣ ⎤⎦ =
E Si − Ê(Si X)( ) Sj − Ê(Sj X)( ) X{ }

Ê(Si X)Ê(Sj X)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
E(YiYj X)

j=1

N

∑
i=1

N

∑ .  

  (9) 

Given a specification for the first and second order moments of Y given X, (9) can be 

minimised, and an optimal sample design (and hence optimal sampling strategy) obtained. To 

illustrate, consider the case where the Xi are strictly positive and the regression of Y on X is 

linear and through the origin. That is 

 

E(Yi X) = βXi

Var(Yi X) = σ i
2

Cov(Yi ,Yj X) = 0; i ≠ j.

 (10) 

Then, when the weights Wi are determined by (2), 

 E MSE(T̂Y X,Y) X⎡⎣ ⎤⎦ =
Var(Si X)
E2 (Si X)

⎡

⎣
⎢

⎤

⎦
⎥σ i

2

i=1

N

∑ + β 2 Cov(Si ,Sj X)
E(Si X)E(Sj X)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
XiX j

j=1

N

∑
i=1

N

∑ .  
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To make things even simpler, we restrict ourselves further to the case of Poisson sampling. 

Here SI is either one or zero, with the ith population unit either included into or excluded from 

the sample according to the outcome of an independent Bernoulli trial with success 

probability π i = E(Si X) . Consequently 

 Var(Si X) = E(Si X) 1− E(Si X)⎡⎣ ⎤⎦ = π i (1−π i )  

and, for I ≠ J 

 Cov(Si ,Sj X) = 0 . 

The expected design-based mean squared error for this case is therefore 

 E MSE(T̂Y X,Y) X⎡⎣ ⎤⎦ =
1
π i

−1
⎛
⎝⎜

⎞
⎠⎟
(σ i

2 + β 2Xi
2 )

i=1

N

∑ . 

This expression is minimised, subject to the expected sample size constraint 

 π i
i=1

N

∑ = n  

when 

 π i = n
σ i
2 + β 2Xi

2

σ j
2 + β 2Xj

2

j=1

N

∑
.  (11) 

Observe that when σ i  is proportional to Xi  this optimal sample inclusion probability is 

proportional to Xi . Furthermore, for σ i >> β , these optimal probabilities are approximately 

nN-1. That is, in cases where the regression effect in (10) is insignificant, a strategy that has 

equal first order inclusion probabilities is indicated. 

4.2 Model-Assisted Strategies That Are Design-Unbiased On Average 

The requirement that T̂Y  be design-unbiased (or approximately design-unbiased) that was 

imposed in section 4.1 is rather strong. An appealing extension of the model-assisted 

approach, whose motivation follows along the same lines as those leading to the use of the 

average mean squared error (9), is discussed in Brewer (1995). This replaces the design-
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unbiasedness requirement by the weaker requirement that the design bias of T̂Y  averages out 

to zero over possible values of Y. That is, rather than exact (or approximate) design 

unbiasedness, one requires average design-unbiasedness, or 

 E T̂Y −TY X( ) = E E T̂Y −TY X,Y( ) X( ) = 0 . (12) 

Clearly, exact design-unbiasedness implies average design-unbiasedness. However, as we 

shall see in section 5.1, there are many other design-biased strategies which also satisfy (12). 

Consequently, this condition is rather weak. Under the regression model (10) for Y, it 

translates as 

 

E E (WiSi −1)Yi
i=1

N

∑ Y,X⎛
⎝⎜

⎞
⎠⎟
X

⎛
⎝⎜

⎞
⎠⎟
= E E(WiSi X)−1( )Yi

i=1

N

∑ X⎛
⎝⎜

⎞
⎠⎟

= β E(WiSi X)−1( )Xi
i=1

N

∑
= 0

 

or 

 E(WiSi X)Xi
i=1

N

∑ = Xi
i=1

N

∑ . 

There is no unique solution to this identity. In particular, all three of the following weighting 

methods satisfy it. 

 Wi =
Xj

j=1

N

∑

E(Sj X)Xj
j=1

N

∑
 (13) 

 Wi =
Xj

j=1

N

∑

Sj X j
j=1

N

∑
 (14) 

and 

 Wi =
Xj

j=1

N

∑

E(Si X)
Sj X j

E(Sj X)j=1

N

∑
. (15) 
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Note that the weights (13) and (14) do not depend on i. Furthermore (13) is the same for 

any realisation of S. In an asymptotic (large N, large n, small n/N) sense, the weights defined 

by (13) and (14) are essentially the same, so an asymptotic analysis will lead to the same 

optimal sample design for both these weighting systems, provided one exists. Also, since 

 E
Sj X j

E(Sj X)
X

j=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= Xj

j=1

N

∑  

it follows that a similar asymptotic analysis indicates the weights defined by (15) and (2) are 

equivalent, so, in the case of the regression model (10) and Poisson sampling, the 

asymptotically optimal design under (15) is specified by the inclusion probabilities (11). 

A large sample optimal sample design under either (13) or (14) can be obtained. As 

usual we assume the regression model (12) and Poisson sampling. Then 

 
E MSE T̂Y Y,X( ) X( ) = Var WiSi X( ) σ i

2 + β 2Xi
2( )

i=1

N

∑ + E WiSi X( )−1{ }2 σ I
2

i=1

N

∑

= π −2 π i (1−π i )(σ i
2 + β 2Xi

2 )
i=1

N

∑ + (π i −π )
2σ i

2

i=1

N

∑⎡
⎣
⎢

⎤
⎦
⎥

 

where 

 π = Xi
i=1

N

∑⎛⎝⎜
⎞
⎠⎟

−1

π i Xi
i=1

N

∑ . 

Provided si /Xi does not increase with Xi, this average mean squared error is minimised by 

choosing a sample design that makes π  as large as possible, subject to the usual sample size 

constraint. Such an optimal sample design is easily seen to be the extreme design that sets pi 

= 1 for the n units in the population with largest values of X, and pi = 0 for the remaining N-n 

population units. 

4.3 The Robustness-Efficiency Tradeoff 

If efficiency is the sole criterion for choice of a strategy and the assumed regression model 

(10) holds for the population being surveyed, then using the extreme sample design with 

weights defined by either (13) or (14) should lead to a much smaller average mean squared 

error than the more traditional design (11) with weights defined by either (2) or (15). 
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However, most users of the model-assisted approach would prefer the strategy specified 

by (11) and (15). In general, their main argument for this is that the weights (15), unlike (13) 

and (14), lead to an approximately design-unbiased estimator (since they approximate the 

exactly design-unbiased weights (2)), and consequently the sampling strategy specified by 

(11) and (15) is more 'robust' to model misspecification than the strategy specified by the 

extreme design consisting of those n units with largest X-values, coupled with the weights 

specified by (13) or (14). 

Since any model assumption is inevitably wrong, this argument, on the surface at least, 

seems reasonable. However, it is important to realise that the 'robustness' achieved by design-

unbiasedness is a repeated sampling property. There is no guarantee that a sample generated 

via (11) and using the (approximately) design-unbiased weights (15) will result in an estimate 

that is more accurate than the estimates obtained using the design-biased weights (13) or (14) 

for the same sample. This issue is discussed in more detail in section 6. 

5. EFFICIENCY UNDER THE MODEL-BASED APPROACH 

As the discussion in the previous two sections has made clear, the concept of design-

unbiasedness is crucial to both the design-based as well as the model-assisted approaches to 

defining a sampling strategy. However, under the model-based approach this basic 

requirement is abandoned. The argument for doing so is straightforward. Since the 

distributions of both S and W are completely known once X is known, their realisations 

contribute no information about Y (and functions of Y, like TY ) over and above that already 

provided by X. That is, once X is known, S and W become ancillary statistics for inference 

about Y. Consequently, application of the Conditionality Principle (Cox and Hinkley, 1974) 

leads to the conclusion that any inference about TY  should be conditioned on S and W. Since 

design-unbiasedness does not condition on these values (averaging in fact over all possible 

realisations of these statistics), it is an inappropriate criterion to apply to the estimator T̂Y . 

Brewer (1963) was one of the earliest (if not the earliest) researchers to seriously explore 

the implications of the model-based approach to survey inference. However, the most 
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important ideas underpinning this approach are due to the work of Richard Royall and his 

students. An elegant summary of the philosophy behind this approach is set out in Royall 

(1976). Since design-unbiasedness is no longer a requirement, the obvious alternative 

property we require of T̂Y  under this approach is that it be model-unbiased. That is, 

 E T̂Y −TY S,X( ) = 0 . (16) 

In other words, the values of the estimation errors T̂Y −TY  obtained for all population 

realisations Y consistent with the actual value of X observed, and the sample S actually 

obtained, should average out to zero. The natural measure of the accuracy of T̂Y  under this 

approach is then the variance of T̂Y −TY  given S and X. 

In the context of the regression model (10), and assuming that T̂Y  is a general linear 

estimator, the model-unbiasedness condition (16) becomes 

 (WiSi −1)Xi
i=1

N

∑ = 0  (17) 

and an optimal sample design is then one that ensures the conditional variance 

 Var T̂Y − TY S,X( ) = (WiSi −1)
2σ i

2

i=1

N

∑ = Δ(Si > 0)(WiSi −1)
2 + Δ(Si = 0){ }σ i

2

i=1

N

∑  (18) 

is as small as possible. Here Δ  denotes the indicator function that takes the value 1 if its 

argument is true and is zero otherwise. 

Note that the variance criterion (18) does not depend on weights for nonsampled units. 

Consequently, these can be set to zero. The optimal weights for the sampled units are 

obtained by minimising (18) subject to (17). These turn out to be of the form 

 Wi =
1
Si

Xi

σ i
2

Δ(Sj = 0)Xj
j=1

N

∑

Δ(Sj > 0)
Xj
2

σ j
2

j=1

N

∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+1

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

 (19) 

and it is straightforward to show that in this case 
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 T̂Y = Yii∈s∑ +

YiXi

σ i
2i∈s∑

Xi
2

σ i
2i∈s∑

XIi∈r∑  

which is the best linear unbiased predictor (BLUP) of TY  under the model (10). 

The final step in finding an optimal model-based sample design is to identify the 

distribution for S that minimises (18) when W is defined by (19). Since in this case 

 Var T̂Y −TY S,X( ) =
Δ(Si = 0)Xi

i=1

N

∑⎛⎝⎜
⎞
⎠⎟

2

Δ(Si > 0)
Xi
2

σ i
2

i=1

N

∑
+ Δ(Si = 0)σ i

2

i=1

N

∑  

it is not difficult to see that, provided Xi /σ i  is non-increasing in Xi, the optimal sample 

design is the extreme design (i.e. the one that selects the n units with largest X-values). 

5.1 Model Unbiased Is Also Average Design Unbiased 

It is interesting to observe that, for any set of model-unbiased weights, (16) implies 

 E T̂Y −TY X( ) = E E T̂Y −TY S,W,X( ) X( ) = 0  

and so all such weighting methods are also average design-unbiased, see (12). Furthermore, 

 

E MSE(T̂Y X,Y) X⎡⎣ ⎤⎦ = E E T̂Y −TY( )2 X,Y( ) X⎡
⎣⎢

⎤
⎦⎥

= E T̂Y −TY( )2 X⎡
⎣⎢

⎤
⎦⎥

= E E T̂Y −TY( )2 S,W,X( ) X⎡
⎣⎢

⎤
⎦⎥

= E Var(T̂Y −TY S,W,X) X⎡⎣ ⎤⎦ .

 

Since the conditional variance inside the square brackets in the last expression above is 

minimised whenever the extreme sample is chosen, it follows that the optimal model-based 

design for T̂Y  under (10) also minimises the average mean squared error of this estimator. 

That is, the optimal model-based design for T̂Y  under (10) is also the optimal design for this 

estimator under the average design-unbiased approach of section 4.2. 
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5.2 The Robustness-Efficiency Tradeoff Revisited: Cosmetic Estimation 

If one accepts (a) that  any estimator for TY  has to be based on a model for Y; and (b) that 

some form of (approximate) design-unbiasedness is necessary for the model-robustness of 

this estimator, then an attractive option is to choose a model-assisted estimator that is 

(approximately) design-unbiased, but has the same 'look and feel' as an efficient model-

unbiased estimator. This approach has been called cosmetic estimation by Särndal and 

Wright (1984). See Brewer (1999) for a thorough exploration of this idea in the context of a 

linear model for the population of interest. The obvious implication of cosmetic estimation is 

that one needs to include an extra estimating equation (or constraint) in the equations used to 

estimate the model parameters in order to ensure the cosmetic property. This means that the 

parameters of the working model are not estimated as efficiently as would be the case if one 

used the most efficient model-based estimators of these parameters. In the context of the 

simple linear model (10) and without replacement sampling, an efficient model-based 

estimator is 

T̂Y (β̂) = Δ(Si = 1)Yi + 1− Δ(Si = 1){ } β̂Xi{ }
i=1

N

∑ = β̂Xi + Δ(Si = 1) Yi − β̂Xi( )
i=1

N

∑  

where β̂  is an efficient estimator of β . In particular, when β̂  is the ratio of the sample 

means of Y and X, T̂Y (β̂)  is then the most efficient linear predictor of TY  under (10). 

However, from a model-assisted perspective, (10) leads to a generalized regression estimator 

of the form 

 
TY (β̂) = β̂Xi +π i

−1Δ(Si = 1) Yi − β̂Xi( ){ }
i=1

N

∑ = T̂Y (β̂)+ π i
−1 −1( ) Yi − β̂Xi( )i∈s∑  

where now β̂  is chosen to be (at least asymptotically) a design-unbiased estimator of the 

ratio of the population means of Y and X. Cosmetic estimation then requires that T̂Y (β̂)  and 

 
TY (β̂)  be the same estimator, which in turn requires that 
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β̂ =
π i

−1 −1( )Yii∈s∑
π i

−1 −1( )Xii∈s∑
. 

In the general case where the sample inclusion probabilities vary from individual to 

individual in the sample this estimator can be an inefficient estimator of β , and hence lead to 

the cosmetic estimator  
TY (β̂)  also becoming inefficient. The exception is where the π i

−1  do 

not vary between different sample units, in which case the cosmetic estimator and the most 

efficient model-based estimator are identical. 

6. CHOOSING A ROBUST STRATEGY 

So far we have concentrated on choice of an optimal strategy (if one exists) separately for 

each of the three approaches considered in this paper. In practice, however, one has to make a 

choice between these approaches for any particular application. How does one choose 

between the design-based, model-assisted and model-based approaches to identifying a 

sampling strategy in such a case? One criterion that is often invoked in making such a choice 

is that of robustness. We choose the approach that leads to robust inference (i.e. inference 

that is somehow not strongly tied to assumptions about the conditional distribution of Y 

given X), and, within the chosen approach identify an optimal strategy. 

Now, from the design-based point of view, robustness is a non-issue, since inference 

under this approach does not need to model the conditional distribution of Y given X. 

Consequently, a naive user might argue that its nonparametric nature makes the design-based 

approach the obvious methodology for choosing a sampling strategy. However, as we have 

seen earlier, this choice leads nowhere since there are no relevant optimality criteria that can 

be checked under this approach. If one wants both robustness and optimality, one must turn 

to the model-assisted and model-based approaches. 

Both of these recognise that one has to model the distribution of a survey variable Y in 

terms of available frame information (X) in order to decide on a strategy. Where these two 

approaches diverge, however, is on the meaningfulness of imposing the requirement that the 

sampling strategy adopted be design-unbiased (or at least approximately so). In particular, the 
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model-assisted approach claims robustness as a consequence of imposing (exact or 

approximate) design-unbiasedness. 

6.1 Robustness And Design-Unbiasedness 

The basic argument behind the imposition of design-unbiasedness (exact or, more usually, 

approximate) is that of robustness of validity. One allows the model to dictate the type of 

sample selected, but one does not allow it to also dictate the type of weighting method used. 

The weights are typically constrained so that the average value of the estimator T̂Y  under 

repeated sampling is equal to, or is approximately equal to, the population total of Y no 

matter what model actually holds for Y in the population of interest. In the words of a 

colleague and staunch believer in the model-assisted approach (Ken Brewer), adopting the 

model-assisted approach is like wearing both a belt and braces to hold up one’s trousers. If 

the belt (the model) should break, then one is not going to be totally embarrassed, since the 

braces (design-unbiasedness) should still keep things in place. 

From a model-based point of view, however, this robustness argument is unconvincing. 

Since, as has already been pointed out, design-unbiasedness is not a property associated with 

any particular sample, but rather one obtained by averaging over repeated samples, there does 

not appear to be any reason to believe that imposition of design-unbiasedness on its own is 

sufficient to somehow protect the survey analyst from a large estimation error (due to model 

misspecification for example) in any particular sample. A very large positive error associated 

with sample 1 can be cancelled out by a corresponding large negative error associated with 

sample 2. 'On average' things are fine, but for any particular sample they may be terrible. One 

has only to remember Basu’s elephant fable (Basu, 1971) to realise how foolish complete 

reliance on design-unbiasedness can be. 

The standard counter argument to this criticism is that in large samples, the use of 

probability sampling methods allows the law of large numbers to be invoked, ensuring that a 

design-unbiased (or approximately design-unbiased) estimator will converge to the true value 

of TY . Consequently the robustness property is really a large sample property. While this 
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observation is certainly true, it also assumes that the survey analyst is only interested in large 

sample inference. It also fails to mention how large is 'large'. Central limit behaviour may 

require sample sizes considerably greater than the survey designer can afford. Furthermore, it 

leaves wide open the question of appropriate sample design for small to medium sample 

sizes. Many modern survey collections are run under very tight budgets, ruling out large 

sample sizes. Sample designs for these collections rely on design-unbiasedness at their peril, 

and modern model-based designs are increasingly being used in these cases in an effort to 

maximise estimation efficiency. 

6.2 Model-Based Is Not Model-Dependent 

As we saw in the preceding section, the model-based approach can lead to extreme samples 

when taken to its logical conclusion. This has lead to strong criticism of the model-based 

approach (Hansen, Madow and Tepping, 1983), since such extreme samples can lead to 

highly biased estimators if the model is misspecified. What this criticism ignores of course is 

that there is no particular reason why one should not investigate the sensitivity of an optimal 

model-based design to breakdown of the model assumptions. Such analyses have in fact been 

a primary focus of model-based strategies for some time, and they typically lead to non-

extreme designs which are operationally very similar to many conventional designs. 

To illustrate, the model-based strategy defined by the extreme sample and the weights 

(19) becomes model-biased if the true relationship between Y and X deviates from the strict 

proportionality relationship defined by (10). If the true relationship between Y and X is in fact 

described by a polynomial of degree K, say, then the optimal estimator defined by (10) 

remains model-unbiased provided the sample satisfies a Kth order balance condition, i.e. 

where the sample moments of X of order up to K equal their corresponding population 

moments (Royall and Herson, 1973). This particular model-robust sample design is certainly 

not extreme. 

It is important to realise that such model-robust strategies are not the 'blanket cures' 

claimed for probability sampling and design-unbiasedness. They provide a reasonable level 
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of efficiency over a chosen range of alternative potential models for the distribution of Y 

given X. In doing so, they lose efficiency at the assumed model (which generates the weights 

used in T̂Y ). This efficiency loss may be considerable if the range of potential alternative 

models is wide. In effect, the size of one’s insurance premium goes up the greater the number 

of unpleasant events against which one wants to be protected. At the end of the day, it 

remains the survey designer’s responsibility to carry out a sufficiently careful analysis of 

whatever data sources are available to ensure that the model underlying the chosen strategy is 

a good representation of the true distribution of Y given X in the population. 

6.3 Robustness By Adapting To The Sample Data 

No amount of pre-selection analysis can prepare one for every eventuality. Models that 

seemed entirely appropriate before the sample data were obtained may suddenly look rather 

fragile when one has had a chance to actually check out the relationship between Y and X in 

the sample data. If one adopts a model-based approach this situation is of no great concern. A 

crucial advantage to adopting this approach is its flexibility. There is no restriction that the 

model used to develop the sample selection procedures (the 'design' model) should also be 

used in estimation. 

In many cases there are distinct advantages in widening the scope of possible models for 

Y at the estimation stage of a survey, using the information collected in the sample. A 

common example of this is post-stratification (Holt and Smith, 1979, Valliant 1993; 

Nascimento Silva and Skinner 1995). Another example is the widespread use of calibration 

weighting methods, where original sample weights derived at the time of sample selection 

(based perhaps on some preliminary model for the population) are modified at the time of 

estimation so they result in estimates that are unbiased with respect to a final, more complex, 

'estimation' model for the population (Deville and Sarndal, 1992). A similar idea underlies 

the introduction of nonparametric adjustment factors based on a nonparametric smooth of the 

design model sample residuals (Chambers, Dorfman and Wehrly 1993). These adjustment 

factors can then be applied to the optimal weights under the design model to obtain final 
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weights that are much more robust to model misspecification than the original optimal 

weights. Of course, these modified weights are no longer efficient under the design model, 

but, as always, one has to pay an efficiency premium for robustness. 

As an interesting aside, it can be shown that these model-based nonparametric weights 

are in some circumstances very similar to the (exactly or approximately) design-unbiased 

weights derived under the model-assisted approach (Chambers 1996). Consequently, there 

appears to be scope for these two apparently quite distinct approaches to lead to essentially 

the same sample inferences. Although further research is needed here, such a confluence may 

help resolve the debate on which approach is 'best'. 

6.4 Is Probability Sampling Essential? 

By probability sampling we mean a distribution for S such that Pr Si > 0 X( ) > 0  for all i. 

This condition is an integral part of any sampling strategy under both the design-based and 

model-assisted approaches. This is because 

 (i) Efficiency is measured either by Var T̂Y −TY Y,X( )  or by its expected value under 

the model, both of which are identically zero if the distribution of S is degenerate; 

(ii) The requirement that T̂Y  be exactly (or approximately) design-unbiased leads to 

weights that satisfy (or approximately satisfy) (2). Consequently we require 

E Si X( ) > 0  for all i. This is guaranteed by probability sampling; 

(iii) Robustness considerations under both approaches require application of the law of 

large numbers in order to guarantee that a design-unbiased (or approximately 

design-unbiased) estimator takes values arbitrarily close to the unknown population 

total TY  for large enough populations and samples. 

In contrast, probability sampling is not essential under the model-based approach. However, 

this does not mean that such sampling methods are excluded under this approach. Model-

based strategies are typically specified in terms of tight sample constraints (e.g. balance), but 

no restriction is placed on the actual method used to select the sample. There are good 



Which Sample Survey Strategy? 22 

 

arguments (e.g. Royall 1976) for using a probability sampling method to actually select the 

final sample, subject to it satisfying these constraints, in order to avoid the unconscious bias 

that may creep into the selection process if a nonprobability method of sampling is employed. 

In terms of the notation that has been used in this paper, this bias arises because the 

distributions of the population vectors S and Y are no longer independent given X. In 

particular, the distribution of S depends on Y as well as X. In such cases the model-based 

(and model-assisted) results presented in this paper are no longer valid. Alternative results 

can be derived, provided we can specify the nature of the dependence between S, Y and X. 

This is typically impossible, or at least very difficult. Consequently, a proponent of the 

model-based approach will typically favour some form of probability sampling because this 

guarantees the distributions of S and Y are independent given X. 

From a model-based perspective, therefore, the principal argument for using probability 

sampling is to provide robustness against selection bias effects. However, there is another, 

more practical, aspect to probability sampling that makes it desirable from a model-based 

point of view. This is the fact that balanced samples (in the general sense of balance, that is 

where the sample satisfies conditions which ensure unbiasedness of the proposed estimator 

within a specified class of possible alternative models for the survey population) are typically 

easier to achieve provided an appropriate form of randomisation is used. 

For example, if the estimator of choice is the simple ratio estimator and the class of 

alternative models for the population is specified in terms of polynomial regression models of 

order up to and including K, then a balanced sample is one with all its X-moments up to and 

including order K equal to the corresponding population moments of X. On expectation over 

repeated sampling (i.e. in design-expectation) a sample selected with equal inclusion 

probabilities for all population units will be balanced (Royall and Pfeffermann, 1982; Royall 

and Cumberland, 1988). Consequently, one way of achieving this type of balance is to take 

such a probability sample, and use it if it is adequately balanced. Otherwise, we reject it, and 

select another probability sample. This idea of using probability-based rejective sampling to 
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screen for adequately balanced samples has been shown to lead more precise inference than 

the corresponding use of unrestricted randomised sampling (Tam and Chan, 1984; Deville, 

1992). More recently, Deville and Tillé (2004) have developed the 'cube' method of selecting 

a balanced sample with specified sample inclusion probabilities. In general, therefore, there is 

no tension between robust model-based design and probability sampling. The former 

provides a criterion that the sample of choice should (at least approximately) satisfy, and the 

latter provides a mechanism for choosing samples to check against this criterion. 

At the end of the day however, one has to ask oneself the question: Is there anything one 

can do if the underlying population model is such that our estimator, even when computed on 

a balanced sample, remains biased? That is, the real population model is not a member of the 

class of models underlying the chosen balance criteria, and so balance does not guarantee 

unbiasedness with respect to 'reality'. Does the fact that this sample has been selected via 

some form of randomisation based procedure help? Here it seems that one has no recourse 

but to design-unbiasedness. That is, the only statements one can make relate to average 

properties of the estimator over repeated sampling, rather than to the properties of the 

estimator for the actual sample selected. Since, as we have already pointed out, these average 

properties may be far from the actual behaviour of the estimator over the chosen sample, the 

inevitable conclusion one has to draw is that one cannot be protected against everything, and 

so one has to accept some risk in survey inference. The key property of good sample design 

is that it minimises this risk (by appropriate choice of model, balance criteria etc.) subject to 

available resources. 

6.5 What Is The Right Way To Measure Precision? 

The astute reader will no doubt by now have asked the question: Efficiency of estimation is 

all very well, but the bottom line in any statistical analysis of sample survey data must be an 

accurate measure of the precision of that analysis. Where is the discussion on how to measure 

precision properly? Should one measure the precision of an estimator T̂Y  by its design-based 
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error variance Var(T̂Y −TY X,Y)  or should one measure it by its model-based error variance 

Var(T̂Y −TY S,X) ? 

Which measure is appropriate depends very much on what one means by precision and 

when one is measuring precision. Assuming unbiasedness of T̂Y , we take precision as being 

the variance of the estimation error T̂Y −TY  with respect to all relevant sources of uncertainty 

at any particular point in time. Thus, one could argue that since S is unknown prior to sample 

selection, the design-based error variance is a measure of our uncertainty about the estimation 

error before the sample is selected. However, it does condition on Y, which is also unknown 

before the sample is selected (and only partially known afterwards). Consequently, a better 

measure of precision before sampling is Var(T̂Y −TY X) . 

After the sample is selected, however, and remembering that we are assuming the 

outcome S is ancillary (e.g. through probability sampling), it is clear that the appropriate 

measure of precision is at least the model-based frequentist variance Var(T̂Y −TY S,X) , or, if 

one is adopting a Bayesian approach, the posterior variance Var(T̂Y −TY S,X,Ys ) , where Ys  

is the vector of sample Y-values. There is strong empirical evidence (e.g. Royall and 

Cumberland, 1981) that a variance that does not condition on S (like the design-based 

variance) can give a very misleading picture of the precision of T̂Y  once S is known. 

The situation gets even more complicated when we consider the problem of estimating 

precision. There are well known methods for estimating the design-based error variance 

Var(T̂Y −TY X,Y)  (see Wolter, 2007). Such estimators have model-based properties as well 

however. Let V̂  denote a design-unbiased estimator of Var(T̂Y −TY X,Y) . That is 

E(V̂ X,Y) = Var(T̂Y −TY X,Y) . Suppose also that T̂Y  is model-unbiased (as will usually be 

the case under either the model-assisted or model-based approaches). Then 
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Var(T̂Y −TY X) = E Var(T̂Y −TY X,Y) X( ) +Var E(T̂Y −TY X,Y) X( )
= E E(V̂ X,Y) X( ) +Var E(T̂Y −TY X,Y) X( )
= E(V̂ X)+Var E(T̂Y −TY X,Y) X( )
= E E(V̂ S,X) X( ) +Var E(T̂Y −TY X,Y) X( )

 

while 

 
Var(T̂Y −TY X) = E Var(T̂Y −TY S,X) X( ) +Var E(T̂Y −TY S,X) X( )

= E Var(T̂Y −TY S,X) X( )
 

so 

 E E(V̂ S,X)−Var(T̂Y −TY S,X) X( ) = −Var E(T̂Y −TY X,Y) X( )  

That is, the average model bias of the design unbiased variance estimator V̂ is equal to minus 

the average variance of the design bias of the estimator T̂Y . In general, therefore, the design 

unbiased variance estimator V̂  will be biased low for the actual post-sample uncertainty of 

the estimator T̂Y . One situation where V̂ will be a reasonable measure of this uncertainty is 

where the sample design ensures that the average design bias of T̂Y  varies little between 

different realisations of Y. This will be the case if T̂Y  is also design-unbiased, or 

approximately design-unbiased. Sample designs that ensure this condition is satisfied are 

typically those that lead to balanced samples for T̂Y . Consequently, design-based variance 

estimators like V̂  are usually 'safe' (in the sense of actually estimating the right thing) in 

balanced samples. In unbalanced samples, however, they are not to be trusted. 

Of course, model-unbiased variance estimators can also be derived, and these will 

provide correct measures of precision irrespective of the type of sample selected provided the 

model is correctly specified. However, these variance estimators will no longer be correct if 

the assumed model is misspecified. Hence robustness of variance estimation is as important 

as robustness of estimation under the model-based approach. 
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In a series of papers, Royall and Eberhardt (1975) and Royall and Cumberland (1978, 

1981a, 1981b, 1985) have explored a general approach to robustifying standard least squares 

type model-based variance estimators. Their method assumes correct specification of the 

conditional mean of Y given X and uses a nonparametric moment estimator (rather than a 

parametric one) for the leading term in the conditional variance Var(T̂Y −TY S,X) . Empirical 

results presented by these authors indicate that the general performance of this robust 

approach to variance estimation (including confidence interval coverage) is uniformly good 

provided samples are balanced, or are close to balance. In unbalanced samples, however, 

presence of bias in the estimator T̂Y  can lead to substantial noncoverage. 

At the time of writing there does not appear to be a generally applicable solution (either 

design-based or model-based) to estimating the precision of a sample survey estimator after 

the sample has been selected. In particular, accurate variance and confidence interval 

estimation in unbalanced samples remains an area of current research. 

A final point concerns the role of Bayesian ideas in determining a survey strategy. 

Although these ideas were important in the development of the model-based approach, see 

Scott and Smith (1969), they do not appear to have been taken up to any significant extent 

since then. However, due perhaps to the influence of the Bayesian approach in small area 

area estimation, this may be changing, see Rao (2011). 
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