
University of Wollongong
Research Online

Department of Computing Science Working Paper
Series Faculty of Engineering and Information Sciences

1984

An EPROM programmer for the ET3400
expansion system
Michael J. Milway
University of Wollongong, mjm@uow.edu.au

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
Milway, Michael J., An EPROM programmer for the ET3400 expansion system, Department of Computing Science, University of
Wollongong, Working Paper 84-7, 1984, 25p.
http://ro.uow.edu.au/compsciwp/80

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/compsciwp
http://ro.uow.edu.au/compsciwp
http://ro.uow.edu.au/eis
http://ro.uow.edu.au/
http://ro.uow.edu.au/

Preprint No 84·7

THE UNIVERSITY OF WOLLONGONG

DEPARTMENT OF COMPUTING SCIENCE

An EPROM programmer for the
ET3400 expansion system

Michael Milway

Department of Computing Science
University of Wollongong

Abstract

An EPROM programmer has been constructed
that can program 2716 type 2K by 8 bit and
2532 type 4K by 8 bit EPROMs. Expansion to
8K by 8 bits EPROMs is possible. The
EPROM programmer is used as a peripheral
device to the ET3400 Microcomputer Trainer
Expansion system.

Data to be programmed may be down line
loaded from a host system or read in from
another ROM or EPROM. The EPROM pro
grammer software can program an EPROM,
verify that programming was correct, read a
ROM or EPROM, check for correct erasure
and fill an area of memory with OxFF.

P.O. Box 1144, WOLLONGONG, N.S.W. AUSTRALIA
telephone (042)-270-859

telex AA29022

May 16, 1984

An EPROM programmer ~for the
ET3400 expansion system

Michael Milway

Department of Computing Science
University of Wollongong

ABSTRACT

An EPROM programmer has been constructed that can program 2716
type 2K by 8 bit and 2532 type 4K by 8 bit EPROMs. Expansion to 8K by 8
bits EPROMs is possible. The EPROM programmer is used as a peripheral
device to the ET3400 Microcomputer Trainer Expansion system.

Data to be programmed may be down line loaded from a host system or
read in from another ROM or EPROM. The EPROM programmer software
can program an EPROM, verify that programming was correct, read a ROM
or EPROM, check for correct erasure and fill an area of memory with OxFf.

1. Introduction
In many small microcomputers there is a small amount of ROM that contains a monitor

program. The rest of the memory is made up of RAM which does not retain its data after
power is turned off. Programs must be reloaded after power is reapplied. This is very incon
venient, especially where frequently used software is involved. The solution to this problem is
to write the programs into EPROM which will retain its data after power down.

EPROMs are programmed by setting up the address and data and applying a high vol
tage programming pulse for a set time. Once the data has been programmed in it can only
be erased by exposing the EPROM to high intensity ultraviolet light. To .facilitate the pro
gramming of EPROMs and EPROM programmer has been constructed that is capable of pro
gramming the most common types of EPROMs. It was made as a peripheral device for the
existing ET3400 microcomputer trainer system, as this is much more flexible than a stand
alone device. The ET3400 system is a small teaching system based on the Heathkit ET3400
microcomputer trainer. An expansion bus and card cage has been added enabling various
experiment cards to be plugged in.

2. Design Considerations

2.1. Pin Compatibility

Fortunately, as new EPROM types have been developed they have remained fairly pin
compatible with the older types. With the exception of a few pins the pinouts of these devices
have remained constant. Even the newer 28 pin devices have been designed so that they are
compatible with the 24 pin devices.

Mask programmed ROMs also have the same pinouts as EPROMs. This is done so that
systems can be developed using easily programmed EPROMs and then mass produced using
the much cheaper (in very large quantities) ROMs without any hardware modifications. Thus
if the EPROM programmer can read the data from an EPROM it can also read it from a com·
patible ROM.

It was decided to concentrate solely on the single supply 24 pin EPROM types rather
than the older triple supply ones. Single supply EPROMs require a single 5V supply rather
than the 5V and + 1- 12V supplies required by the triple supply ones. Table 1 gives the

·2-

pinouts of single supply 2K by 8 and 4K by 8 24 pin EPROMs and 8K by 8 and 16K by 8 28
pin EPROMs. Note that the 24 pin devices only differ in two pins and the 28 pin devices fit
neady over the top of the 24 pin devices, with a change in only two more pins.

pin # pin # 2716 2532 2764 27128
24 pins 28 pins 2K - 8 4K - 8 8K - 8 16K - 8

1 Vpp Vpp
2 A12 A12

1 3 A7 A7 A7 A7
2 4 A6 A6 A6 A6
3 5 A5 A5 A5 A5
4 6 A4 A4 A4 A4
5 7 A3 A3 A3 A3
6 8 A2 A2 A2 A2
7 9 Al Al Al Al
8 10 AO AO AO AO
9 11 00 00 00 00

10 12 01 01 01 01
11 13 02 02 02 02
12 14 Gnd Gnd Gnd Gnd
13 15 03 03 03 03
14 16 04 04 04 04
15 17 05 05 05 05
16 18 06 06 06 D6
17 19 07 07 07 07
18- 20 -EjProg All -CE -CE
19 21 A10 AI0 A10 AI0
20- 22 -G -E -OE -OE
2P 23 Vpp Vpp All All
22 24 A9 A9 A9 A9
23 25 A8 A8 AS A8
24- 26 Vee Vee N/C A13

27 Pgm Pgm
28 Vee Vee

Signals marked ' -' are active low.
Pins marked - have different signals on different EPROM types.

Table 1 EPROM pinouts

2.2. Software Compatibility

All the EPROMs mentioned in table 1 are programmed in the same manner. The pro-
gramming voltage Vpp is applied and the correct address and data asserted. The control pins
-CE, -OE, -G and -Ejprog are set to the correct level, depending on the EPROM type,
and left for 50 milliseconds. After this time the data will have been programmed into the
specified location. By having a set of variable control bytes that are initialised when the
EPROM type is determined the same routine may be used to program any of the above men-
tioned EPROM types.

- 3 -

2.3. Other Design Considerations
No chip should be inserted or removed from a socket while power or logic levels are

present. It was decided to include a dual pole switch to control both the supply and program
ming voltages. The address, data and control buffers are also enabled by this switch.

The programming supply voltage, Vpp, of 25 volts is not available on the ET3400 sys
tem. This voltage could either be supplied by an external power supply or by an on board DC
to OC converter. The latter option, although mare complex, was chosen to make the opera
tion of the EPROM programmer easier.

3. Implementation

Figure 1 shows the circuit diagram for the EPROM programmer. It consists of:

(i) An interface to the ET3400 expansion bus.

(ii) A set o(buffers for the address, data and control lines.

(iii) The power supply for Vpp.

(iv) Electronic switching to allow Vpp to be applied under program control.

(v) A rotary switch to determine EPROM type.

(vi) A Zero Insertion Force socket to hold the EPROM.

The pinouts of the signals on the expansion bus are shown in brackets beside the signal.

A 74LS42 is used to decode a board select and three address lines to give a single select
line for the EPROM programmer. Address line A2 is used as one of the select lines on PlA2
and inverted for use as a select line on PIAL

The outputs of the PIAs are buffered by the tristate buffers.. These buffers are enabled
when the EPROM power switch is on. The buffer on the data lines is also bidirectional.

The power supply for Vpp consists of an oscillator (NE555), a pair of current pumps (C2,
01, D2 and C4, 03, D4) and a voltage regulator (Ql). The output of the oscillator has a
swing of 12V which is applied to C2 and C4. The other side of C2 follows this voltage, but is
constrained by D1 to always be greater than ll.4V. Thus this side swings between 1l.4V and
23.4V. 02 will conduct whenever it is forward biased by more than O.6V, charging C3 to
22.8V. The second current pump adds this voltage to the input to C4, charging C5 to 33.6V.
This voltage will drop under load. Ql will regulate the on C5 down to 25V for use as Vpp.
R2 allows for tne adjustment of Vpp between 12V and 33.6V.

The programming voltage may be switched to the EPROM under program control.
When PBO of PlA2 is low and the power switch is turned on, Q2 is turned on allowing Vpp
into the EPROM. When Q2 is off the Vpp pin of the EPROM is at 5V.

The three position rotary switch is a simple means of changing the address and control
lines to suit different EPROM types. The switch has been wired for 2716 and 2532 type
EPROMs. The third position is currently unused. The switch is also connected to three inputs
on PIA2 to allow the software to determine the EPROM type.

The EPROM power switch switches Vce and Vpp to the EPROM. It is also used to
enable the tristate buffers. Vcc is buffered and fed into PB4 of PIA2 to tell the software if the
power is switched on.

Finally three LEOs are connected to PB5 - 7 of PIA2. These LEOs are used to tell
whether programming, verifying or reading operations are in progress.

·4·

3.1. Addressing
When a PIA is normally wired up its internal registers are addressed as follows:

Address Register

o Data Register A
1 Control Register A
2 Data Register B
3 Control Register B

This is fine for eight bit data transfers. The addressing of the PIA registers may be
modified to enable sixteen bit transfers (such as outputting EPROM addresses) by swapping
AO and Al on the register select pins. The address map for the PIA then becomes:

Address Register

o Data Register A
1 Data Register B
2 Control Register A
3 Control Register B

Sixteen bit loads and stores, such as ldx and stx, may now be made. Data Register A
will be the high order register and data Register B the low order one.

A PIA may have all the bits in a data register independently configured as input or out
put. Reading from the input pins and writing to the output pins may be done without affecting
the other pins even though they all share the same address.

PIAl is used to output the EPROM address. It has been connected to allow sixteen bit
transfers as described above. Data Register A is used to output the high order address bits
and Data Register B outputs the low order bits. Only thirteen bits out of the possible sixteen
bits are used to output the address. The three high order bits of Data Register A are used as
inputs to signify the EPROM type.

Data Register A of PIA2 is used to transfer data to the EPROM when programming and
to transfer data from the EPROM when reading, verifying or checking erasure.

Data Register B of PIA2 is used to control the function of the EPROM programmer. Bit
o controls the programming voltage Vpp. Bits land 2 control the Enable and Gate inputs to
the EPROM respectively. Bit 3 controls the direction of transfers through the data buffer. Bit
4 is used to sense whether the EPROM power switch is on. Bits 5, 6 and 7 control the Read
Write and Verify LEDs respectively. Figure 2 gives an address map of the PIAs.

4. Software
A program has been written in 6800 assembly language to program 2K or 4K EPROMs.

The program currently resides in

lusrI hardwareI eproml4keprom.s

on system B. A copy of this program is included as an appendix. The foJJowing commands
are available:

Program p < ramstart > [, < count> [, < romstart >]]
Verify v<ramstart> [, <count> [, < romstart > IJ
Read r < ramstart > [, < count> [, < romstart >]]
Erased? e[<romstart> [, <count>]
Fill f< ramstart > [, < count>]
Exit x[< address> 1

Arguments in angle brackets, < >, are hexadecimal values and arguments in square brackets,
[], are optional. The default values for optional arguments are Ox0800 or OxlOOO for the count
when using 2K or 4K EPROMs respectively, OxOOOO for the EPROM start address and the
reset vector (OxfBOO for the Heathkit trainers) for the exit address.

- 5 -

The program has been written in structured code. The top level is a command inter
preter which takes an input line, extracts the command and argument values. The commands
are called as separate subroutines. The command subroutines in turn call other subroutines
such as 'ready' which tests for EPROM type and power on and 'putline' which writes a line of
text to the screen.

4.1. Command Interpreter

On cold start or errors the command interpreter prints out a welcoming message which
includes a list of available commands and required arguments. It then reads a line of text
from the keyboard into a buffer. The command character is stripped off and saved. The
arguments are then extracted and stored as sixteen bit numbers along with an argument
count. The arguments must be valid hexadecimal numbers, separated by commas and ter
minated by a newline character.

The next step is to load the default values for 2K EPROMs. If 4K EPROMs are being
used the count will later be overwritten by the default value for 4K EPROMs. If the optional
arguments have been supplied they wiU overwrite the default values and thus be used instead.

A jump table is used to identify the command and call the appropriate subroutine.
When the subroutine returns the program branches back to a warm start and repeats the
command interpreter loop. If the command is not found the program prints an error message
and branches back to a cold start.

4.2. Program

This command programs either a 2K or 4K EPROM. The user may specify the address
in RAM of the data to be programmed, a count of how many bytes to program and where to
put the data in the EPROM. The count and the EPROM start address are optional.

The 'ready' subroutine is called first. It checks that the EPROM power switch is on and
determines the type of EPROM from the position of the rotary switch. If a 4K EPROM is to
be programmed it changes the default count value. It also initialies two variables, 'pinit' and
'pprog', with information necessary to program the required type.

The 'ports' subroutine is then called. It programs the PIAs for correct data direction and
sets some initial values. As this subroutine returns with the data port configured for reading
the EPROM, the direction of this port is then reversed so that data may be written to the
EPROM.

The arguments required to determine the start of the RAM buffer, the count and the
EPROM start address are read in, overwriting the default values. If these arguments are not
supplied then the default value will be used.

The actual programming of the EPROM now follows. The initial control value is written
out to the control port. The current EPROM address is written out to the Heathkit display to
show the progress of the programmer. The Current EPROM address and data are then writ
ten out to the EPROM. The control value is changed to enable programming. After a fifty
millisecond delay the control value is changed back to the initial value and the location has
been programmed. The RAM and EPROM addresses are incremented and the count decre
mented. The programming loop is repeated until all bytes have been programmed.

The control value is reset to OxFF and a farewell message is printed out before returning
to the main program.

Note that all the command subroutines follow the same general pattern of calling 'ready'
and 'ports', and loading the address and count arguments before performing the required task.
The subroutines then reset the control value, print a farewell message and return to the main
program.

- 6 -

4.3. Verify
This command verifies that the data has been correctly programmed into the EPROM.

'Ports' and 'ready' are called and the addresses and count loaded if supplied. The control port
is set to enable reading of the EPROM. The control value is the same for 2K or 4K EPROMs.
The data is read one byte at a time and compared with the corresponding byte in RAM. If an
error is found, the EPROM address, data and the correct data are printed in an error mes
sage. The subroutine then waits for any key to be pressed before continuing. If an 'x' has
been pressed the command is aborted. 'Verify' exits in the same manner as 'program'
when it successfully completes or is aborted.

4.4. Erased
This command checks that all the required locations in the EPROM have been erased, i.

e. set to OxFF. It works in the same manner as verify but checks each location for OxFF
rather than comparing it with a location in RAM.

4.5. Read
This command reads the contents of an EPROM or ROM into a specified area of RAM.

'Ports' and 'ready' are called and the appropriate arguments loaded in. The control value is
set to enable the EPROM or ROM to be read. The control value is the same for both 2K and
4K devices. Each location is read in turn and dumped into the specified area of RAM. The
control register is then set to OxFF, a farewell message printed and the subroutine returns to
the main program.

4.6. Fill
This command fills a specified area of RAM with OxFF. This is useful when program

ming an EPROM with several data segments. The RAM buffer is filled with OxFF and the
data segments loaded into the appropriate positions in the buffer. The whole EPROM is then
programmed. Unused areas of the EPROM will remain 'Set to the erased value of OxFF and
thus may be programmed at a later date.

Since this command does not use the EPROM programmer hardware 'ports' and 'ready'
are not called. The required RAM address and count, if supplied, are loaded and a loop exe
cuted filling the required area with OxFF. The default count is Ox800 so that if 4K EPROMs
are to be used the command must either specify the count or the command used twice. The
command exits by printing a farewell message and returning to the main program.

4.7. Exit
This command allows the user to exit the EPROM programmer. If the exit address is

supplied the command prints a message and jumps to that address. The default exit address
is the reset vector for the microcomputer being used. It is read out of locations Oxfffe and
Oxffff, which is the reset vector for both the 6800 and 6809 microprocessor.

4.8. Other Routines
'Ports' is used to set up both 'PIAs prior to a command being executed. The two address

ports are set up as outputs, with the top three bits of the high order address port being set up
as inputs. The data port is set up as input. The initial value of the control port is set to OxFF
before it is set to be an output port. This ensures that there is no glitch as the port changes
from being an input (default setting on reset) to an output port.

'Ready' checks that the EPROM power switch is on and determines what type of
EPROM, 2K or 4K, is being used. It starts by assuming that a 2K EPROM has been selected
and sets 'pinit' and 'pprog' to suit. It then sits in a loop waiting until the power switch is on
and either a 2K or 4K EPROM has been selected. The third setting for an 8K EPROM is
ignored by this program. If a 4K EPROM has been selected 'pinit' and 'pprog' are reinitialised
and the default count set to OxlOOO.

The terminal I/O subroutines used by this program are already available in the EPROM
on the E13400 expansion system master card (called 6800lib) and the subroutines needed to
use the ET3400 display are in the monitor ROM.

- 7 -

5. Operation
The following items of hardware are needed to use the EPROM programmer.

ET3400 trainer
Expansion system with separate + 5V, + 12V and -12V power supply
Master card with at least 4K of RAM (6K for 4K EPROMs)
EPROM programmer card

Downline load the EPROM programmer software from

jusrjhardwarejepromj4keprom.out

on system B. If the data is to be downline loaded then do so at this stage. Use the B(ias)
option on dll to load the data in available RAM.

Start the program running at Ox2000. Turn the EPROM power switch off. Select either
2K (2716) or 4K (2532) type using the rotary switch. Insert the EPROM into the Zero Inser
tion Force Socket with pin 1 to the upper left. Turn the EPROM power switch on. Enter the
required command on the terminal keyboard and press return. When an EPROM is to be pro
grammed it should first be checked for erasure. When it has been programmed it should be
verified. The erasure command can also be used to single step through the EPROM data to
view the contents. It will skip over locations containing OxFF.

Sample commands:

p2800,100,400 Program 100 hex bytes starting from location 2800 hex in RAM into the
EPROM starting at location 400 hex.

p2800 Program all of the EPROM with data starting at location 2800 hex in RAM.
The default count and EPROM start address are used.

p2800,400

v2800

v2800,100,400

r2800

e

f2800

f2800,1000

x

xaOOO

Program the first 400 hex bytes of the EPROM with data starting at location
2800 hex in RAM.

Verify the whole EPROM against data starting at location 2800 hex in RAM.

Verify that the first programming example worked correctly.

Read the whole of the EPROM into RAM starting at location 2800 hex.

Check the whole EPROM for erasure.

Fill 2k (default count) of RAM with OxFF starting at location 2800 hex.

Fill 4K or RAM with OxFF starting at location 2800 hex.

Exit to the reset vector (i. e. the Heathkit monitor).

Exit to ET3400 transparent link.

6. Future Enhancements
The EPROM programmer in its current state can only handle 24 pin devices. If the 24

pin ZIF socket was replaced by a 28 pin ZIF socket and the third position of the rotary switch
used, its capacity would be increased to include the 2764 8K by 8 bit EPROM type. 24 pin
devices could still be used by inserting them in the 28 pin socket so that their pins
corresponded to the equivalent 28 pin device types, see table 1. The third position of the
rotary switch would be used to connect the enable signal to pin 20, output enable to pin 22
and All to pin 23. The program voltage, Vpp, would be connected to pin 1, A12 to pin 2,
- Vppon to pin 27 and the supply voltage, Vcc, to pin 28. Since pin 26 is no connect, Vcc for
24 pin devices may remain connected.

The only software changes required are to check for the 8K position of the rotary switch
and reprogram pinit, pprog and the default count to suit the 2764.

It is impractical to extend the design to handle 27128 or 27256 type devices as these
require additional address lines and more switching around of control signals. It would be
better to design a new EPROM programmer to cater for these types.

nfy
te
ad

-n

-~ ~ ,
- ~8K 11 ~A2,26
27 ~-4K r--- --8 ~A1,U1 8 U3
28 ~'2K r-13 y-AO,

29 6821 6 6
74L5244 U A12,

30 5 15 SA11,

31 4 4 16A1~
- ~A9,32 3 17- ~A833 2 2

1~ y1 y19

-~ ~ ,
36 17 6 74 A7,

35 16 15 U4 S-A6,
I- ~A5,34 15 4 74L5244- f---- A4

25 14 17 3 ,
23 13 2 M A2

.~ - ~u,12 11
22 11 -a ~E

'21 '"IT f----Vpp on
10

i 1~ '1'1 rN E

~ ~ ,
- f----D7

26 9 11 9 ,
n U2 8 12 US ~D6,
- 6821 74L5245 t---D5

28 7 13 L D4 '-
29 6 14 L D3 '

30 5 15 5 ,

31 4 16 ~D2,
- 3 17 '3 D1 ,32
33 2 18 2 DO

~
1 1!!l-'9 -r--

~-37 10K ~/- Ve
3b 17 }

- ---- --_._---- .---- ./ Wri
35 16 ~ =::

34 15 Re

---zs 14
23 13

~ 72
22 11

--n->--- -- 10

(12)D7
(11)06

(10)05

(9)D4
(8)D3
(6)D2

(5jD1
(4)DO

D7
D6

D5
D4
D3

D2
D1
DO

IRQ

HIW

AO
A1

RESET
E
~

A2

(36) IRQ

(39)RIW

(13)AO

f14jA1
,2)RESET

(16)E

[S

A7

~K
'15)A2~A2

L505

Figure 1a

16
(29) 83 12
(25) A9 13 U6 9 IT
(24)A8 14
(21M 7 15 74L542 ET-3400

EPROM PROGRAMMER
5HEET 1 OF 2
DRAWN M.J.t1.
18/4/1984

5W2C

SW2D

o

{j--<J

£---oSW28
N/C----o---o-----

2
"""':"'1
0

24'-----.....

N/[O----<l---~2:-:-l1

A9 22
A8 2

A10

5V

C6
I

2-2UF

- A 11

[---00 SW2A
N/C---o---o----"""':":'1

10K

25V

SW18

11 10 10K
L505 2N3906

5V

5V

Vpp on

A7
1

A6 2
'"

12V A5
R1 U7 - A4

3 24 PIN68K 4
2 NE555 3 A3 5 ZIF

10uF A2 SOCKET- 6
C1 I'OO1 1 A1- AO-

all diodes 1N4004 DO
01
02

, BK'-----'
i.fj(.----J

2K-------'

Figure 1b

ET -3400
EPROM PROGRAMMER
SHEET 2 OF 2
DRAWN 1'1.).1'1.
24/4/1984

Figure 2, Addresses of PlAs, bit usage and data directions.

address port bit direction use DDR initial data

9380 data reg 7 <-- BK 0 X
(IA) 6 <-- 4K 0 x
high order 5 <-- 2K 0 x
address 4 --) AI2 1 0

3 --) All 1 0
2 --) AIO 1 0
1 --) A9 I 0
0 --> AS I 0

9381 data reg 7 --) A7 1 0
(2A) 6 --) A6 1 0
low order 5 --) AS 1 0
address 4 --) A4 1 0

3 --) A3 I 0
2 --> A2 I 0
1 --) Al 1 0
0 --) AO 1 0

9382 control reg 7
(lA) 6

5
4 OOH to load DDR
3 04H to load addresses
2
1
0

9383 control reg 7
(2A) 6

5
4 OOH to load DDR
3 04H to transfer data
2
1
0

9384 data reg 7 <--) D7 0 1
(lB) 6 <--> D6 0 I
EPROM data 5 <--> DS 0 1

4 <--) D4 0 1
3 <--) D3 0 I
2 <--> D2 0 1
1 <--) Dl 0 1
0 <--> DO 0 1

Figure 2 continued.

9385 control reg 7
(lB) 6

5 OOR = FFH for data write
4 OOR = OOH for data read
3 OOH to load DDR
2 04H to transfer data
1
0

9386 data reg 7 --) -verify 1 1
(2B) 6 --) -write 1 1
command/ 5 --) -read 1 1
status 4 <-- -En 0 x

3 --) -drn 1 1
2 --) -G 1 1
1 --) -E 1 1
0 --) -Vppon 1 1

9387 control reg 7
(2B) 6

5
4 OOR to load OOR
3 04H to transfer commands/status
2
1
0

note:
Initial data for the command/status register should be loaded

before the I/O bits are set to output.
--) means into EPROM

<-- means out of EPROM
<--) means bidirectional data flow

Appendix 1, Software source listing

May 9, 1984

May 7 11:30 1984 4keprom.s Page 1

Terminal driven Eprom programmer for use with Heathkit trainers.
Michael Milway
15/8/1983
ammended 26/4/1984

Commands are:
Program
Verify
Read
Erased?
Fill
exit

p<ramstart>[,<count>[,<romstart>JJ
v<ramstart>[,<count>[,<romstart>]]
r<ramstart>[,<count>[,<romstart>JJ
e[<romstart>[,<count>]]
f<ramstart>[,<count>]
x[<address>l

. equates,
dromaddr equ OxOOOO ;default start address for rom
d2count equ Ox0800 ;default count
d4count equ OxlOOO ;default count for 4K
addrhd equ Ox9380
addrld equ Ox9381 ;Eprom address registers
addrhc equ Ox9382
addrlc equ Ox9383 ;eprom address control registers
datad equ Ox9384 ;Eprom data register
datac equ Ox9385 ;Eprom data control register
cntrld equ Ox9386 ; Programmer control data register
cntrlc equ Ox9387 ; Programmer control control register
reset equ Oxfffe ;address of reset vector
redis equ Oxfcbc ;reset display routine
outbyt equ Oxfe20 ;display byte routine
putline equ Oxa009
getline equ OxaOOc
wr4 equ OxaOOf
wr2 equ Oxa012
putchar equ Oxa015
getchar equ Oxa018
getaddr equ Oxa02d
tohex equ Oxa030
toascii equ Oxa033
to1ower equ Oxa036
ishex equ Oxa039
1s16 equ Oxa03c
wait equ Oxa03f
,
.************************************,

org

.,
; Command

;

command

cmd .warm

get command line
collect addresses and check for some command errors

Ox2000

ldx Ilblurb
jsr putline ;print out welcoming message
ldx Ilcmd.prmt
jsr putline ;the prompt
ldx IIbuffer
jsr getline ;get command line

May 7 11:30 1984 4keprom.s Page 2

cmd.1

cmd.2

cmd.3

cmd.4

cmd.S

cmd.99

cmd.err

errmsg
cmd.prmt

interp

Idx
cIr
Ida
inx
sta
jsr
tst
bne
Ida
jmp
stx
Idx
stx
Idx
inc
Ida
inx
cmp
beq
jmp
jsr
tst
bne
jmp
stx
Idx
stx
Idx
inc
Ida
iux
cmp
beq
jmp
jsr
tst
bne
jmp
stx
Idx
stx
Idx
inc
Ida
iux

cmp
beq

Idx
jsr
jmp
de
de
Now

IIbuffer
noargs
a,O(x)

a,cmmd
getaddr
a
emd.l
a,O(x)
cmd.99
templ
addr
addrl
temp1
noargs
a,O(x)

a,lt' ,'"
cmd.2
cmd.99
getaddr
a
cmd.3
cmd.err
templ
addr
addr2
templ
noargs
a,O(x)

a,#','
cmrl.4
cmd.99
getaddr
a
cmd.S
cmd.err
templ
addr
addr3
templ
noargs
a,O(x)

a,lI'\n'
interp

Ilerrmsg
putline
command
"arguments
"eprom.2-)

have a comtnand

jcounter for n~ber of arguments
jget command character

jget first argument
jvalid address?
jyes
jno, get next character

jsave first address

;number of arguments ++
jnext char

jlegal separator

jyes, next address
jvalid address?
jyes

jsecond address

jlegal separator?
jyes

jvalid address
jyes

jend of line?
jyes, have valid command so interpret it

joutput error message
jstart again

error\n\O"
\0"
and arguments, so interpret it

May 7 11:30 1984 4keprom.s Page 3

for 2K

f<ramstart>[,"

;f1111

;exit?

;erased?

;verify?

;read?

;no

;load default values
;get command
;make lower case
;program?

;default exitreset
xaddr
IJd2count
count
fJdromaddr
romaddr
a,cmmd
tolower
a,ftp'
intr.l
program
'intr .9
a,IJ'v"
intr.2
verify
intr.9
a,If"r"
intr.3
read
intr.9
a,II"e'
intr.4
erased
intr.9
a,fI'f'
intr.5
fill
intr.9
a, fl"x'
intr.6
exit ;exit does not return
Ifcmd.ill ;must be illegal command
putline ;illegal command
command ;cold restart
cmd .warm ;next command
"illegal command\n\O"
"\nEPROM programmer, version 2\n"
"Program 2K or 4K EPROMs\n"
"Arguments in angle brackets"
" are hex numbers\n"
"Arguments in square"
" brackets are optional\n"
"Commands are;\n"
"Program p<ramstart>[,<"
"count>[,<romstart>]]\n"
"Verify v<ramstart>[,<"
"count>[,<romstart>]]\n"
"Read r<ramstart> [, <"
"count>[,<romstart>]]\n"
"Erased? e[<romstart>["
" ,<count> J J\n"
"Fill FF
"<count>]\n"
"exit x[<addr>]\n"
"type 'x' to abort verify "
"and erased\n"

Idx
stx
ldx
stx
ldx
stx
Ida
jsr
cmp
bne
jsr
bra
cmp
bne
jsr
bra
cmp
bne
jsr
bra
cmp
bne
jsr
bra
cmp
bne
jsr
bra
cmp
bne
jmp
ldx
jsr
jmp
jmp
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc

intr.9
{'mil.ill

rb

intr.4

intr.6

intr.5

intr.2

intr.3

intr.l

May 7 11:30 1984 4keprom.s Page 4

de "type 'return' to continue "
de "verify and erased\n"
de "Default values are 0800H for"
dc "count, 0000 for romstart\n"
dc "and processor reset vector"
dc " for x\n\O"

Main Eprom subroutines here

program

title "Program"
jprogram an eprom
;inputs: noargs number of arguments
jaddrl ••addr3 initial pointers
joutputs: none
jcalls: ports, ready, putline
;destroys: A,B,CC,X,memory pointers
jsr ports ;set up ports, data = input.
Ida a,IIOO
sta a,datac
Ida a,flOxff
sta a,datad jdata = output.
Ida a, t!Ox04
sta a,datac ;point to data reg
;check that Eprom is selected and power 1s on
jsr ready
Ida a,noargs jhow many arguemants
bne psome
ldx f/toof ew
jar putline
rts

jramstart

;count

;romaddr

;set up for programming eprom

jget eprom pointer
;address eprom

;next location

jget data

May 7 11:30 1984 4keprom.s Page 5

sta a,datad ;output to EPROM

jreset program control word

jloop until all positions done

;say that its done

jcount for 50msec

;one less to go

;next memory location
;program byte

count
prptl
a,IIOxff
a,cntrld
IIpdone
putline

ramaddr
a,pprog
a,cntrld
116250
wait
a,pinit
a,cntrld
count

inx
stx
Ida
sta
ldx
jsr
Ida
sta
ldx
dex
stx
bne
Ida
sta
ldx
jsr
rts
dc "Program completed\n\O"
title "Verify"
;verify eprom contents
;inputs addrl ••addr3,noargs
;outputs none
;calls: putline,wr4,ready, ports, wr2, putchar
;destroys: all

pdone

Ida a,IIOx79

;set up ports, data =
and power on

verify

vsome

vbegin

vrptl

jsr
;check
jsr
Ida
bne
ldx
jsr
rts
ldx
stx
dec
beq
ldx
stx
dec
beq
ldx
stx

sta
ldx
stx
Ida
ldx

ports
selected

ready
a,noargs
vsome
IItoofew
putline

addrl
ramaddr
a
vbegin
addr2
count
a
vbegin
addr3
romaddr

a,cntrld
romaddr
addrhd
a,datad
ramaddr

;load required values

;verify led on
;input data
joutput enable on
jchip select on
;Vpp off

;get eprom pointer
jaddress eprom
;get eprom data

input

jreset programmer control byte

jprint all well message

jget proper data
jprint it

jleave loop if all locations
;inspected

jget bad data
jprint it

;next location

;wait for any character to resume
;i£ x then exit

jwhich location?
;print it

;compare eprom contents with
;memory contents
jno error

I'vdone
putline
a,IIOxff
a,cntrld

ldx
jsr
Ida
sta
rts
dc "Verify completed\n\O"
dc "Location \0"
dc " contains \0"
dc " instead of \0"
title "Check 2K EPROM erased"
jread a 2K EPRQM from the EPROM programmer
jcheck that each location • FFH
jinputs: addrl, addr2, noargs
;outputs: none
jcalls: ports, ready, putline, wr4, wr2, putchar, getc
;destroys: all

erased

vdone
vbad1
vbad2
vbad3

vend

May 7 11:30 1984 4keprom.s Page 6

cmp a,OO(x)

beq vgood
Idx I'vbadl
jsr putline
ldx romaddr
jsr wr4
ldx /lvbad2
jsr putline
Ida a,datad
jsr wr2
Idx IIvbad3
jsr put line
Idx ramaddr
Ida a,O(x)
jsr wr2
Ida a,II'\n'
jsr putchar
jsr getchar
cmp a,II'x'
beq vend

vgood Idx ramaddr
inx
stx ramaddr
ldx romaddr
fnx
stx romaddr
ldx count
dex
stx count
bne vrptl

jsr
;check
jsr
Ida
beq
Idx
stx

ports
that Eprom
ready
b,noargs
ebgn
addrl
romaddr

;set up ports
is selected and power is on

;how many arguments?
jnone
;start address

May 7 11:30 1984 4keprom.s Page 7

jturn off read led

ihow many arguments?
;at least one

imore?

jnext please

iwrite out error message

iX to exit
.,

jaddress eprom
;get data
;shouid be FF if erased

;how many

;verify led on
jinput data
;output enable on
;chip select on
jVpp off

romaddr
count

count
ewh2
f/ebyel
putline
a,flOxff
a,cntrld

a,cntrld
romaddr
addrhd
a,datad
a,flOxff
egood
flebadl
putline
romaddr
wr4
f/ebad2
putline
a,datad
wr2
a,fI'\n'
putchar
getchar
a,fl'x'
ebye
romaddr

b
ebgn
addr2
count
a,flOx79

stx
Ida
cmp
beq
ldx
jsr
ldx
jsr
ldx
jsr
Ida
jsr
Ida
jsr
jsr
cmp
beq
ldx
lnx
stx
Idx
dex
stx
bne
Idx
jsr
Ida
sta
rts
dc "Location \0"
dc " contains \0"
dc "Erasure check completed\n\O"
title "Read 2K Eprom"
;read a 2K EPROM from the EPROM programmer
;inputs: addrl ••addr2, noargs
;outputs: none
;calls: ready, ports, putline
;destroys: all
jsr ports ;set up ports
;check that Eprom is selected and power is on
jsr ready
Ida a,noargs
bne rsome
Idx fJtoofew

sta
ldx

dec
beq
ldx
stx
Ida

read

ebadl
ebad2
ebyel

ebye

egood

ewh2

ebgn

May 7 11:30 1984 4keprom.s Page 8

jsr putline
rts ;error not enough

rsome Idx addrl
stx ramaddr
dec a
beq rbegin
ldx addr2
stx count
dec a
beq rbegin
ldx addr3
stx romaddr

rbegin
Ida a,IIOxd9

;read led on
;input data
;output enable on
;chip select on
;Vpp off

sta a,cntrld
rwh1 Idx romaddr ;get address pointer

stx addrhd ;output to Eprom
inx
stx romaddr ;next
Ida a,datad ;get Eprom data
ldx ramaddr
sta a,O(x) ;dump to ram
inx ;next address
stx ramaddr ;next dump address
Idx count
dex
stx count
bne rwh1 ;any more?
Ida a,IIOxff
sta a,cntrld ;clear control register
ldx Ilrdone
jsr putline ;say read done
rts

rdone dc "Read completed\n\O"
title "Fill with FF"
;Fill ram with OxFF
;inputs: addr1, addr2, noargs
;outputs: none
;calls: putllne
;destroys: A, Xa CC

fill
Ida a,noargs ;how many arguments?
bne fsome
Idx Iitoofew
jsr putline
rts

faome
Idx addrl
stx ramaddr
dec a
beq fbegln

May 7 11:30 1984 4keprom.s Page 9

ldx addr2
stx count

jpoint to ddr of all ports
jddr for address port

jinitial control values all 1's

jdata port all input

jpoint to data part of programmer
jconrol register

juse user exit address

;write out message

;say fill done

;count for 50 msec

;use default exit

a ,1!Oxff
a,cntrld
a,IIOO
a,addrlc
a,addrhc
a,datac
a,cntrlc
1I0xlfff
addrhd
a,datad

ramaddr
count

count
fwhl
Ilfdone
putline

a,IIOxff
ramaddr
a,O(x)

Ida
sta
Ida
sta
sta
sta
sta
ldx
stx
sta

ldx lIexi tmsg
jsr putline
ldx xaddr
jsr wr4
Ida a,tI'\n'
jsr putchar
ldx 116520
jsr wait
ldx xaddr
jmp O(x) ;finally exit
dc "branching to address \0"
title "misc programmer routines"
;set up ports
jinputs: none
joutputs: none
jcalls: nothing
jdestroys: A, X, CC
Ida a,tlOx04
sta a,cntrlc

Ida
ldx
sta
inx
stx
Idx
dex
stx
bne
ldx
jsr
rts
de "Fill completed\n\O"
;exit to monitor or user program
;inputs: addr - exit address
;outputs: none
jcalls: putline, wr4, putchar, wait
jdestroys: all
Ida a,noargs
beq xnone
ldx addrl
stx xaddr

ports

exitmsg

xnqne

fwhl

fdone
exit

fbegin

May 7 11:30 1984 4keprom.s Page 10

jassume have 2K eprom
;set up initial value to be used by
jprogram routine
;write led on, output data, G=1, E=O,
;Vpp off

;point to data register of all ports

;1 bit in, 7 bits out

2K or 4K selected and power on

a,IJOxef
a,cntrld
a,IIOx04
a,addrhc
a,addrlc
a,datac
a,cntrlc

Ida
sta
Ida
sta
sta
sta
sta
rts
jReady
jloop until both
;inputs: none
;outputs: none
;calls: nothing
;destroys: A, CC
Ida a ,IIOxa5ready

jreturn value from getaddr

jdefault count for 4K

jprogram value
jE (-- 0, Vpp (-- on

jget 2k, 4k, 8k switch settings
j2K?
;yes

;check power

;value to be used for programming
jE (-- 1, Vpp (-- on

j4K?
;neither so wait

and pprog with 4K values
jinit value for 4K eprom
;write led on:, data output!, G=x', E=l
jVpp off

Oxl02
Oxl08
Ox10a
Oxl0c
OxIOe

a,pprog
fld4count
count
IIr4kmsg
putline

equ
equ
equ
equ
equ

sta
ldx
stx
1dx
jsr
rts
dc "4k eprom selected\n\O"
dc "not enough arguments\n\O"
seg 1
variable storage area

ready2
r4kmsg
toofew

sta a,pinit
Ida a ,IIOxa6

sta a,pprog
readyl

1da a,cntrld
and a,IIOxIO
bne readyl
Ida a,addrhd
and a,flOx20
beq ready2
Ida a,addrhd
and a,flOx40
bne readyl
j4K so replace pinit
Ida a,flOxa3

sta a,pinit
Ida a,flOxaO

,
addr
temp1
addrl
addr2
addr3

May 7 11:30 1984 4keprom.s Page 11

ramaddr equ OxIlO
count equ Oxl12
xaddr equ Ox1l4
romaddr equ OxIl6
cmmd equ OxIl8
noargs equ Oxl19
pinit equ Oxlla
pprog equ Oxl1b
buffer equ !+1
;Addressing for EPROM Programmer.

·)
;address port bit direction use . DDR initial data

·)
;9380 data reg 7 <-- 8K 0 X

(AI) 6 <-- 4K 0 x
high order 5 <-- 2K 0 x
address 4 --) Al2 I 0

3 --) All I 0
2 --) AIO I 0
1 --) A9 1 0

· 0 --) A8 1 0,
;9381 data reg 7 --) A7 1 0

(BI) 6 --) A6 1 0
· low order 5 --) A5 1 0,

address 4 --) A4 1 0
3 --) A3 1 0
2 --) A2 1 0
I --) Al 1 0

· 0 --) AO 1 0,
;9382 control reg 7

(AI) 6
5
4 OOH to load DDR
3 04H to load addresses
2

· 1,
0

;9383 control reg 7
(BI) 6

5
4 OOH to load DDR
3 04H to transfer data
2
1

· 0,
;9384 data reg 7 <--) D7 0 1

(A2) 6 <--) 06 0 1
EPROM data 5 <--) 05 0 1

4 <--) 04 0 1
3 <--) 03 0 1
2 (--) 02 0 1
1 <--) 01 0 I

· 0 <--) 00 0 1,
;9385 control reg 7

(A2) 6
5 DDR = FFH for data write

May 7 11:30 1984 4keprom.s Page 12

-verify 1 1
"'write 1 1
-read 1 1
-En 0 x
-drn 1 1
-G 1 1
"'E 1 1
-Vppon 1 1

DDR = OOH for data read
OOH to load DDR
04H to transfer data

OOH to load DDR
04H to transfer commands/status

--)
--)

--)

<-
--)

--)
--)
--)

4
3
2
1
o
7
6
5
4
3
2
1
o
7
6
5
4
3
2
1
o

data reg
(B)
command/
status

control reg
(B2)

;9387

.,
;note:
; Initial data for the command/status register should be loaded
;before the r/o bits are set to output.

--) means into EPROM
<-- means out of EPROM
<--) means bidirectional data flow

end

.,
;9386

	University of Wollongong
	Research Online
	1984

	An EPROM programmer for the ET3400 expansion system
	Michael J. Milway
	Recommended Citation

