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Abstract- As over 70 percent of the earth’s surface is covered by water, it is desirable to deploy underwater 

sensor networks to support oceanic research. Under Water Sensor Networks (UWSNs) use acoustic waves 

and are characterized by long and variable propagation delays, intermittent connectivity, limited 

bandwidth and low bit rates. Energy savings have always been the primary concern in wireless sensor 

network protocols; however there are applications where latency and throughput are prioritized over 

energy efficiency and are so significant that the application would not be able to satisfy its requirements 

without them.  Although existing duty-cycle MAC protocols are power efficient, they introduce significant 

end-to-end delivery latency, provide poor throughput and are not suitable for the challenging environment 

of an UWSN. In this paper, we utilize CDMA as the underlying multiple access technique, due to its 

resilience to multi-path and Doppler’s effects prevalent in underwater environments. We propose UW-

MAC, a CDMA-based power controlled medium access protocol that uses both transmitter based and 

receiver based CDMA inside a formed cluster, and uses a TDMA schedule to make the cluster heads 

communicate with the base station. Our MAC algorithm targets latency and throughput needs in addition 

to its ability to increase the overall network lifetime. We discuss the design of UW-MAC, and provide a 

head-to-head comparison with other protocols through extensive simulations focusing on the performance 

in terms of latency, throughput and energy consumption. 

 

Keywords- Underwater Sensor Networks; MAC; scalibility; delay; energy efficiency; CDMA; battery 

Aware;  
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I. INTRODUCTION 

During the past few years, a significant interest in monitoring aquatic environments has emerged. Such a 

process was driven by major incentives such as scientific exploration, commercial exploitation, and coastline 

protection. These functions were made feasible by applying underwater communications among underwater 

devices. Underwater wireless sensor networks comprise a number of sensor nodes and vehicles installed at 

different levels of the ocean (surface, bottom, and mid-ocean) to perform various functionalities, most importantly 

monitoring the ocean environment. The underwater devices are connected via wireless links founded on acoustic 

communications. Underwater sensor nodes thus facilitated such applications as ocean bottom data collection, 

offshore discovery, disaster avoidance, pollution monitoring, navigation and surveillance. The communication 

unit and the antenna operation consume most of the battery powered energy of a sensor node. This means that the 

access to the medium must be controlled in a very strict manner in order to avoid collisions which result in lost 

transmissions and have a dramatic impact on the lifetime of the network. In underwater sensor networks (UWSN), 

a shared acoustic medium adds to these challenges. Acoustic communication magnifies wireless bandwidth 

limitations; transmit energy costs, and variations in channel propagation. Control algorithms of MAC protocols 

are changed even more by acoustic propagation latencies that are five orders of magnitude greater than radio. 

Underwater sensor networks have many characteristics that make them different from packet radio networks. 

Some of these characteristics are summarized below: 

 

1- Latency: The delay in short-range RF networks can be estimated by considering just the transmit time, as the 

propagation delay is negligible. The large propagation delay of acoustic media makes essential to also 

consider the locations of a receiver and potential interferers. Distance between nodes translates into 

uncertainty. 

2- Channel Sampling: Sampling of the medium for activity is an essential component of all CSMA-based 

MACs. Listening to the medium before transmitting data prevents nodes from colliding with concurrent 

transmissions. While this is never perfect because of potential delay between measuring a clear channel and 

beginning transmission, it is much less effective in UWSNs 

3- Hidden and Exposed Terminal Problems: A situation of a hidden terminal occurs when one station cannot 

sense one or more nodes that can interfere with its transmission. A situation of an exposed terminal occurs 

when a station delays transmission because of another overheard transmission that would not collide with it. 

CSMA protocols degrade in the presence of such problems, both of which are very likely to occur in UWSNs. 

4- Transmitting Tones: Wireless transceivers often work in half-duplex mode, and thus on a single channel a 

node that is transmitting cannot receive another packet at the same time. In the case of transmitting tones, a 

node will be unable to completely receive another tone with a probability that is proportional to the tone 

length.  

 

Consequently, suitable access schemes have to be developed to enable efficient communication in underwater 

wireless environments. In the literature, there are increasingly more research efforts that focus on designing MAC 
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protocols for underwater communications. However, most of these protocols still employ RF channel acquisition 

methods such as carrier sensing; hence they may not be very efficient in underwater acoustic environments with 

particularly low bandwidths, variable delays and severe energy constraints. 

 

In this paper, we utilize CDMA as the underlying multiple access technique, due to its resilience to multi-path 

and Doppler’s effects prevalent in underwater environments. CDMA systems allow for concurrent transmissions 

at the same frequency to occur through separating the signals by their corresponding spreading codes. Each 

terminal after joining the network receives a code through the code assigning protocol which it uses to expand the 

bandwidth of its signals that need to be transmitted, thus allowing for multiple transmissions from different users 

to occur at the same time and in the same frequency. These spreading codes can be transmitter based, receiver 

based, or a hybrid of both. In the first, the signal sent is spread using the code of the transmitter which allows 

multiple transmissions to be directed to the same receiver. However the receiver is supposed to monitor the whole 

code set of its neighbors so that it can be able to despread all received signals. In the second, the spreading is done 

using the code of the receiver. This simplifies the receiver design which now needs only to monitor its own code 

instead of the whole code set, but requires the transmitter to store the codes of all of its neighbors in its memory. 

Also, for a receiver based code, multiple transmissions to the same receiver result in collisions because the same 

code is used for spreading of all the signals destined to the same receiver. The third approach for spreading codes 

is to use a hybrid (receiver-transmitter) based spreading as proposed in [1]. In this scheme, the transmitter spreads 

the packet header containing the source and destination addresses by the receiver’s code and the rest of the packet 

by its code. The receiver on the other hand monitors its code until it receives the packet header and retrieves the 

sender’s address. Then it switches to the transmitters code and despreads the rest of the packet.  

 

One advantage of CDMA systems is that they allow users to send at any time without being confined by a 

certain allocated time slot or frequency channel. This leads to significant improvement in system performance in 

both latency and throughput measures. Also, since CDMA systems use spread spectrum modulation, they are 

resistant to jamming and provide self-interference suppression which is due to multipath propagation and multi-

access interference suppression from other users both of which are evident in UWSNs.  But these systems require 

sophisticated correlation filters that increase the complexity and the cost of the receiver node, and since they use 

spreading codes, they are usually not scalable. In this paper, we solve the first problem by having only specific 

designated nodes having this complex circuitry “Super Nodes” while the rest are relatively simple. The second 

problem is tackled though our scheduling algorithm that assures spreading code reuse by making nodes with the 

same allocated spreading code have orthogonal wakeup/sleep schedule. We also make use of spatial reuse of 

codes. Previously proposed MAC protocols for wireless sensor networks aim at minimizing the energy 

consumption of the nodes and this is done at the expense of degraded throughput and latency performance. There 

are many applications in wireless sensor networks that have stringent latency and high throughput requirements 

such as medical monitoring, intruder detection and battlefield surveillance. In the last for example, the data 

gathered by the sensors need to be transmitted effectively and under no delay conditions since it contains timed 

information about movement of explosives and car bombs that will signal the soldiers to act upon detection of 
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enemy presence. Also, when a sensor network is being used to track an object, out-of-date information is of no 

value because the object that is being tracked is no longer in the vicinity of the sensing node when the information 

is received at the base station. Thus our protocol design came to balance the considerations of energy efficiency, 

latency, throughput, and fault-tolerance in sensor networks. 

 

UW-MAC uses a combination of DS-CDMA and TDMA on the MAC layer and reduces channel interference 

by using a power control mechanism and a separate channel for control packets. The network is divided into 

clusters (formed initially after deployment), where each node could be any hop away from the clusterhead, that are 

kept intact for the whole lifetime of the network because our goal behind clustering is to construct a logical 

hierarchy in the network rather than assuring that each node is part of a cluster and that the clusterhead role is 

dynamically rotated to distribute energy fairly among nodes. Our algorithm can run on top of previously proposed 

clustering algorithms; yet we develop our own simple clustering algorithm (SCA) to show that our protocol does 

not need complex clustering and works fine even if only the basic requirements are met. The algorithm targets the 

MAC layer and provides through a cross layer design an optimum routing strategy that gives a best effort design 

to deliver data from the sensors towards the base station. The information flow traverses several nodes within a 

cluster reaching the clusterhead which in turn delivers the data to the base station. The clusters are divided into 

levels where each node chooses its best neighbor which is one level away from it, based on considerations of the 

battery state of the node, and packet transmission information which are represented in the form of a priority 

function. UW-MAC assigns PN codes and makes the nodes adopt a sleep/wakeup schedule that in addition to 

minimizing the power wasted on idle listening reduces the end to end delay of messages and enhances the network 

throughput. Also, since robustness is one of the desired characteristics of sensor networks, our algorithm reacts 

favorably upon the addition or failure of nodes and which could severely affect the performance of the network. 

Most work in the field propose ways to increase the lifetime of the nodes by means of power-aware techniques, 

such as, using an optimal transmission power or by switching of the nodes when idle. Though these protocols try 

to increase the lifetime of the network, they do not directly consider the behavior of the batteries. In our protocol, 

we also propose to exploit the chemical properties of the battery to increase their lifetime. Our protocol shows that 

a uniform discharge of the nodes of the network can increase their lifetime. This ultimately postpones the death of 

individual nodes and hence increases the network lifetime. The rest of the paper is organized as follows. In 

Section II, we present the work that has been done in this area focusing on both traditional terrestrial and 

underwater MAC protocols. Section III describes the battery model used in the MAC algorithm to make it energy 

efficient. Section IV describes in detail the principle design of UW-MAC. Section V presents the simulation 

results. We conclude this paper in Section VI. 
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II. RELATED WORK AND BACKGROUND 

A. Terrestrial RF Based Sensor Mac Protocols 

In the literature of WSNs, many MAC Protocols were proposed to achieve different requirements for sensor 

networks. S-MAC [2] was designed for tackling the idle listening problem, which is a dominant source of energy 

waste in sensor networks, through the adoption of periodic sleep and wakeup schedules. The duty-cycle of S-

MAC is fixed and predefined which makes it non-adaptive to traffic conditions in the network. Thus T-MAC [3] 

was designed to improve S-MAC by dynamically changing the idle listening intervals and hence improving 

throughput and end to end latency. On the other hand, B-MAC provided a different approach for minimizing 

energy on the MAC layer by using a low power listening scheme and allowing the application to develop its own 

MAC protocol through a well defined interface. B-MAC outperforms both S-MAC and T-MAC in terms of 

throughput and energy efficiency. A key reason why current terrestrial Radio-Frequency (RF) based MAC 

protocols cannot be directly used in UWSNs is that they do not cater for the harsh physical characteristics of an 

underwater environment. 

In general, MAC protocols can be classified as either contention based or contention free protocols. TDMA is 

an example of a contention-free MAC protocol whereby each node is allocated a specific time slot in which it can 

send or receive. CSMA on the other hand is an example of a contention based MAC protocol which makes the 

nodes transmit RTS/CTS packets to gain access to the shared medium. In [5], a hybrid MAC scheme called Z-

MAC was developed which combines the strengths of both TDMA and CSMA like protocols. Z-MAC behaves 

either as CSMA or as TDMA based on the level of contention in the network. The advantage of Z-MAC over the 

other existing protocols is in the ability to overcome problems related to synchronization and topological changes.  

B. CDMA based MAC Sensor Networks Protocols 

Also, several MAC protocols proposed the design of CDMA-based protocols for wireless sensor networks. In 

[6], CDMA Sensor MAC "CSMAC" was developed to minimize latency in addition to reducing energy 

consumption. This was achieved through the use of a Direct Sequence Spread Spectrum CDMA system. It further 

used frequency division to reduce multiple-access interference. However, it assumed that each node is aware of its 

location, and that the application requires the delivery of low latency and high fault tolerance under high load 

conditions. Along the same lines, [7]  introduced a cross layer analysis for CDMA based wireless sensor 

networks, that examined analytically the Multi-access Interference (MAI) problem and shed light on the trade-off 

between interference and connectivity by using three deterministic topologies and one random topology for 

analysis of the problem. In [8], Liu and Asada proposed an energy efficient DS-CDMA system for sensor 

networks that controlled the MAI by using spreading codes with more reduced bits and employing an on-off 

keying data transmission scheme. In [9], a CDMA-based MAC protocol was designed for wireless ad hoc 

networks where an out-of-band RTS/CTS handshake was used to dynamically determine the transmission power 

of a node that will not result in collisions at neighboring receivers. The exchanged RTS/CTS packets included 

information that controlled the MAI resulting from multiple concurrent transmissions. 
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C. Underwater MAC Protocols 

The most closely related work is the MAC protocols designed for underwater acoustic networks that also deal 

with high latency. Early work uses naive CSMA with RTS/CTS [22], resulting in low throughput. The other work 

employs CDMA by developing code distribution techniques [24], which has high energy cost. Rodoplu and Park 

extend S-MAC’s schedule synchronization to sender receiver pairs in UWSN [23]. It allows energy-efficient 

operation, but lacks effective mechanism for contention. As a result, the protocol is only suited for applications 

that have extremely low traffic rates. S-FAMA uses an RTS/CTS exchange to prevent collisions, with an RTT 

penalty per packet attempt [25]. Peleato and Stojanovic extend this work using the fact that inter-node distance is 

seldom the maximum transmission range allowing less than RTT penalty per packet [26]. These recent efforts do 

not optimize for energy. The throughput that they achieve is also relatively low (< 20% normalized). UWMAC 

offers low latency, high throughput and energy efficiency, with flexibility for all types of applications. 

All of the above mentioned protocols do not take into consideration the battery behavior when minimizing the 

energy consumption in the network. But, [10] proposed a novel battery-aware MAC protocol which schedules 

transmissions of different nodes in a round-robin fashion, based on the battery state of the contending nodes. 

However, this protocol does not take into consideration the energy consumed due to idle listening and uses a 

simple round-robin scheduler that is ineffective since it does not adapt to the needs of the transmitting nodes. In 

BAMAC, a node which urgently needs to transmit a detected event must wait its turn although there may be other 

nodes that might not need to transmit any new data. Also, BAMAC neglects the power consumed on the 

transmission of control packets (RTS, CTS, ACK...) which implies that it makes no effort on minimizing protocol 

overhead which consume a significant amount of power. A novel protocol named TP-MAC was described in [17] 

that achieved synchronized low power listening with rapid fast path establishment by the propagation of short 

wake-up tones. The results of this paper show that TP-MAC can achieve very low duty cycles for the same target 

latency when compared with pure SCP-MAC [18]. On the other hand, L-MAC in [19] is a contention-based 

MAC-Protocol that targets low-latency, energy-constrained applications. L-MAC assumes that the network is 

divided into levels where nodes execute an adaptive sleeping schedule allowing those with lower traffic to have 

longer time to sleep in order to save more energy. L-MAC delays the transmission and reception of packets on a 

hop by hop basis, so that when a node is in the sending mode, its lower-hop node is in the receiving mode. The 

simulations performed in this paper show that L-MAC achieves lower energy consumption and latency than the 

traditionally used contention-based MAC-protocol. Level based scheduling was used in DMAC [20] which 

presents an adaptive duty-cycle protocol that is designed for data gathering trees in sensor networks. DMAC uses 

topology knowledge in order to stagger nodes’ schedules according to their position and depth in the routing tree, 

so that packets flow continuously from source nodes to the sink, minimizing end-to-end delay significantly. Light-

Weight MAC (LMAC) [21] is one scheme where each node controls a unique slot. However, nodes still have to 

contend to transmit data to an intended receiver in it’s time slot. The receiver (slot controller) is responsible for 

settling contention and deciding who it receives data from. Contention often leads to collisions and therefore such 

protocols require some form of Carrier Sense Multiple Access (CSMA) which cannot be used in UWSNs. 
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In this paper we present UW-MAC, a comprehensive framework on the MAC and Routing layers to be 

adopted by underwater sensor networks (UWSNs). UW-MAC further provides functionalities that can ease the 

design of upper layer protocols, especially clustering. Also, since CDMA code assigning protocols is essential in 

all CDMA systems, UW-MAC is able to integrate any code assignment protocol to the presented algorithm. Strict 

synchronization and power control can also be supported although not required by UW-MAC itself through the 

flexibility it offers.  We also incorporate a battery aware CDMA-based MAC protocol that will serve a low 

latency and high throughput demanding application. The protocol will also strive to minimize the energy 

consumption by tackling the problems of idle listening, overhearing, collisions, and protocol overhead using its 

scheduling algorithm. UW-MAC also provides the upper layers a proper cross layer design. 

 

III. AN ONLINE BATTERY MODEL 

Sensor nodes are battery powered, and as was mentioned earlier, protocols aim to minimize the power 

consumed in these batteries. But designing to reduce the average power consumption does not necessarily lead to 

optimum battery lifetime, since battery behavior highly depends on the discharge profile experienced by the 

battery. Hence, the actual behavior of the battery must be represented through a model that takes into account the 

processes that govern its operation in order to be able to determine the actual capacity of the battery which allows 

a node to assess its lifetime correctly so that it adapts its behavior to maximize this lifetime accordingly. Since 

energy minimization is a major constraint in sensor networks, our algorithm forces the nodes to track the state of 

their batteries, assess their participation in the network, and react to changes in their battery states by changing 

their routing decisions. Most battery models that are currently used for analyzing and simulating the energy 

efficiency of protocols are linear models, which assume that the maximum capacity of the battery is unaffected by 

the discharge rate. Unfortunately linear battery models are only a rough estimate of the actual battery behavior, 

which must take into consideration both the rate capacity effect and the recovery capacity effect of the battery. 

Moreover, the lifetime of a battery depends on the discharge profile, and hence protocols should behave in a way 

that takes this into account so that they can achieve the lowest energy consumption and hence the longest possible 

network lifetime.  

In our model, we represent the battery behavior using a discrete time Markov process (the discrete time model 

is an accurate representation because of the packetized nature of communications). We divide the time axis into 

slots each of fixed size. The Markov chain contains 'M' states where the zero state represents the state when the 

battery becomes dead and unable to recover whereas state 'M' represents a fully recovered battery (Fig. 1). A 

battery in state 'i' (i≠0) when left idle for a single time slot shall move back to state 'M' with a probability 0<prec_i< 

1 whereas if left idle for a time ∆ (recovery time) shall return to state M with probability prec_total≈1. In our 

algorithm a node's goal is to asses ∆ in order to take decisions on how long to remain idle. Thus a node and upon 

participating in a transmission should first realize the state it has transferred to by estimating the energy dissipated 

in the battery (Φ) during the process of transmission. After calculating this energy and knowing its initial state a 
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node can estimate its current state and the probability of recovering thus estimating ∆ as a result. Assume the 

transmission process takes place within the time slot 'n'. Then according to [16] Φn which is the energy dissipated 

in time slot 'n' is:   

),)1(,,(n βσσ +×=Φ nnTfIn                                    (1) 
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T= Lifetime of the battery if the energy was fully consumed. 

β= A chemical parameter experimentally determined and specific to each battery. 

In= Discharge current through the battery during time slot 'n'. 
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∏
−

=

=
1

_

N

iz
irecrec pp

                                                                                      (3) 

Notice that this model takes into account that the recovery capability of the battery decreases as the capacity 

decreases and thus the lower the state 'i' is the less the probability to recover in the next time slot. Note that η is an 

internal battery parameter which signifies its recovery capability. η depends on the internal battery resistance and 

the current the battery is discharged at. Finally, the amount of time needed for the battery to recover (∆) can be 

approximated by: )()1( ∆×−≈∆ Maxprec where )(∆Max is the maximum recovery time needed i.e. the time 
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of recovery needed if the battery were left to recover just before it dies. This value is determined experimentally 

and is specific for each type of batteries. Our algorithm shall use the value of ∆ as will be demonstrated below in 

order to compute a node's priority in being selected as a routing candidate towards the base station. 

 

IV. UW-MAC  DESIGN AND ANALYSIS 

 After initial deployment, each node will be in the set-up phase in which it will run a simple clustering 

algorithm that achieves leveling, neighbor discovery, choice of schedule and PN-code exchange in addition to the 

formation of  the clusters. Notice that all these functions are done in one step and only at startup and hence the 

overhead incurred will last for the whole lifetime of the network. After finishing the setup phase nodes will use 

CDMA as their basic MAC protocol to communicate with other nodes in a cluster. Our algorithm implements an 

adaptive TDMA schedule between cluster heads to allow them to communicate with the base station.  

 

A. Code Assignment Protocol 

Since our algorithm uses CDMA as the basic MAC protocol, a distributed code assignment protocol becomes 

a must. This code assignment protocol should offer spatial reuse and aim at assigning nodes with PN codes such 

as guaranteeing that no logically neighboring nodes use the same PN-code. Several code assignment protocols 

have been designed as in [13] and [14] and all tackle the above goal.  In this paper we assume that a code 

assignment protocol is present at a higher layer, yet UW-MAC design provides great opportunities of code reuse 

through its scheduling algorithm that tends to have neighboring equi-level nodes adopt different schedules. Thus 

these nodes are now able to use the same spreading code without interfering with each other since there wakeup 

schedules are different.  

 

B. Simple Clustering Algorithm & Network formation 

Our algorithm can run on top of previously proposed clustering algorithms; yet we develop our own simple 

clustering algorithm (SCA) to show that our protocol does not need complex clustering and works fine even if 

only the basic requirements are met. We also use SCA to leverage the overhead inherently present in any 

clustering algorithm to perform neighbor discovery, leveling, schedule selection and exchange of PN-codes at the 

same time. This is run only at startup and hence this minimal overhead is incurred only once in the network's 

lifetime. We will later discuss the scheduling algorithm so what follows will only describe the remaining 

functionalities handled by SCA.  We assume there are two kinds of nodes in our network. The first we shall call 

"super node" and is supposed to have higher capabilities than the rest of the nodes in that they are more energy 

abundant and have high communication ranges i.e. can directly communicate to the base station.  They also have 

relatively more complex circuitry in order to receive packets from their one hop neighbors that will be sent using 

transmitter based CDMA. Yet not too complex since a node needs only to monitor the codes of its higher-level 

neighbors and not the whole code set. The second type is the "normal node" and which constitute most of the 

nodes in the network. When a super node needs to send packets to normal nodes, it uses the value of the power 
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equal to a normal node's maximum power. This will allow us to assume equal forward and reverse gains between 

any pair of nodes including cluster heads. On the other hand, super nodes are allowed to raise their power when 

they need to communicate with the base station.  

 

In SCA, we aim at forming multi-hop clusters with super nodes as cluster-heads. However in wireless sensor 

networks, the nodes are often randomly deployed and hence there might exist a part of the network which is not 

connected to any super node. By connected we mean that it is a k-hop neighbor to it i.e. there exist a path from it 

to any super node. This case though will be rare given a sufficient number of super nodes is present. We allow 

nodes that can directly reach the base station and who after the network formation phase were not part of any 

cluster to elect themselves as cluster-heads and form clusters. Note that remaining nodes which are neither 

connected to any super node nor to any normal node which is itself connected to the base station are considered 

partitioned from the remaining of the network and hence cannot be handled in any way since their data can never 

reach the base station. The overhead incurred in the formation of clusters is also used for neighbor discovery, level 

discovery, schedule formation and exchange of PN-codes.  

 

After deployment, each normal node waits for a predefined period T which depends on the total number of 

nodes in the network 'N'. N can be decided and configured in the nodes prior to deployment. Yet this does not 

affect the ability of our protocol to support addition and removal of nodes since the time 'T' is needed only once 

and that is during the network formation phase. In this time T, super nodes are allowed to form clusters. Each 

super node forms an invitation packet and includes in it a cluster ID, a level field and a PN-code field. The level 

field in the packet is set to 0 whereas the levels initially stored in the nodes have a value of INFINITY until they 

get updated by the reception of an invitation packet. This invitation packet is first sent to the super node's one-hop 

neighbors with a power equal to a normal node's maximum power. The one hop neighbors in turn are supposed to 

store the cluster ID which is now their cluster, increment the level field in the packet and store it as their level to 

replace the INFINITY value. They will also include the PN-code they listen at in the PN-code field and 

rebroadcast the packet to their one hop neighbors. However before doing so they wait for a certain amount of time 

also a function of 'N' to make sure that all super nodes have sent their invitation packets to their one hop 

neighbors. Next, the two-hop neighbors of the super node now receive the invitation packet from their lower level 

neighbors. Upon receiving the packet, a node looks at its level and if it is greater than the level in the packet plus 

one, it updates its level by setting it equal to the packet level plus one then joins the advertised cluster. Also it 

stores the address of the lower level neighbor that sent the packet along with its PN-code. On the other hand if the 

node's level is equal to the level in the packet plus one, it only updates its table if the advertised cluster ID in the 

received packet is the same as its current cluster ID. Hence, it forms a table of its lower level one-hop neighbors 

and their corresponding PN-codes. These nodes in turn will then replace the PN-code of the received packet by 

their own PN-code, increment the level field and rebroadcast the packet again after waiting for the sufficient time 

'T2' to allow their lower level nodes to finish broadcasting. Note that the delay in the network formation process 

resulting from waiting 'T1' and several 'T2' seconds are acceptable since the latency constraint we are targeting is 

in the application and thus after network formation.  The process continues until all possible nodes which are able 
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to join a cluster do so. A node which doesn't belong to any cluster yet will try to contact the base station. If it 

succeeds, it elects itself as a cluster-head and floods an invitation packet as before however this time indicating 

that it is not a super node and hence do not have the complex circuitry needed to receive messages using 

transmitter based CDMA. Its one hop neighbors will thus resort to a centralized TDMA schedule managed by the 

advertised cluster head. We suspect such a case to be rare if enough super nodes are present, yet we present this 

patch to our algorithm to solve such unpredictable cases and decrease the chance of having partitioned sections in 

the network.  

 

C. Power Control Mechanism 

In UW-MAC, we use a combination of transmitter based and receiver based CDMA. All level 1 nodes of a 

cluster (i.e. nodes one-hop away from the cluster-head) use transmitter based CDMA to send packets to the 

cluster-head whereas nodes with a level of 2 or above use a receiver based CDMA to communicate with upper 

level nodes. CDMA suffers from Multi Access Interference (MAI) and one of the ways of reducing the effect of 

MAI is through power control. Moreover, Power control significantly reduces energy consumption which is 

highest during transmissions; however it also decreases the signal to interference plus noise ratio (SINR) at the 

targeted receiver. This results in a tradeoff between reducing interference at non-targeted nodes and battery 

consumption on one hand, and reducing the SINR at the targeted node on the other hand. Since the applications 

we are considering (Intrusion detection, medical monitoring, animal tracking, etc.) possess the requirement of 

having all sensors that detect an event transmit their data with the lowest possible latency, there would be 

instances in the network lifetime where there is a burst of data that needs to be transmitted. The sensors would be 

carrying different types of information as well as different data within every type, and all need to reach the base 

station with minimum delay. Therefore our power control mechanism will prioritize reducing MAI at neighboring 

nodes which we expect will be concurrently receiving transmissions as well.  The scheme we use will not totally 

prevent collisions from occurring though will reduce their occurrence drastically and doesn't require a node to 

keep listening on any channel for the whole time. Note that UW-MAC can support other tight and more restricted 

power control schemes through the flexibility it provides by its use of RTS/CTS packets which allow for packet 

level power control to occur smoothly and without significant extra overhead. 

 

In our scheme, a node i wishing to send to another node j will first send it an RTS on the control channel at 

maximum power maxP . Node j will then calculate the minimum power that node i can use to send data to it. Hence 

node j would reply back with a CTS which includes the minimum power that i can use to send to j. Consequently, 

node i will send at the power which it received the CTS.  We assume that all nodes initially agree and know the 

value of maxP . Node j on the other hand receives the RTS with a certain power rP  and can thus compute the 

channel gain G=
maxP
Pr . We assume that the packet duration (∆tp) is small compared to the coherence time of the 

channel (τc). Therefore the channel is slowly fading and G can be assumed constant for the duration of the packet 
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transmission.  Let Ωj =
eff

b

N
E

0

 be the effective bit energy-to-noise spectral density ratio at node j. Let Ωj
* be the 

effective bit energy-to-noise spectral density ratio at node j that is needed to achieve the target bit error rate. 

Hence at node j we require that: 

 *
P  MAIThermal

Ω≥
+P

Precv

                               (4)
 

where recvP  is the power received by terminal j, ThermalP  is the thermal noise power and MAIP  is the total power due 

to multi-access interference at the receiver. Therefore min
recvP = Ωj

* × ( ThermalP  + MAIP ), where min
recvP is the minimum 

received power needed by terminal j in order to correctly decode the packet. Finally 
G

PP recv
min

min =  is the minimum 

power needed for the transmitter to send at in order to allow the receiver to properly decode the packet. Node j 

places the minimum power calculated above as an additional field in the CTS packet and sends it back. Node i 

consequently will send data to node j at minP . Hence by using power control, we were able to reduce MAI since 

the effect of a certain transmission on another nearby one is much less (The power used for transmission is much 

less). Moreover we were able to significantly save energy by reducing the power used by nodes for transmission. 

 

D. Wakeup/Sleep Schedule 

Since Idle Listening is a major source of energy wastage in sensor networks, a wakeup/sleep schedule becomes 

very essential in prolonging a network's lifetime. Hence, the goal behind the scheduling algorithm is to minimize 

the energy consumed by non-clusterhead nodes in the network, but provided that the penalty incurred on the end-

to-end packet latency is tolerated by the delay requirements of the application running in the network. The 

scheduling scheme adopted in UW-MAC provides the nodes which are closer to the clusterhead with the priority 

of determining the wakeup/sleep schedule, since the nodes that are closer to the clusterhead experience a higher 

amount of traffic due to the uni-directionality of the generated data. In addition, the scheduling scheme tries to 

make neighboring nodes at the same level adopt different schedules and try to make nodes at level 'n' adopt the 

same schedule as their neighboring nodes on levels 'n-1' and 'n+1'. The intuition behind these goals is that we try 

to make nodes adopt the same schedule as their upper and lower level neighbors since they will be responsible for 

relaying the packets from the lower level neighbors and through the upper level ones towards the cluster-head. On 

the other hand, we try to make nodes on the same level adopt different schedules as much as possible so that if a 

lower level node gets data and wants to forward it towards the cluster-head, it will find an awake upper-level 

neighbor which will forward the packet for it. 

 

Initially, all the nodes will run the UW-MAC algorithm without sleep scheduling in a phase called the 

initiation phase which allows the higher level nodes to compute the priorities for their neighbors that are one level 

below. The goal of this phase is to set up the schedules that will be used during the steady state phase, and it can 
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be repeated to enhance the performance in the steady state phase. In order to obtain orthogonal schedules for 

nodes lying on the same level, the clusterhead defines orthogonal schedules for the lowest level nodes (equal 

division of slots in a round robin fashion) and the upper level nodes try to adopt the schedules initiated by the 

lower level nodes. The lower level nodes will start by computing the sleep duration knowing that minimizing the 

sleep time Tsleep beyond a certain threshold results in rapid switching between the on and off modes that leads to 

large energy wastage due to the transient characteristics of hardware circuits and maximizing it can result in not 

meeting the latency and throughput requirements of the application. The lower level nodes will periodically 

transmit a special "sleep" packet that contains the time the node will sleep for the coming frames, where the 

duration of a frame F is defined by a number m of Active/Sleep cycles F = m x Tcycle where the active period of a 

cycle is large enough to receive RTS and reply with a CTS or receive a data packet. However, the “sleep” packet 

will be transmitted only if the difference between the new “sleep time” and the previously calculated is larger than 

a certain threshold determined by the energy wasted on the transmission of the “sleep” packet and its reception by 

the one level away neighbors 
)1(

)1()2(

sleep

Tsleepsleep

T
T − >> α   where α is determined from: 

)(neighboursresidual

rxtx

E
nEE +  where n is 

the number of neighbors that have a one level higher level inside the cluster and Eresidual is the remaining battery 

energy of a sensor node. Hence, the power consumption due to wake-ups can be given as: P0 = 
F
Emx 0

 where E0 

depends on the active period and the hardware circuit. The sleep time is a function of the recovery time of the 

battery state τ generated by the battery model algorithm, and the number of packets received for the last frame. 

The latter depends on the average packet generation rate λ in each sensing node during its non-sleep period 

(depending on the application data rate) and the number of upper level neighbors. 

 

The weighing factor for these components depends on the latency and throughput requirements that can be 

given as the maximum delay tolerated/message of the application. We will consider δ as the tuning parameter of 

the application. Tsleep = )1( δλτ −+
avgP
nF  where Pavg is the average number of packets received during the last 5 

frames. The upper level neighbor that will receive the schedule will choose the schedule of the node which has the 

highest priority Pr among its neighbors (one level below). Initially, some nodes will not receive any packets 

because their upper level neighbors will adopt different schedules but these nodes will be highly prioritized for 

their neighbors for the future frames. The performance of the scheduling algorithm is improved by determining 

the optimal frame size based on simulations and fixing it for the lifetime of the network. Finally, it is important to 

mention that although UW-MAC does not design a CDMA code distribution algorithm, but the scheduling 

algorithm makes the nodes on the same level adopt different schedules, which allows UW-MAC to perform a time 

reuse of the CDMA codes in order to improve the scalability of the algorithm. 

 

E. Priority Assignment 
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In UW-MAC, a node's goal is to sense and deliver packets successfully to the base station. It uses multi-hop 

communication to achieve this since most nodes' communication ranges will not cover the base station. Thus after 

a node senses data it will need to forward it to a certain neighboring node which is at a lower level than itself (i.e. 

closer to the cluster-head). Therefore a node needs to select which lower-level neighbor among the possible 

candidates it will choose as its intermediate node towards the cluster-head. This choice will be priority-based i.e. it 

will choose the lower-level non-busy node with highest priority. The priority function aims at reducing the latency 

on the routing level and maximizing the network's lifetime through the proper choice of the next hop forwarders 

and doing load balancing. Three components determine the priority of a node to be chosen as the next hop 

forwarder:   

 

1- The Battery Model: As a node's battery capacity increases, its priority will increase. This provides load 

balancing and prevents the formation of holes in the network. Also as the time of last transmission decreases, 

the computed priority will increase. Thus we aim at choosing the neighbor whose last transmission was the 

farthest in time. This is to allow for nodes to recover and thus make efficient use of the capacity recovery 

effect in the battery model; hence also increasing network lifetime.  

)1(Pr1 τ
TOLTCT

e
CapBatteryInitial

BatteryCap −
−

−=
 
           (5) 

      where CT = Current time, TOLT = Time of last transmission and τ = Average time to recover  

 

2- The distance of the candidate node from the sender node: As this distance decreases, the power needed to 

transmit a packet to that node will also decrease. This will preserve energy and also reduce MAI. Thus a 

neighboring node closer to the sender will be given a higher Pr2 value than another neighboring node farther 

yet still in its communication range.  

max
2Pr

d
dcand=                                  (6) 

Where dcand is the distance of the candidate node whose priority is being computed to the sender node. dmax is 

the maximum distance between the sender node and any of the candidate nodes. dcand can be estimated by a 

node from the power of the received CTS packet using the Free Space Pathloss Channel Model. 

 

                                     
22

2

max_

_

16 cand

rt

CTS

CTSrecv

d
GG

P
P

Π
=

λ
                (7) 

 

Gt, Gr being the antenna gains of the transmitter and   receiver respectively. λ is the wavelength of the  

transmitted signal. Pmax_CTS is the power by which the CTS packet was transmitted. This power is the 

maximum power that the nodes initially agree on as described earlier. Finally Precv_CTS is the power of the 
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CTS packet when it was received. Note that other model such as Ray Tracing Pathloss Model, Empirical 

Pathloss Model, or even models incorporating shadowing and fading effects can be used for the distance 

estimation; however, more complex computations would be needed in the sensor node. 

 

3- Estimated congestion at the candidate nodes: This is the third component of the priority function. Since 

congestion maps directly to latency, nodes tend to pick the neighbor who is least likely to be congested and 

hence can forward the packet with minimum delay. Furthermore if a candidate node is always congested then 

attempts to forward the packet to it might result in failures since it will be busy processing another reception. 

The sender node can estimate the amount of congestion to each candidate node through a weighted average of 

the proportion of failed attempts to forward a packet to this designated candidate node i.e. a weighted average 

of the ratio of RTS packets which did not result in CTS replies to the total attempts of sending RTS packets. 

The weights shall depend on the time when these RTS packets where sent (the more recent, the higher the 

weight given). Thus, the time axis is divided into frames. Assume that the congestion estimation will take into 

account RTS failures in the last three frames. Then the corresponding component of the priority function 

would be: 

∑
= ×

=
m

i iRTSattempts

iRTSfail

in
n

1 __

__
3Pr

     (8) 

 

Where 'i' designates the current frame number. Hence as the frame number increases, the information being 

used for estimation is older and thus is given lower weight. nfail_RTS_i is the number of RTS packets sent and 

did not result in a CTS reply during frame i. nattempts_RTS_i is the total number of attempts to send RTS packets 

during frame i. Finally, the total priority is: 

1

2 3

PrPr
Pr Pr

=
×       (9) 

 Each node keeps a table in its memory containing its lower level neighboring nodes and their corresponding 

priorities. Since these priorities depend on the current time, they should be continuously calculated and the table 

updated. Updates must also come from newly overheard values of the battery capacity and TOLT in the RTS and 

CTS packets. Therefore, nodes rely on their history table to estimate the battery state of their lower level 

neighbors when calculating the corresponding priorities. These history tables will be relatively accurate since 

nodes update them on every overheard RTS or CTS packet sent by their lower level neighbors. In addition, since 

the wakeup/sleep schedule tends to make nodes adopt similar wakeup periods as their lower level neighbors, any 

RTS/CTS packet sent by these nodes shall be overheard by their neighbors who will consequently update their 

tables. The ‘Battery Cap’ in the RTS/CTS packets represents the value of the current battery capacity of the 

sending node before the transmission (case of overheard RTS) or reception (overheard CTS) that is going to 

occur. The ‘Dur’ field describes the duration of time needed to finish the data transmission and thus allows 



 16

overhearing nodes to estimate the final battery capacity and time of last transmission (TOLT) according to the 

following equations: 

 

DuriBatteryCapBatteryCap avg ×−= RTS/CTS              (10) 

DurtimeRXTOLT CTSRTS += / _                                       (11) 

 

where ‘RX_time RTS/CTS’ is the time of reception of the overheard RTS or CTS packets. 

 

F. UW-MAC 

The topology is now divided into clusters. Each cluster contains n levels of nodes. The level of a node within a 

cluster is defined by the number of hops the node lies away from the cluster head. Each node has PN-Codes which 

it can use to spread any signal it needs to send. The goal of the nodes within a cluster is to sense and forward data 

towards the base station through cluster heads and intermediate nodes within the cluster. The first time a node has 

data to send, will broadcast an RTS on the control channel. All of its awake lower-level neighbors will wait for a 

random time then reply with a CTS. This random waiting is aimed to avoid packet collisions. After receiving the 

CTS packets, the node builds up a table of its lower level neighbors. Notice that the table has in addition to the 

priority field, a NAV field which indicates the duration for which the node in the corresponding entry will remain 

busy. This NAV field is updated after overhearing an RTS or a CTS of the corresponding node and hence 

deducing that it will be busy for the time indicated by the duration field in theses packets. This table will be 

regularly updated with every overheard RTS and CTS. Since in our scheduling algorithm we aim at giving nodes 

the same schedule as their lower level intermediate neighbors, we can expect that most of the RTS and CTS 

packets sent by nodes will be overheard by their higher level neighbors who will then be able to update the 

corresponding priorities and NAV fields. Next, we give the steps taken by the nodes to successfully route data all 

the way towards the base station: 

   

1- When a node "ni" at level n has data to send, it must first choose an intermediate lower level neighbor to send 

its packet to and which in turn will further forward it to lower level nodes. The first choice would be the non-

busy neighbor with highest priority (Suppose that node is node B). ni will send an RTS to node B at maximum 

power. Node B in turn will reply with a CTS packet except in the following cases: 

 

i) Node B is busy (In this case ni would have missed the RTS or CTS that should have told it that node B will 

be involved in a transmission and hence ni wouldn't have sent the RTS in the first place). 

ii) Node B is asleep.  

iii) Node B is both awake and non-busy however when it received the RTS and computed the minimum 

power which ni needs in order to send so that the packet can be successfully recovered, this power came 
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out to be larger than the maximum power a node can use to send due to the very large MAI around the 

receiver. Therefore, B will refrain from replying with a CTS packet. 

 

2- If node B doesn't reply for the above reasons, ni will choose its non-busy neighbor with second highest 

priority as its intermediate neighbor and will hence send it an RTS. On the other hand it will update its table 

after node B didn't reply by changing the priority of node B to a value equal to the minimum priority in the 

table i.e. ni will place node B at the bottom of its table. This is to avoid high energy neighbors from being 

constantly requested and hence stay busy all the time.  

 

3- If for the second time no CTS was received then ni will broadcast an RTS. Several CTS packets will be 

received and the one with highest priority is to be chosen. The broadcasting after two failures is done because 

of the latency requirement imposed by the application running our algorithm. 

 

4- If even after broadcasting the RTS, still no CTS packets arrive, this means that all lower level neighbors of ni 

are currently unavailable. ni will then try to forward its packet through a neighbor with the same level by 

sending a help message. There are three cases in which a node might ask for help from another node on its 

level: 

i) node after broadcasting an RTS didn't get a reply;  

ii) all the node's neighbors have a NAV> 0; 

iii)  if there are only two or less available neighbors and have not replied on the RTS unicast.  

 

The help message is a modified RTS with a help bit set to 1. The receiver of a help message checks the 

corresponding level against the node's level. If they match the node will reply with a help-ack message 

(modified CTS) in case it had lower level non-busy neighbors which it can route through. Further failure to 

receive replies will cause the node to delay its transmission to a later time. 

 

5- Upon receiving a CTS, a level n node (n≠1) switches its transceiver to the data channel, spreads the packet it 

wishes to send using the PN code of the desired receiver and then transmits it using a receiver based CDMA. 

The receiver in turn uses the same PN code to de-spread the packet sent. 

 

6- The packet will continue to be forwarded upstream (to lower levels) using a receiver based CDMA until it 

reaches a node with level one. Level one nodes transmit to the cluster head using transmitter based CDMA. 

Notice that the cluster head also performs power control through the CTS packets it sends to its one hop 

neighbors. 

 

7- The packet has successfully reached the cluster-head. Cluster heads in turn communicate to the base station 

using a centralized TDMA schedule. This is done to provide load balancing in addition to fairness between all 

regions of a network. 
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V. SIMULATION RESULTS 
We successfully implemented our protocol in the Network Simulator (ns2). Simulation is done on a network of 

200 randomly deployed nodes. We simulated the DSSS (Directed Sequence Spread Spectrum) by adding a PN 

code attribute to the packet header. Hence, each time a packet is received, its PN code is checked against the PN 

codes monitored by the receiver. If a match is found, the packet is passed to the next step for further processing. If 

no match is found, the packet is discarded. This procedure is used to simulate the de-spreading process.  

 

For comparison, we simulated UW-MAC using ns2. We decided to evaluate its effectiveness and relative 

performance in comparison to existing sensor network protocol such as LMAC and S-MAC through simulations.  

Also, for the purpose of underwater comparison, we select MACA protocols after modifying their parameters to 

suit the underwater environment. These protocols are chosen for comparison as they are decentralized in nature 

and do not require carrier sensing, which can be unreliable in underwater acoustic conditions. In each of these 

protocols, we limit the number of control packets transmitted per data packet by limiting the number of 

permissible retransmission attempts to two. The network in the simulations was subject to change in size (number 

of nodes), change in average traffic (number of data packets originated per node) and topology change to plot 

performance graphs of the three protocols in terms of network lifetime and data gathered over the network 

lifetime. To plot the resulting graphs, we conducted different types of simulations. The first experiment was run to 

analyze the end to end latency. The second experiment analyzes the average network lifetime of the network using 

each MAC protocol. The third experiment analyzes the network throughput and the total data collected at the sink. 

 

The nodes take one of the following actions in a single time period: sense (sensor read), idle listen (where a 

node enables its transceiver so that it is ready to receive data or carrier sense), transmit a single packet, receive a 

single packet and sleep. All actions have a set power consumption value affixed to them. The radio propagation 

model in the simulation was assumed to be symmetric. We decided to ignore the processing action of the node 

due to its near negligible power consumption. Specifically, Table I shows the typical energy consumption of each 

action. All nodes were initialized with an energy capacity of 1000 Joules. In addition, we ensured that data traffic 

in the network was not constant so that neither protocol could gain advantage. We also made nodes move about 

randomly in the network to force a topology change from time to time especially in harsh underwater 

environments. Finally, in order to obtain statistically significant results, we report average results of 10 

simulations in each of the experiments carried out. 

 

A- Latency Analysis 

Figure 2 shows the results of our latency evaluation for scenarios using UW-MAC, S-MAC, LMAC and 

MACA. Delivery latency in all protocols increases as the hop count of the path increases. However, delivery 

latency in S-MAC, LMAC and MACA increase at a much faster rate showing the benefit of UW-MAC’s 

capability of multi-hop delivery within a single cycle and multiple transmissions in the vicinity of the receiver are 

possible using transmitter based-CDMA. We also simulated the latency as a function of the packet arrival rate of 
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both UW-MAC and S-MAC shown in Figure 3. The difference between the latency incurred by SMAC, LMAC, 

MACA and UW-MAC is much higher as the packet arrival rate increases and this is due to the use of DSSS for 

the transmission of data packets adopted by our algorithm.  

 

B- Network Lifetime Analysis 

In this experiment, we simulated the four protocols to observe how they affected the network lifetime. 

Usually, network lifetime is defined as the time span from deployment to the instant when the network is 

considered non-functional. However, at what point in time should a network be considered non functional is 

application-specific. We define network life time as the time taken for 85% of the nodes to die. The significant of 

our algorithm is evident in the overall network lifetime simulation as depicted in Figure 4. Our online battery 

model embedded with UW-MAC results in spreading the energy load on the whole network which results in 

increasing the overall lifetime of the network. The simulation was run for 1000 seconds and random events are 

generated at a rate of 5 events/second. Initially all the nodes were alive, but after only 50 minutes, less than 85%  

of the nodes are alive using S-MAC, LMAC and MACA however using UW-MAC, it takes the network more 

than 80 minutes for the number of active nodes to go below 85% and thus highlighting the effect of UW-MAC on 

the network lifetime extension.  

 

Also, from a different perspective (Figure 5), we studied the lifetime as we increase the number of deployed 

nodes. We can see an expected decline in all three graphs as more nodes are introduced in the network. However 

UW-MAC clearly outperforms LMAC, S-MAC and MACA. The latter three are decentralized and distributed in 

nature and this is the main cause of their underperformance, especially in larger networks. More nodes competing 

for the same medium during the contention phase results in an increase in the number of collisions even with 

carrier sense. The long propagation delay increases the probability of the collisions. Consequently, many nodes 

are prevented from getting access to the medium but at the same time are depleted of their energy whilst 

contending instead of transmitting data itself. This characteristic tends to shorten the network lifetime 

considerably in comparison to UW-MAC where the contention is minimized. 

 

C- Throughput Analysis 

In Figure 6, we evaluated the network throughput. Although network throughput is not a crucial metric in 

typical sensor networks, it is important when the traffic can potentially come in a burst. For all protocols, the 

output rate follows the input rate when the input rate is low and finally the output rate reaches its peak point. 

Using SMAC, LMAC and MACA, if we continue injecting more packets into the system, after the output has 

peaked, the input creates more contention in the system and decreases the throughput slowly until the throughput 

reaches a steady state value. Although the medium is saturated when the load is high, UW-MAC packets can still 

be forwarded whenever it is possible and thus uses its medium access opportunity more efficiently than with 

RTS/CTS in S-MAC. That is because of UW-MAC’s capability of multi-hop delivery within a single cycle and 

multiple transmissions in the vicinity of the receiver are possible using transmitter based-CDMA.  
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We also simulated the four protocols to observe how much data the sink (anchor) nodes gathered over the 

network life time. The results of simulations are shown in Figure 7. The plot shows the mean number of data 

packets collected over the network lifetime using each protocol. It can be seen that the three protocols perform 

similarly for extremely small sized networks involving a handful of nodes. However, as the number of nodes in 

the network begin to increase, the distinction between the four graphs becomes clearer where UW-MAC starts 

outperforming LMAC, SMAC and MACA. The shorter network lifetime of the latter three ensures that less data is 

collected at the sink. The S-MAC network suffers most because of two reasons. Firstly, there is no presence of a 

slot (listen period) controller like the receiving node in LMAC. Secondly, most S-MAC nodes tend to follow the 

same listen-sleep schedule. These two factors combine to create a bottle neck effect where intended receivers 

(relaying nodes) also compete for the medium to transmit their own data. This results in less data being 

transmitted at a high cost of collisions. 

 

VI. CONLCLUSION 
Underwater Sensor Networks are typically distributed in nature while using acoustic waves over a wireless 

medium. Such networks are characterized by long and variable propagation delays, intermittent connectivity, 

limited bandwidth and low bit rates. Duty cycle mechanisms have been used in underwater sensor networks to 

improve energy efficiency, but they also introduce significant increase in end-to-end delivery latency and poor 

contention handling as well. In this paper, we have achieved a low latency delivery of data from sensing nodes 

towards the base station taking into consideration sources of energy wastage and successfully minimizing them. 

UW-MAC decreases the delivery latency, increases the throughput while extending the overall network lifetime 

as evident by out theoretical and experimental analysis. 
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