2009

Impact of 27-hydroxycholesterol on amyloid-beta peptide production and ATP-binding cassette transporter expression in primary human neurons

Kim W Scott
University of New South Wales, Australia

S L Chan

A F Hill

G J Guillemin
St. Vincent’s Hospital, Sydney, New South Wales

B Garner
University of Wollongong, brettg@uow.edu.au

Publication Details
Impact of 27-hydroxycholesterol on amyloid-beta peptide production and ATP-binding cassette transporter expression in primary human neurons

Abstract
Cholesterol is an integral component of neuronal membranes and recent evidence has shown that it regulates amyloid-β protein precursor processing to form amyloid-β peptides, which are a major constituent of cerebral amyloid plaques associated with Alzheimer's disease. 27-Hydroxycholesterol (27OHC) is synthesized from cholesterol via sterol 27-hydroxylase (CYP27A1) in the brain and, unlike cholesterol, can cross into the brain through the blood brain barrier from the circulation. Previous studies point toward a potential role for 27OHC in the regulation of neuronal amyloid-β peptide generation, however, this has not been investigated in primary human neurons. Here we show that 27OHC significantly reduced amyloid-β peptide detected in cell culture supernatants from primary human neurons. We also show that 27OHC does not affect α-, β- or γ-secretase activity but does upregulate the liver X receptor (LXR) responsive genes ABCA1, ABCG1 and APOE. These data suggest that 27OHC-mediated reduction in extracellular amyloid-β peptide levels is potentially due to its action as an LXR ligand. © 2009 - IOS Press and the authors. All rights reserved.

Keywords
peptide, amyloid, neurons, hydroxycholesterol, human, 27, impact, primary, expression, transporter, cassette, binding, atp, production, beta

Disciplines
Medicine and Health Sciences

Publication Details

This journal article is available at Research Online: http://ro.uow.edu.au/ihmri/60
Supplemental data

Impact of 27-Hydroxycholesterol on Amyloid-β Peptide Production and ATP-Binding Cassette Transporter Expression in Primary Human Neurons

Woojin Scott Kima,f,*, Sharon L. Chana, Andrew F. Hillb,c,d, Gilles J. Guillemine,f and Brett Garnera,f

aPrince of Wales Medical Research Institute, Randwick, NSW, Australia
bDepartment of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC, Australia
cDepartment of Pathology, University of Melbourne, VIC, Australia
dThe Mental Health Research Institute of Victoria, Parkville, VIC, Australia
eCentre for Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
fSchool of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia

REGULATION OF Aβ PEPTIDE GENERATION BY ABCA1 AND ABCG1 BUT NOT ABCA2

CHO-AβPP cells were transfected with human ABCA1, ABCG1 and ABCA2 cDNAs and cholesterol efflux and extracellular Aβ peptide levels were measured. ABCA2, which is expressed in neurons but does not respond to LXR activity or mediate cholesterol efflux, was used as a negative control in this study. The transfection efficiency of these three cDNAs was first checked by PCR and all three genes were similarly expressed (Supplemental Fig. 1A). They were then assessed for their ability to mediate cholesterol efflux as a test for their functional activity. ABCA1 and ABCG1, but not ABCA2, promoted cholesterol efflux as expected (Supplemental Fig. 1B). ABCA1 and ABCG1 (not ABCA2) reduced Aβ peptide levels without altering AβPP expression (both mRNA and cellular protein) indicating that ABCA1 and ABCG1 reduce extracellular Aβ peptide levels independently of AβPP expression (Supplemental Fig. 1C, D).

MATERIALS AND METHODS

Materials

Human ABCA1, ABCG1 and ABCA2 cDNAs were generously provided by Professor Mason Freeman (Harvard Medical School), Professor Wendy Jessup (University of New South Wales, Australia) and Professor Kenneth Tew (Medical University of South Carolina), respectively.
Supplemental Fig. 1. Impact of ABCA1 and ABCG1 on Aβ peptide generation. CHO-AβPP cells were transfected with ABCA1, ABCG1, ABCA2 and empty vector (mock) cDNA and (A) the transfection efficiency was measured by PCR and agarose gel electrophoresis; (B) the ability to efflux cholesterol assayed; (C) the impact on Aβ peptide generation and AβPP expression analyzed by Western blotting; and the mRNA levels of AβPP measured by PCR. Data represent mean ± SE from individual experiments performed in triplicate. * P < 0.05.

Transfection

Transient transfection was performed using Lipofectamine 2000 and Opti-MEM I (Invitrogen) following the manufacturer’s protocol. Briefly, cells were seeded at 90% confluence in 12-well plates using antibiotic-free medium. cDNA-Lipofectamine complex was added to the cells and after 24 h of incubation samples were collected for gene expression analysis. In the case of cholesterol efflux assays the cells were cultured for up to an additional 24 h.

Cholesterol efflux assay

Cellular cholesterol efflux was measured as described previously [1]. Briefly, cells were labeled with 2 µCi/ml [3H]cholesterol (Amersham Biosciences) for 24 h, rinsed with PBS, and incubated for 2 h in medium containing 0.1% (w/v) bovine serum albumin (BSA) to allow equilibration of [3H]cholesterol in intracellular pools. The cells were rinsed once more in PBS and then incubated in serum-free medium containing apoE disc (15 µg of protein/ml) as cholesterol acceptor. After 24 h medium samples were collected and cleared of any cellular debris by centrifugation. The cells were lysed with 0.1 M NaOH and radioactivity in the medium samples and cell lysates were measured by scintillation counting. Cholesterol effluxed to the medium was calculated as a percentage of total radioactivity in the cell lysates and medium.

SUPPLEMENTAL REFERENCE