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Summary

Agresti and Liu (2001) discussed modelling strategies for a multiple response variable, a cat-

egorical variable for which respondents can select any number of outcome categories. This

article discusses modelling strategies of a repeated multiple response variable, a categorical

variable for which respondents can select any number of categories on repeated occasions.

We consider each of the responses as a binary response and model the mean binary responses

with two approaches: a marginal model approach and a mixed model approach. For the

marginal model approach, we consider a generalised estimating equations (GEE) method to

account for different correlations over time and between items as an alternative to standard

GEE, which only allow relatively simple correlation structures. We illustrate the different ap-

proaches using The Household, Income and Labour Dynamics in Australia (HILDA) Survey,

a household-based panel study.

Key words: Multiple Responses, Repeated Measurements, Generalised Linear Models (GLM),

Generalised Estimating Equations (GEE), Generalised Linear Mixed Models (GLMM)
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1 Introduction

Surveys often contain qualitative variables for which respondents may select any number out

of c outcome categories. The respondents are asked to “tick all that apply” on a list of

the outcome categories. Categorical variables that summarise this type of data are called

multiple response variables.

As an example, we use The Household, Income and Labour Dynamics in Australia

(HILDA) Survey. It is an annual survey beginning in 2001, that collects information about

economic and subjective well-being, labour market dynamics and family dynamics, asking

respondents about their daily, weekly and annual expenses. For annual expenses they are

asked to “tick all that apply” of the following categories: a) holidays and holiday travel

costs, b) private health insurance, c) other insurance (such as home and contents and motor

vehicles), d) fees paid to doctors, dentists, opticians, physiotherapists, chiropractors and any

other health practitioner, e) Medicines, prescriptions and pharmaceuticals (include alterna-

tive medicines), f) Electricity bills, gas bills and other heating fuel (such as firewood and

heating oil), g) repairs, renovations and maintenance to your home, h) Motor vehicle repairs

and maintenance (include regular servicing), etc. Each outcome category is referred to as an

item (Agresti & Liu, 1999).

Various authors have considered the analysis of multiple responses. For instance, Loughin

& Scherer (1998) developed a large–sample weighted chi-squared test and a small–sample

bootstrap test for the independence between each of the c items and an explanatory variable.

Agresti & Liu (1999, 2001) discussed different modelling strategies to describe the association

between items and explanatory variables. When the data are stratified by a third variable,

Bilder & Loughin (2002) provided a test for the conditional multiple marginal independence

to detect whether the group and items are marginally independent given the stratification

variable. Furthermore, Bilder & Loughin (2004) gave a test for marginal independence be-

tween two categorical variables with multiple responses. Besides the modelling strategies

and testing methods, Liu & Suesse (2008) presented two methods, generalized estimating

2



equations (GEE) and Mantel-Haenszel, to make inferences across multiple responses when

data include highly stratified variables. None of the above papers considered the situations

in a longitudinal manner where respondents were surveyed on several occasions.

Agresti & Liu (2001) treated the responses for each of the items as binary responses

(being selected or not). They modelled these correlated responses using the marginal model

approach and the mixed model approach. This paper discusses methodologies when multiple

responses are recorded on repeated occasions, by treating the responses for each of the items as

binary responses. However, unlike Agresti & Liu (2001), our binary responses are correlated

in two levels, across both items and different time points. These methods can be generalised

to more than two levels, as for HILDA where responses are correlated within households as

well.

Section 2 considers the marginal model approach for repeated multiple response data. We

primarily focus on GEE (Liang & Zeger, 1986) and consider a variety of possible correlation

structures. Standard GEE methods only allow a few options for the correlation structure;

these options are unlikely to present a good correlation model for repeated multiple response

data. Due to the dependency across several levels, we propose an alternative method combin-

ing the levels in a way which allows the use of standard GEE methods while also accounting

for multiple correlated levels. A simulation study confirms efficiency advantages of the pro-

posed method.

In Section 2, we also review some of the goodness-of-fit (GOF) statistics and model diag-

nostics to check the marginal model fit by GEE. Standard likelihood-based methods, such as

the deviance, cannot be applied to the GEE method because it is based on quasi-likelihood.

Section 3 considers a mixed model approach and reviews some popular model fitting tech-

niques. In Section 4, a simulation study is conducted to investigate the performance of the

proposed GEE method to account for different correlated levels. Section 5 illustrates the

methods on the HILDA survey using waves E, F, G and H (years 2005-2008). The final

section finishes with a discussion.
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2 Marginal Modelling

2.1 Maximum Likelihood Approach

Let Yijt = 1 if subject i = 1, . . . , n selects category j = 1, . . . , c at time point or occasion

t = 1, . . . , T and Yijt = 0 otherwise. Let Yi = (Y′i1, . . . ,Y
′
iT )′ denote the ith subject’s 2c·T

response profile for c items and T time points, where Yit = (Yi1t, Yi2t, . . . , Yict)
′. Denote the

mean of Yijt by πj|it, the probability of a positive response on item j at occasion t by the

ith subject. Define similarly the mean of Yi as πi and the mean of Yit as πit. Let xi =

(x′i1, . . . ,x
′
iT )′ be a vector of covariates of the ith subject, where xit = (x′i1t,x

′
i2t, . . . ,x

′
ict)
′, t =

1, . . . , T is a column vector of covariates.

Consider item j and time point t only. The n binary responses {Yijt, i = 1, . . . , n} are

independent and standard modelling strategies can be applied to model πj|it := Pr(Yijt = 1),

such as logistic regression:

logit(πj|it) = x′ijtβjt. (1)

Alternatively any other popular link h(·) can be considered, such as the probit link.

To model c items simultaneously for a single time point, Agresti & Liu (2001) considered

several modelling strategies. They introduced the marginal model approach that takes the

dependence between items on the same subject into account, in a similar fashion to modelling

repeated binary responses. Considering c items simultaneously for model (1) with a general

link function h(·), a more compact form can be written as

h(πit) = Xitβt, (2)

with βt = (β1t, . . . ,βct)
′ and Xit := Diag(x′i1t, . . . ,x

′
ict), where h(πit) = (h(π1|it), h(π2|it), . . . ,

h(πc|it))
′. Furthermore, taking different time points into account, the joint model for repeated
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multiple responses can be expressed as

h(πi) = Xiβ, (3)

with Xi = (Xi1, . . . ,XiT ), where h(πi) = (h(πi1)
′, h(πi2)

′, . . . , h(πiT )′)′.

Repeated multiple responses are more complex, because responses {Yijt} are not only

corrected over items (j), but also over the time points (t). One would assume the magnitude

of correlation decreases as the time between responses increases. There are several fitting

techniques for the joint model. Naively, one can assume independence between all items

and occasions and then use ordinary software for generalised linear models (McCullagh &

Nelder, 1989). However, this does not give proper standard error estimates for the parameter

estimators as independence is not a valid assumption.

Alternatively, model (3) can be expressed as a generalised log-linear model and the max-

imum likelihood (ML) method (Lang & Agresti, 1994; Lang, 1996) can be used to yield

parameter estimates for a logistic or log link. Agresti & Liu (1999) showed the ML approach

for the special case of T = 1. An extension of the generalised log-linear model given by Lang

(2005) allows any smooth link function h(·). The ML method treats the counts from the 2c·T

response profile for each different covariate setting as a multinomial distribution. It max-

imises the multinomial likelihood subject to constraints satisfying the mean model. As the

number 2c·T is usually very large, the number of observations for many of the 2c·T categories

will be very small (and will often be zero). This sparseness causes problems with the ML

fitting algorithm, and is even worse when some covariates are continuous. The ML approach

is plausible only when the number of subjects is large, 2c·T is small and all covariates are

categorical with few levels.

This ML approach does not assume a model for any of the higher moments of the un-

derlying multinomial distribution for each i. One could also additionally model the second
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order moments through the odds ratio

θ =
Pr(Yijt = 1, Yij′t′ = 1) Pr(Yijt = 0, Yij′t′ = 0)

Pr(Yijt = 1, Yij′t′ = 0) Pr(Yijt = 0, Yij′t′ = 1)
, j 6= j′ and t 6= t′

or the correlation

ρ = Pr(Yijt = 1, Yij′t′ = 1)− Pr(Yijt = 1) Pr(Yij′t′ = 1).

Both approaches lead to a more complicated ML.

Fitzmaurice & Laird (1993) proposed ML estimation of the mean model based on a

quadratic exponential model for the joint distribution. The authors applied the iterative

proportional fitting algorithm in each step to obtain the joint distribution from the given

model parameters. This procedure is even more complex and not applicable for large c and/or

T . Note that the estimating equations for the mean model of this likelihood approach are

identical to the generalised estimating equations (GEE), considered below.

The complexity of the ML estimation can be reduced by using the dependence ratios as

a measure of association (Ekholm et al., 1995, 2000, 2002, 2003). The dependence ratio for

q ≥ 2 binary variables Yi1 , . . . , Yiq is defined as

τi1,...,iq =
Pr(Yi1 = 1, . . . , Yiq = 1)

Pr(Yi1 = 1) · · · · · Pr(Yiq = 1)
.

Modelling the mean and all dependence ratios fully describes the joint distribution. Let yi

be a value for Yi. A nice feature of the dependence ratio is that Pr(Yi = yi) = WΨi, where

W is a matrix containing elements −1,+1, 0 and the elements of the vector Ψi are simple

functions of the q univariate means Pr(Yij = 1) and the 2q − q − 1 dependence ratios for

subject i. Therefore the log-likelihood

n∑
i=1

Pr(Yi = yi) =
n∑

i=1

WΨi
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can be relatively easily computed compared to Lang’s method, which needs iterative proce-

dures to compute Pr(Yi = yi). Consider the repeated multiple response case, for each i there

are 2c·T − 1 parameters (c · T means and 2c·T − c · T − 1 dependence ratios) that describe

the joint distribution for the ith cluster. Jokinen (2006) proposed some model simplifications

for an exchangeable structure for the dependence ratios, such as a first order Markov chain

assumption and a Dirichlet distribution assumption. Under the latter, Pr(Yi = yi) can be

easily computed from the means and bivariate probabilities. Consequently only second order

dependence ratios are needed. It makes ML estimation possible for say medium c · T . The

R-package (R-Development-Core-Team, 2006) drm can be used to fit such models.

Such an approach is similar to GEE, which uses a working correlation as an approxima-

tion to the true correlation of the joint distribution. Therefore we would not regard such

an approach as a real ML approach, but as a pseudo-ML method, because it unlikely to

describe the joint distribution accurately. The dependence ratio approach was also criticized

by Molenberghs & Verbeke (2004), who strongly advocate for the odds ratio as a measure of

association, due to symmetry and ease of interpretation.

To summarise, despite its theoretical appeal, the ML approach is not feasible for moderate

or large c · T .

2.2 Generalized Estimating Equations Approach

Besides the ML approach, Agresti & Liu (1999) proposed another popular fitting procedure

using the GEE method (Liang & Zeger, 1986). The GEE method fits the c marginal models,

such as model (1), simultaneously and incorporates a chosen correlation structure/model,

known as the working correlation.

It is an extension of the quasi-likelihood method (Wedderburn, 1974) for multivariate

data. Denote Var(Yi) = fi · φ−1 with variance function fi = f(πi) [= πi(1cT −πi) for binary

responses, where 1cT is a vector of ones of length cT ], and the scale or dispersion parameter by

φ. Suppose the mean model (3) is true, then the GEE estimates are obtained by computing
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the root of the generalised estimation equations

U =
n∑

i=1

M′
iV
−1
i ri(β) = 0,

with Mi = ∂πi/∂β, Vi = AiRi(α)Ai and ri(β) = yi −πi(β). The dimension of matrix Mi

is cT × p, where p is the number of parameters in β. Matrix Ai =
√

fi is diagonal of size

cT × cT and Ri(α) is the cT × cT correlation matrix for subject i (i = 1, . . . , n) depending

on correlation parameter(s) α. The correlation matrix is based on a ‘working guess’ about

the correlation structure of the items across different occasions.

Preisser & Qaqish (1996) suggested the iterated weighted least squares method to obtain

β̂. One can adjust the standard errors for β based on the ‘naive’ covariance estimator

Ωnaive := (
∑n

i=1 M′
iV
−1
i Mi)

−1 to reflect what actually occurs for the sample data by using

the ‘sandwich’ covariance estimator Ωrobust := Ωnaive(
∑n

i=1 M′
iV
−1
i rir

′
iV
−1
i Mi)Ωnaive, also

known as the robust variance. If the working correlation is the true correlation, then the

naive variance is consistent and equals the robust variance; however if this does not hold,

then only the robust variance is consistent, provided the specification of clusters is correct.

We consider specific choices of the correlation structure Ri(α) for multiple response data

and repeated multiple response data. Choosing a good correlation structure/model is es-

sential to obtain good variance estimates and more efficient parameter estimates for β̂. For

example, the study in Liang & Zeger (1986). Alternatively, when the focus is primarily on

efficiency, Pan & Connett (2002) considered several methods for choosing a working corre-

lation subject to minimising the predictive mean squared error (PMSE). When none of the

standard structures are true, these methods often choose the independence structure and

provide better efficiency than one of the standard structures.

First consider T = 1 and c > 1. Then the indices j1 and j2 of Rj1j2 refer to two different

items. Common correlation structures between items include

• independence (items): Rj1j2 = 0 for all j1 6= j2 (0 parameters)
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• exchangeable (items): Rj1j2 = α for all j1 6= j2 (1 parameter)

• unstructured (items): totally unspecified Rj1j2 = αj1,j2 (1
2
c(c− 1) parameters).

Parameter estimates are usually calculated by the method of moments, but any consistent

estimation method can be applied. Next consider T > 1 and c = 1. Two different indices t1

and t2 of Rt1t2 refer to two different occasions. Options include:

• exchangeable (time): Rt1t2 = α (1 parameter)

• autoregressive (AR) (time): Rt1t2 = ρ|t1−t2| (1 parameter)

• unstructured (time): Rt1t2 = αt1t2 (T (T − 1)/2 parameters)

• m-dependence (time): Rt1t2 = α|t1−t2|+1 for |t1 − t2| > m, otherwise Rt1t2 = 0 (m

parameters)

Typical time dependence structures, such as AR and m-dependence are usually preferred,

because observations further apart in time are supposed to be less correlated than those closer

in time. Most of these working correlations are provided by common statistical packages.

For example R-package geepack (Yan & Fine, 2004) provides all except m-dependence and

R-package gee provides all of these options.

Repeated multiple responses are characterised by items and time, considered as two levels

in a multi-level model. The question remains of how to combine these two levels in an

appropriate way. Treating the number of items and the number of time points separately,

the correlations between two items within the time point t should match one of the typical

correlation structures used for items. Similarly the responses on two different time points

within one item should have one of the the typical correlation structures used for longitudinal

data. In summary, a reasonable approach is one in which marginally the correlation structure

for repeated multiple responses should match the structures for repeated binary observations

and also for standard multiple response data.
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2.2.1 Combining Levels for GEE

Let the correlation for two responses Yij1t1 and Yij2t2 , referring to two items j1 and j2 and two

time points t1 and t2, be denoted by Rj1j2,t1t2 . Since the AR structure is multiplicative, i.e.

Rt,t+k+l = Rt,t+k ×Rt+k,t+k+l, we suggest the same approach for combining the two levels:

Rj1j2,t1t2 =


Rj1j2 , for t1 = t2

Rt1t2 , for j1 = j2

Rj1j2 ×Rt1t2 , otherwise.

(4)

Here Rj1j2 refers to the correlation for two items on one time point and Rt1t2 refers to the

correlation for one item on two occasions. This approach meets the requirement of matching

marginally the correlation structures of repeated measurements and multiple responses.

Another option uses a simpler approach:

Rj1j2,t1t2 =


Rj1j2 , for t1 = t2

Rt1t2 , for j1 = j2

0, otherwise.

(5)

Any other approach is also reasonable as long as marginally the correlation matches the

structures of items and time and

0 ≤ Rj1j2,t1t2 < max(Rj1j2 , Rt1t2).

One would expect that the correlation of responses for two items referring to two different

time points is smaller than the correlation of responses for two items (or time points) within

the same time point (or item).

Unfortunately, when choosing the AR structure for the time dependence in models (4)

or (5), we cannot use standard statistical packages, such as gee and geepack. The package

geepack allows the user to specify a design matrix for a linear correlation model, and therefore
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only m-dependence would be possible, because AR implies a non-linear correlation model.

Specifying the design matrix of a linear correlation model might be too complicated for the

inexperienced user or one might insist on an AR structure. In this case, we propose another

feasible option using existing software packages discussed next.

First, fit the mean model and choose, for example, the AR structure for the time de-

pendence ignoring item dependence and store the estimates of these correlation parameters.

Then fit the same mean model again but use an appropriate structure for the items, for exam-

ple unstructured, and ignore time dependence. For both cases estimation of these correlation

parameters will be consistent. With these correlation estimates compute an appropriate

working correlation Ri for repeated multiple responses using equations (4) or (5). Then re-

fit the mean model again, but with the fixed working correlation structure Ri. The option

‘fixed’ is standard for most GEE packages. The GEE estimates for the mean model will still

be consistent, because GEE only requires consistent estimation of correlation parameters.

To investigate the performance of this method, a simulation study was conducted in

Section 4 to compare the method with standard working correlation options and the option

for which all parameters are estimated jointly.

2.2.2 Group-wise Correlation Estimation for GEE

Suesse (2008) proposed a simple group-wise method, that assumes that responses Yijt and

Yij′t′ for subjects i of the same group are equally correlated, but correlations differs for dif-

ferent groups. Grouping could naturally occur through variables such as sex. Usually the

GEE method assumes an equal correlation structure for all subjects i for any two responses

Yijt and Yij′t. This is a rather unrealistic and crude way to approximate the true correlation

structure. Modelling the correlation or alternatively any second order moments has been pro-

posed by many authors; see Zhao & Prentice (1990); Liang et al. (1992); Yan & Fine (2004).

This group-wise method is a special case of these more general approaches. A simulation

study showed that when the correlation is indeed different for different groups, the group-wise
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method yields more efficient mean model estimates compared to the standard method, which

assumes equal correlations for all subjects (Suesse, 2008). When all subjects have equal cor-

relations, then the group-wise method is almost as good as the standard method. However

the group-wise method only works well when the number of groups is small, the number of

subjects per group is reasonably large,for example ≥ 50 and for correlation structures that

are characterised by a small number of parameters.

Unfortunately, the group-wise method is not implemented in standard packages. It can

be fitted using the package geepack by specifying a design matrix for the linear correlation

model, although it is more complicated. Here we only want to make the reader aware that

modelling the correlations depending on some covariates might better reflect the nature of

the data and might be more important than choosing a proper working correlation, which

assumes a basic intercept model for each correlation.

2.2.3 Model Diagnostics for GEE

The major disadvantage of the GEE approach is that it is not a ML approach and standard

likelihood based model checking diagnostics for GLMs, such as the deviance, cannot be

applied. Next we review some existing model checking methods for GEE.

Horton et al. (1999) and Barnhart & Williamson (1998) proposed goodness-of-fit (GOF)

tests that can be regarded as extensions of the famous Hosmer & Lemeshow (1980) statistic,

which is based on the idea of forming G groups by partitioning the space of covariates. For

each group g a parameter γg is added to the model

h(πi) = Xiβ +
G∑

g=1

I(i in group g)γg. (6)

where I(event) is the indicator function, which is one if the event is true and zero otherwise.

The model (3) is accepted if the null hypothesis

H0 : γ1 = γ2 = · · · = γG = 0
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is not rejected. Horton et al. (1999) used a score test which is asymptotically χ2
G−1 distributed

to test H0. Barnhart & Williamson (1998) proposed another score test, that also partitions

the covariate space into G regions, but adds parameters for the time and interaction effects

time×region. Then the score test is applied to test whether all such added parameters are

zero. These proposed GOF statistics are asymptotically χ2 distributed. The degrees of

freedom (d.f.) do not depend on p in a simple way, such as n− p or similar. A disadvantage

of these statistics was illustrated by Hosmer et al. (1997), who showed that six statistical

packages gave six different p-values for a well known example, simply because the p-value

depends on the partitioning which is handled differently in these six packages. Lee & Qaqish

(2004) proposed another GOF statistic for grouped observations where the correlations are

estimated within each group.

Pan (2002) derived the asymptotic approximate distribution of the Pearson chi-squared

statistic

X2 =
∑
i,j,t

(yijt − π̂ijt)2

π̂ijt(1− π̂ijr)
(7)

when the data are fit by GEE. The distribution of X2 is not chi-squared due to correlated

observations within a cluster but approximately normal with mean n · c · T and complex

variance. The result is based on a first order Taylor series approximation (Pan, 2002).

Pan (2001a,b); Pan & Le (2001) and Pan & Connett (2002) considered model selection

in GEE, either for the mean model or correlation model. Pan (2001a) suggested a quasi-

likelihood under the independence model criterion (QIC) for GEE, based on the quasi-log-

likelihood Q(β) under the independence assumption. Then Q(·) is evaluated at β̂(R) that

is obtained under the working correlation R. The QIC is defined as

QIC(R) = −2Q(β̂(R)) + 2trace(P), (8)

with P = Ω−1naiveΩrobust. The quasi-log-likelihood Q under the independence model is equal

to the log-likelihood L for independent observations. Under the independence model, the
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standard AIC = −2L + 2p is an approximation for QIC. However as Pan (2001a) noted,

this approximation can only be used to check the mean model, not the working correlation,

which can only be done using the QIC. Wang & Hin (2009) and Hin & Wang (2009) developed

similar approaches based on QIC.

We believe this approach using QIC is only useful for checking the mean model and using

the independence correlation model, but it is not useful for any other working correlation. If

the working correlation is not the independence model, there is a non-zero term missing in

the QIC. Therefore, it is not suitable for any non-independence model.

The term Q(β̂(R)) also punishes for deviations from the independence model due to its

definition. In (8), the term Q(β̂(R)) is of order N = n · c · T (sample size), as is U, which

is part of the missing term. The term trace(P) in (8) that punishes the independence model

if it is not true, is of order p. Therefore QIC seems especially problematic if N is relatively

large compared to p, as for the HILDA data set.

Alternatively one might opt for the Rotnitzky & Jewell (1990) criterion:

RJ =
√

(1− trace(P)/p) + (1− trace(P2)/p).

The working correlation with the smallest RJ should be chosen. Hin et al. (2007) note that

neither QIC nor the RJ criterion preformed well in their simulation study using n = 100

and cluster size 5 (N = 500). However for larger data sets (N >> 500) we expect the RJ

criterion to perform better due to the limitations of QIC mentioned above.

Other methods include that of Pan & Connett (2002) who select the working correlation

based on minimizing the predictive mean squared error (PMSE). The PMSE is evaluated

using the bootstrap method (Efron & Tibshirani, 1993). Liu et al. (2009) considered a more

sophisticated model diagnostic approach to check the functional form and link function of

a covariate for the proportional odds model based on a cumulative residual process. This

method was actually derived more generally for GEE and performs much better than the

Hosmer-Lemeshow statistic but is very time consuming. Pan et al. (2001) proposed a marginal
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model plot to assess the model adequacy in GEE.

Among all the model diagnostic methods mentioned above, a relatively convenient way

to check the GEE model is to first fit the model by ordinary GLM routines and use the AIC

to select the covariates of the mean model (or alternatively by QIC using the independence

model). The advantage of this approach is that standard model selection methods for GLM

can be used and the AIC is an approximation to the QIC. Then in a second step the working

correlation should be chosen, for which one could follow Pan & Connett (2002) or use the RJ

criterion. In a third step the Pearson statistic can be applied to test the overall GOF of the

model. If the Pearson statistic is not feasible due to matrix inversion, as for the large data

set HILDA, one can use any of the Hosmer-Lemeshow-type GOF statistics.

3 Generalised Linear Mixed Models

The marginal model (3) is called a population–averaged model, which focuses on the marginal

distribution of the responses. Instead of assuming a particular joint distribution of responses,

the GEE method specifies only the first two moments. The mean is linked to the predictor

and the working correlation is incorporated to obtain the estimators. In contrast, generalised

linear mixed models (GLMM) additionally include a subject-specific effect, the random effect.

This model is referred to as a subject-specific model, since parameters are defined on the

subject level.

Let ui be the random effect vector for subject i and let Zi be the design matrix for

the random effects. Conditional on ui, the distribution of Yijt is assumed to be from the

exponential family type with density f(Yijt|ui;β) and conditional mean µijt = E(Yijt|ui).

Given ui, the responses are assumed independent within subject i, which is known as the

local independence assumption. Also, the responses are independent for different subjects.

In our case, the distribution of Yijt is binary and µijt ≡ πj|it. The linear predictor for a
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GLMM is

h(πi) = Xiβ + Ziui, (9)

where Xi, h(·) and β have the same form as in model (3). The design matrix Zi for the

random effects ui consists of rows z′ijt referring to subject i, item j and time point t. The

random effects ui of dimension r (r ≤ c×T ) are assumed to be multivariate normal N(0,Σ)

with unknown positive definite covariance matrix Σ, where the density is denoted by f(ui; Σ).

By the local independence assumption, the conditional density of Y given u has the form

f(Y|u;β) =
n∏

i=1

f(Yi|ui;β) with f(Yi|ui;β) =
c∏

j=1

T∏
t=1

f(Yijt|ui;β).

We can also write

f(u; Σ) =
n∏

i=1

f(ui; Σ),

where Y = (Y1, . . . ,Yn) and u = (u1, . . . ,un). We maximise the likelihood function

l(β,Σ; y)

l(β,Σ; y) = f(Y;β,Σ) =

∫
f(Y|u;β)f(u; Σ)du (10)

to obtain ML parameter estimates for β and Σ. This likelihood function is often called the

marginal likelihood after integrating out the random effects (Agresti, 2002).

The integral usually cannot be solved analytically and numerical methods must be ap-

plied. Gauss-Hermite quadrature methods directly approximate the integral (10). They

work well for small dimension r of the random effect distribution, but become infeasible for a

large r, because the number of quadrature points used to approximate the integral increases

exponentially with r.

Several methods for approximating the marginal likelihood are available; see Stiratelli

et al. (1984); Schall (1991); Breslow & Clayton (1993); Zeger et al. (1988) and Goldstein

(1991). However, most of them can yield poor estimates, in particular for first order expan-

sions (Breslow & Lin, 1995). Raudenbush et al. (2000) introduced a fast method combining
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a fully multivariate Taylor series expansion and a Laplace approximation, yielding accurate

results. Other possible approaches include penalised log-likelihood equations (Schall, 1991;

Breslow & Clayton, 1993), Bayesian mixed models (Fahrmeir & Tutz, 2001) and semi- or

non-parametric ML (Hartzel et al., 2001). Another popular method is the EM (expectation-

maximisation) algorithm implemented here by treating the random effects as unobserved

data. Algorithms have been provided by McCulloch (1997) and Booth & Hobert (1999)

among others.

A typical multilevel approach is to consider subjects, time and items as levels. The prob-

lem with this approach is that the imposed correlation over time does not resemble a typical

time dependence structure, such as the autoregressive structure. Often random intercepts are

used in model (9), implying non-negative correlations between the responses. Only if z′ijtui

and z′ij′t′ui are monotone in opposite directions is the covariance non-positive (Egozcue et al.,

2009). That is, negative correlations cannot be modelled by random intercepts or positive

design matrices. In our view, constructing negative correlations by specifying zijt seems

impractical and therefore GLMM are not useful in modelling data with negative correlations.

In general, if the investigator is interested in the relationship between a response variable

and covariates for subjects of the whole population, then the GEE approach is preferable,

because the probability of success can be easily calculated for known covariates and by

applying the inverse link h−1 to (2). If, however, one is more interested in inference for

the sample and in predicting future observations, then the GLMM approach is preferable,

because for each subject in the sample a subject-specific effect is obtained, ûi, from the fitting

procedure allowing the prediction of future probabilities by applying h−1 to formula (9) for

a potential set of covariates xijt.
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4 Simulation Study for GEE Approach Combing Levels

To simplify the situation as much as possible we only consider c = 2 and T = 3. Including

two items is sufficiently large even though there is just one correlation coefficient α, because

between any two items one might expect a different correlation. Also, T = 3 is large enough

to illustrate the AR-structure with parameter ρ. Two correlation structures are used, one

for the items (unstructured, α = 0.2) and one for time points (AR, ρ = 0.4) with the joint

correlation structure described in (4). It is unlikely that the true correlation between two

responses (Yijt and Yij′t′ with j 6= j′ and t 6= t′) is zero. Therefore the joint correlation

structure described in (5) is not considered for the true model. For both items the same AR

parameters ρ = 0.4 are used. We consider three models A, B and C. Model A is characterized

by

logit(πj|it) = β0 + βjX + β3 · t

with β0 = −0.5, β1 = −0.5, β2 = 0.9, β3 = −1.2 and X ∼ N(0, 1), allowing both item and

time effects. Model B has the form

logit(πj|it) = β0j + βjXj

with β01 = 0.2, β02 = 0.3, β1 = 0.5, β2 = 0.7, X1 discrete with equal probabilities on

{0, 1, 2, 3, 4, 5}, and X2 ∼ N(0, 1), allowing only item effects. Model C has the form

logit(πj|it) = β0 + βX,

where β0 = −1 and β = 3 with X ∼ N(0, 1), with no item or time effects. The number of

clusters generated for each of the three models is n = 30, 100, 500.

To simulate the data, we need to calculate the joint distribution for each Yi for the

given marginal means πj|it and correlations. From the correlations and πj|it, the pair-wise

probabilities Pr(Yijt = 1, Yij′t′ = 1) are computed, from which a set of 2c·T joint probabilities
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can be calculated, as in Lee (1993). There are usually many solutions for such a set, provided

a feasible solution exists. The iterative proportional fitting algorithm (IPF) of Gange (1995)

is applied to obtain such a solution , this is analogous to the simulation study in Bilder et al.

(2000).

We will always fit the correct mean models and only investigate several methods for the

working correlations, including the joint correlation structure option 1 [see (4)] and option 2

[see (5)]. The methods considered are:

a) unstructured for whole cluster (unstr)

b) exchangeable for whole cluster (exch)

c) independence for whole cluster (ind)

d) option 1, mean model and working correlation estimated jointly (opt1-j)

e) option 1, ρ and α estimated separately before fitting the mean model (opt1-s)

f ) same as d), but option 2 (opt2-j)

g) same as e), but option 2 (opt2-s)

h) only item correlation, ignore time points (item)

i) only time correlation, ignore items (time).

Results of the simulation study for the mean model parameters are shown in Table 1.

Models are fitted under both options, so that the effect of omitting a small non-zero corre-

lation can be assessed. The table shows the relative mean squared error (RMSE), the mean

squared error (MSE) relative to the GEE method using the correct known (fixed) correlation

structure to evaluate the relative efficiency, and the coverage for a 95% confidence interval

based on the naive variance and on the robust variance (RMSE, naive, robust). The table

shows a single value for each model, even though the models A, B and C refer to models
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with several parameters, because showing results for all parameters and models separately

does not provide more insight. The MSE and coverage were computed as averages over all

mean model parameters to obtain a single value.

Table 1: Simulation Results for models A, B and C under option 1 for n = 30, 100, 500
- average RMSE, and average coverage of 95% confidence interval based on naive variance
followed by robust variance, average is over all mean model parameters

Fitting Mean Models
n Method Model A Model B Model C

30 unstr 1.043, 91.1, 89.8• 1.102, 91.0, 90.0◦ 1.209, 89.7, 91.1◦

30 exch 0.995, 89.1, 90.4∗ 1.062, 91.8, 92.4 1.041, 92.8, 92.4∗

30 ind 1.039, 88.7, 89.8∗ 1.070, 89.2, 92.8 1.041, 83.4, 92.4∗

30 opt1-j 0.986, 91.3, 90.5∗ 1.033, 91.4, 92.3 1.036, 89.9, 92.4∗

30 opt1-s 0.985, 91.1, 90.4∗ 1.034, 91.0, 92.3 1.033, 89.2, 92.4∗

30 opt2-j 0.990, 91.2, 90.5◦ 1.039, 92.1, 92.4 1.019, 90.0, 92.3∗

30 opt2-s 0.990, 90.9, 90.4∗ 1.038, 91.7, 92.4 1.047, 89.1, 92.3∗

30 item 1.002, 90.1, 89.3∗ 1.043, 88.7, 87.8 1.056, 86.7, 87.6∗

30 time 1.037, 89.2, 89.9∗ 1.043, 89.3, 91.0 1.057, 86.1, 90.1∗

100 unstr 1.136, 92.0, 92.7◦ 1.044, 94.0, 93.7∗ 1.199, 91.8, 93.3◦

100 exch 1.024, 91.4, 93.2∗ 1.062, 91.5, 94.4∗ 1.036, 93.8, 94.2
100 ind 1.035, 90.3, 92.8 1.067, 88.3, 94.6 1.036, 83.1, 94.2
100 opt1-j 1.011, 92.8, 93.2∗ 1.024, 91.3, 94.5 1.025, 90.1, 94.2
100 opt1-s 1.017, 92.5, 93.1∗ 1.025, 90.8, 94.5 1.026, 89.5, 94.2
100 opt2-j 1.017, 92.7, 93.1∗ 1.032, 91.9, 94.5 1.032, 90.0, 94.2∗

100 opt2-s 1.026, 92.4, 93.0∗ 1.032, 91.4, 94.5 1.034, 89.3, 94.2
100 item 1.032, 91.4, 91.4∗ 1.035, 88.2, 87.9 1.036, 86.6, 87.7
100 time 1.026, 90.9, 92.4 1.040, 88.5, 91.8 1.041, 85.8, 91.1

500 unstr 1.026, 94.5, 94.4∗ 1.010, 94.7, 94.6 1.045, 94.2, 94.5∗

500 exch 1.013, 93.0, 94.7 1.026, 93.1, 94.8 1.014, 94.5, 94.8
500 ind 1.013, 92.2, 94.7 1.032, 90.9, 94.9 1.014, 88.0, 94.8
500 opt1-j 1.006, 94.0, 94.7 1.010, 92.7, 94.8 1.008, 92.1, 94.9
500 opt1-s 1.007, 93.9, 94.7 1.010, 92.4, 94.9 1.009, 91.8, 94.9
500 opt2-j 1.009, 93.9, 94.7∗ 1.013, 93.0, 94.9 1.009, 92.2, 94.9∗

500 opt2-s 1.009, 93.9, 94.7 1.014, 92.8, 94.9 1.012, 91.9, 94.9
500 item 1.013, 93.2, 93.1 1.016, 90.9, 90.8 1.014, 90.4, 90.8
500 time 1.011, 92.7, 93.9 1.019, 91.1, 93.2 1.017, 89.6, 92.6

Non-convergence rate: 0% (no symbol), 0− 10% (∗), 10− 50% (◦), > 50% (•)

The table does not show the confidence interval (CI) length and also excludes the bias.

The bias is negligible and the CI length is monotone in the coverage, because the CI is

centered around the same β̂. Therefore, a method with a smaller coverage has a shorter CI.

One might wonder about the efficiency (< 1) for n = 30 and model A. This comes from
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the fact that the method with the true correlation structure has higher convergence rate

than the methods for which the correlation must be estimated. It results in an unequal set

of simulated data sets for which the MSE was computed. This is similar to the problem of

non-response leading to biased estimates.

Before making some interpretation of the tables, one has to consider how the methods

a) - i) were applied. All methods except methods ‘item’ and ‘time’ were applied to the

whole cluster of size c · T , whereas methods h) and i) were only applied to the clusters that

defined items and time points, respectively. Therefore these methods wrongly identify the

clusters. The robust variance is not consistent for methods ‘item’ and ‘time’ due to cluster

mis-specification.

Not surprisingly, the larger the number of clusters becomes, the more accurate the robust

variance due to the consistency of the robust variance, except with methods ‘time’ and ‘item’.

The naive variance seems rather unreliable. Method ‘op1-j’ seems generally best, which was

to be expected, because it uses the true working correlation. The suggested and relatively

easily implementable method ‘opt1-s’, as an alternative to method ‘opt1-j’, performs almost

as well. The difference in relative efficiency is almost negligible, which is to some extent

surprising, because we would expect a higher gain in efficiency if the correlation parameters

and the mean model parameters are all estimated jointly.

The method ‘unstr’ usually performs poorly for small n in terms of both relative efficiency

and non-convergence, but improves with n. Methods ‘opt2-j’ and ‘opt2-s’, which assume zero

correlation between responses of the same person for different items and different time-points,

are generally worse than methods ‘opt1-j’ and ‘opt1-s’. The naive variance does not generally

perform well, even when the working correlation is the true correlation structure. For large

n the robust variance is to be preferred and only for small n is the naive variance preferred,

but only for a reasonable working correlation.

Table 1 also gives an indication of the bias of standard errors, because under-coverage in-

dicates that standard errors are under-estimated and over-coverage indicates over-estimation
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of standard errors. The results show that the suggested method ‘op1-s’ performs well and

should be used in practice if one wishes to use existing software and does not want to imple-

ment method ‘opt1-j’.

5 Example: The Household, Income and Labour Dynamics in Aus-

tralia (HILDA) Survey

The data used in this article come from waves E, F, G and H (years 2005-2008) of the House-

hold, Income and Labour Dynamics in Australia (HILDA) Survey. Details are documented

in Wooden et al. (2002). In the first wave (wave A, 2001), 7683 households representing 66%

of all in-scope households were interviewed, generating a sample of 15, 127 persons who were

15 years or older and eligible for interviews, of whom 13, 969 were successfully interviewed.

Subsequent interviews for later waves were conducted about one year apart. In addition

to the data collected through personal interviews, each person completing a personal inter-

view was also given a self-completion questionnaire to be returned on completion by mail or

handed back to the interviewer at a subsequent visit to the household.

The HILDA survey contains detailed information on economic and subjective well-being,

labour market dynamics and family dynamics. Information relating to individuals’ health was

collected in both the personal interviews and self-completion questionnaires. In the personal

interviews, individuals were asked whether they had a long-term condition, impairment or

disability that restricted everyday activities and had lasted or was likely to last for six months

or more. Examples are shortness of breath, long term mental health condition and pain.

In the self-completion questionnaire, the Short Form 36 (SF-36) asks questions about the

health status. The SF-36 is a measure of general health and wellbeing, and produces scores

for eight dimensions of health (Ware et al., 2000), such as mental health, general health,

physical functioning and vitality. Scores for all scales range from 0 to 100, with higher scores

indicating better health.
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In the self-completion questionnaire, respondents were also asked about their daily, weekly,

monthly and annual expenses. Two of the items for annual expenses are: i) private health

insurance (PHI) and ii) fees paid to doctors, dentists, opticians, physiotherapists, chiroprac-

tors and any other health practitioner (FD) (often referred to as ‘extras’). In Australia, the

government provides a compulsory basic health cover for everyone and purchasing a private

health insurance as a top-up cover is optional. Therefore respondents might tick none, one

or both of the two items. The first item is available from wave E (2005) and the second from

wave F (2006). We have access to waves A to H (2001-2008). Therefore T = 4 for the first

item and T = 3 for item number 2. One of the research question governments and private

health insurers might be interested in is how these two items relate to various covariates,

such as the health scores, the long term health conditions, etc.

HILDA provides a number of such health variables: i) alcohol drinking status (abstainer,

ex-drinker, low risk, risky, high risk), ii) health scores (0-100): mental health, general health,

physical functioning and vitality from the SF-36, iii) long term health conditions (indicator

for developed at previous wave - ‘developed T-1’, at current wave ‘developed T’, shortness

of breath, pain, mental health, etc.), smoking status (do not smoke, no longer smoke, smoke

weekly but less often than daily, less often than weekly), iv) number of cigarettes a week, v)

satisfaction scores (0-100) for life and with partner. The analysis accounted also for sex, age,

labor force status, race, dependent person (young adult living with parents), household size

(1,2,3,4,5,6+), number of children (0,1,2,3+) and education (higher education – masters or

doctorate, grad diploma, grad certificate, Bachelor or honours Advanced diploma, diploma,

some education – Cert I,II,III or IV, Cert not defined, Year 12, and no education), major

statistical region (Sydney, Balance of New South Wales, Melbourne, Balance of Victoria,

Brisbane, Balance of Queensland, Adelaide, Balance of SA, Perth, Balance of Western Aus-

tralia, Tasmania, Northern Territory and Australian Capital Territory) and remoteness area

(Major City, Inner Regional Australia, Outer Regional Australia, Remote Australia, Very

Remote Australia).
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For this example, we consider another correlated level – household. The notation πj|ith is

the probability of item j was ticked at time t by subject i who was in household h. Using

the GEE method, we first select the mean model

logit(πj|ith) = x′ijthβ
GEE
j ,

using AIC under the standard independence model, since this is an approximation to QIC.

Here we assume that the effects for all waves are the same. The final joint model consists of

p = 97 chosen covariates. Then we assess the working correlation model by computing the

RJ criterion and trace(P).

GEE with the unstructured working correlation did not converge due to the large data

set. We use the working correlation referring to (4), denoted by opt1, and the same option

but allow different correlation parameters for each item; this method is denoted by opt1∗.

Because the responses are correlated among three levels: items, time and household, option

(4) is extended by combining multiplicatively three levels, not only items and time. We also

fit the mean model with the working correlations: independence (ind), exchangeable (ex),

only accounting for time dependence (time), for items dependence (item) and for households

dependence (HH).

Table 2 shows the results of the RJ criterion and trace(P). Both measures say that opt1∗

is the best choice followed by opt1.

Table 2: Assessing Working Correlation Models for HILDA

Working Correlation
Measure opt1 opt1∗ ind ex time item HH

RJ 217 201 1300 790 240 1405 667
trace(P) 581 558 1191 985 574 1231 920

For opt1∗, the AR parameters for the two items are 0.44 for FD and 0.90 for PHI. The

correlation, between FD and PHI is −0.26 and the correlation between members of the same

household is 0.53. For opt1 the single AR parameter is 0.79. The HILDA data set also
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contains area information. We did not account for the dependence between people from the

same area in the correlation model. However, in the mean model we add a main effect for

each of the major statistical regions and remoteness areas of Australia.

Finally to check the overall model for GEE with opt1, we cannot apply the Pearson

statistic as suggested by Pan (2002) due to the large data set. Instead, we compute the

Hosmer-Lemeshow statistic with 10 groups (Horton et al., 1999) which gave a p-value of

0.25. The final GEE model was accepted, even though one must keep in mind that such tests

usually have a low power.

For fitting mixed models, the R-package lme4 (Bates & Maechler, 2010) was applied which

uses a Gauss-Hermite quadrature approximation of the marginal likelihood. We consider the

following mixed model

logit(πj|ith) = x′ijthβ
GLMM
j + uh + uj|i + uj|h + uti + uth,

assuming these random intercepts are independent of each other. Instead of just accounting

for a single random effect, e.g. uh, this model accounts for several effects, individual level

random effects uj|i (subject-item) and uti (subject-time), and household level random effects

uh (household - intercept), uj|h (household-item) and uth (household-time). These effects

allow us to get more insight into the dependence of items across time-points and household

members.

The fitting results for a GLM, GEE (opt1) and GLMM are presented in Tables 3 and 4. To

preserve space estimates for major statistical region and remoteness area are not shown. All

other variables not shown were excluded by the model selection procedure. The analysis of

GEE shows that compared to males, females are more likely to pay fees for doctors and extras

than to pay for health insurance. It also happens for the mid-age group (35-74) compared

to the baseline age group (18-24). Those with alcohol drinking status low risk, risky or high

risk (say drinkers) are more likely to pay fees for doctors and extras than to purchase private

health insurance compared to abstainers.
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There could be many reasons to explain these results. For example, it could be that

drinkers might have less money left over or be higher risk takers than non-drinkers, but they

might require more frequent medical services to treat medical conditions associated with their

drinking status.

Our primary focus of this paper is not on interpretation of such parameters but on the

statistical modeling and its influence on the associated p-values. The tables clearly show

that p-values of the GLM approach are smallest. This was expected, because GLM does not

account for dependence between observations. Parameter estimates between GEE and GLM

are not very different, but standard errors and p-values are. GLMM shows a different picture.

Fixed effects estimates are usually larger in magnitude, as are standard errors, but p-values

are generally similar to those of GEE, even though for particular parameters differences can

be quite large. This can be explained by an approximate relationship between a marginal

model and a mixed model (Zeger et al., 1988):

x′ijthβ
GEE
j ≈ a(Σ)x′ijthβ

GLMM
j ,

where a(Σ) is a constant depending on the random effects estimates and on Zijt. The

variance estimates of the random effects for uh, uj|i, uj|h, uti, uth are σ2
h = 13.81, σ2

j|i = 11.85,

σ2
j|h = 8.25, σ2

ti = 2.67 and σ2
t|h = 0.377. This gives a(Σ) ≈ 0.26, implying that fixed effect

estimates of GLMM are approximately four times larger than those of GEE.

In our example the item correlation between two items estimated by GEE is −0.26,

indicating a negative correlation. However, a simple GLMM with intercepts assumes non-

negative correlations (see Section 3). To meet the assumption, we applied a trick to obtain

responses that are non-negatively correlated by transforming the 0/1 binary response to a

1/0 response for item 1. That is, positive responses become negative and negative responses

become positive. Note this transformation changes the sign of the estimates for item j = 1,

to make them comparable with the GEE method, the estimates were multiplied by −1. For

this example this transformation works, but for a general case with several items it might
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not work. For example, assume there are 3 items A, B and C, where items A and B and

items B and C might be positively correlated, but items A and C are negatively correlated.

In this instance, there is no transformation that makes all correlations positive.

6 Discussion

This article mainly focuses on GEE and GLMM methods for modelling repeated multiple

responses, because of the impractical nature of the marginal ML approach. Using Lang’s

method, the ML estimation does not require any assumption about correlation parameters.

However, this method and any other method becomes infeasible even for small c and T ,

because data are often highly sparse due to the 2cT possible profiles. Mixed models take the

dependence among items and time points through the distribution of random effects into

account. They have relatively few parameters compared to the ML method, which assumes

the multinomial distribution for the 2cT possible profiles. However mixed models, such as

in model (9), imply non-negative associations across different time points due to the simple

structure of the joint distribution. This might not be the case, that is, subjects who respond

positively to one item at one time point may not be likely to respond positively to the item

at another time point and transformations might not entirely solve this problem, as indicated

in Section 5.

The marginal models using the GEE approach do not assume any subject–specific joint

distributions. They use only a working correlation structure for the responses across items

and time points to improve relative efficiency. In general, the GEE method is widely im-

plemented in all common statistical packages and one might use any of the common simple

working correlation structures to obtain more efficient mean model estimates compared to

the independence model.

If one wishes to obtain even more efficient estimates, we recommend using the correlation

model (4) to account for the two types of correlation, the item correlation and time-points
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correlation. In addition, one can use the group-wise method that allows different correlation

estimates for groups. If one wishes to use the AR structure for the time-points, then standard

GEE packages, such as the R-package geepack cannot fit such a correlation model, due to the

non-linearity of the AR model. As an alternative, we recommend obtaining an estimate for

the time-points correlation and then separately obtaining an estimate of the item correlation.

Then, we fit the final model with a fixed working correlation specified by (4) using these time

and item correlation estimates. This alternative fitting strategy also works for the group-wise

method. The simulation study has shown that this method works almost as well as jointly

estimating the correlation and mean model parameters. This method is a trick that enables

us to use existing software and avoids writing new code, although it is still an option for the

experienced user.

There are some advantages of the group-wise GEE method. Suesse (2008) showed that

the efficiency of mean model parameters is improved if the correlation between two responses

Yijt and Yij′t′ is not the same across different groups and the number of subjects per group is

at least 50. When the underlying correlation model is indeed true, parameter estimates can

be quite different between the standard and the group-wise method.

Although both GEE and GLMM methods seem similar and contain the same fixed effect

parameters β, one does not imply the other. For our example, we are interested in how the

probability of paying fees to doctors and extras (FD), and paying private health insurance

(PHI) depends on different factors; and comparing the effects on FD and PHI. Therefore,

the overall (population–averaged) rates are more relevant. Generally speaking, the marginal

models seem to be more useful than the subject–specific models in many applications. The

subject–specific models might be useful in medical studies, when the effects of interest are at

the subject–level. For example, does the probability of recovery depend on the treatments

and other covariates conditional on the patient? Or what is the probability for a future item

response of a subject, given the subject–specific effect and hypothetical covariates?

Other model approaches not considered here are marginalized GLMM, transition models
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and log-linear models; for a good summary see Diggle et al. (2002). Marginalized GLMM

have the advantage of a marginal interpretation, like GEE, but also the advantage that the

joint distribution follows a GLMM, allowing likelihood-based inference. This approach is

useful if, for example, a multi-level model is applied and a marginal interpretation is sought.

Transitional models do not only assume that the linear predictor of Yijt depends on a set

of covariates but also on previous observations, e.g. on Yij,t−1. This approach seems more

useful than the GLMM approach when the main goal is prediction of future observations. To

apply this approach for repeated multiple response data and to make items dependent, one

could assume that the linear predictor of Yi,j1,t depends also on Yi,j2,t with j1 6= j2. Log-linear

models seem least useful for such complex data, because marginalization and fitting becomes

increasingly complex for large c · T , as with ML estimation for marginal models discussed in

Section 2. We did not consider these approaches here in detail, because in contrast to GEE

and GLMM, most statistical packages do not offer to fit such models. Each of the approaches

is also similar to the GEE or the GLMM approach. Hence the extension of the proposed

models to repeated multiple response data is straightforward.

Finally, we discuss the issue about missing data, which occur in our example. The GEE

method assumes data being missing completely at random (MCAR). Under the weaker as-

sumption of missing at random (MAR), GEE does not provide consistency in contrast to ML

methods provided by Lang & Agresti (1994), Lang (1996) and Lang (2005). On the other

hand, the procedure in GLMMs only requires MAR. However, for our example, the GEE

method seems reasonable, because a sub-case of MCAR allows missingness to depend on the

observed covariates, e.g. time-point, age or sex. It is called the covariate-dependent missing-

ness (Hedeker & Gibbons, 2006). For the general MAR case, Fitzmaurice et al. (1995) and

Ali & Talukder (2005) considered a missing data mechanisms for longitudinal binary data

deriving weighted generalized estimation equations (WGEE), an extension of GEE.

As illustrated for the HILDA survey in which we accounted for households, items and

time-points, the structure of the correlation model (4) and the idea of separate fitting can
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be applied to any multi-level-type data accounting for different levels. Future research might

focus on empirical studies that investigate how the correlations between responses on the same

subject for which items and time-points are different can be modeled. Model (4) suggests

using a product, but other functions might be more appropriate. Also, an R-package can be

provided to allow the joint fitting procedure using the existing GEE packages, as suggested

in this article. In the future, the user does not need to implement it ‘by-hand’.
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