
University of Wollongong
Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences

2005

Exchanging XML multimedia containers using a
binary XML protocol
S. J. Davis
University of Wollongong, stdavis@uow.edu.au

I. Burnett
University of Wollongong, ianb@uow.edu.au

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
This article was originally published as: Davis, S. J. & Burnett, I. S., Exchanging XML multimedia containers using a binary XML
protocol, IEEE International Conference on Multimedia and Expo (ICME 2005), 6 July 2005, 358-361. Copyright IEEE 2005.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/infopapers
http://ro.uow.edu.au/eis

Exchanging XML multimedia containers using a binary XML protocol

Abstract
XML is becoming increasingly popular as the ubiquitous standard for metadata; consequently, it is being
incorporated into many multimedia applications, such as those based on MPEG-7 and MPEG-21. However,
XML is often verbose and transmitting the large filescan be wasteful in bandwidth and power-limited mobile
applications. This paper introduces an XML access mechanism, RXEP, which combines XML compression
with a fragment access protocol. RXEP ensures that essential information is exchanged efficiently while
minimising superfluous XML content transmission. This makes XML containers an attractive technique for
multimedia content delivery.

Disciplines
Physical Sciences and Mathematics

Publication Details
This article was originally published as: Davis, S. J. & Burnett, I. S., Exchanging XML multimedia containers
using a binary XML protocol, IEEE International Conference on Multimedia and Expo (ICME 2005), 6 July
2005, 358-361. Copyright IEEE 2005.

This conference paper is available at Research Online: http://ro.uow.edu.au/infopapers/73

http://ro.uow.edu.au/infopapers/73

EXCHANGING XML MULTIMEDIA CONTAINERS USING A BINARY XML PROTOCOL

Stephen J. Davis and Ian S. Burnett

School of Electrical, Computer and Telecommunications Engineering
University of Wollongong, Australia

ABSTRACT

XML is becoming increasingly popular as the ubiquitous standard
for metadata; consequently, it is being incorporated into many
multimedia applications, such as those based on MPEG-7 and
MPEG-21. However, XML is often verbose and transmitting the
large filescan be wasteful in bandwidth and power-limited mobile
applications. This paper introduces an XML access mechanism,
RXEP, which combines XML compression with a fragment
access protocol. RXEP ensures that essential information is
exchanged efficientlywhile minimising superfluous XML content
transmission. This makes XML containers an attractive technique
for multimedia content delivery.

1. INTRODUCTION

XML [1] and XML schema [2] have achieved significant accep-
tance for data exchange due to their inherent structure and human
readability. However, the advantages of a textual format (the native
format of the WWW) are also major disadvantages for efficient
communication in e.g bandwidth limited mobile environments.
Recently, compression techniques [3–6] have alleviated these is-
sues and thus XML schema becomes an attractive mechanism for
the packaging of multimedia content for delivery in all environ-
ments rather than just on the internet. Several standards have built
‘content containers’ using XML but the most complete approach
is provided in the MPEG-21 Digital Item [7]. Using XML as the
‘container’ for multimedia content makes the significantset of ex-
isting XML tools available for multimedia delivery. Examples of
this include the several XML parsing techniques for different situ-
ations such as DOM and SAX, which allow XML to be parsed on a
wide range of devices. Most importantly, however, XML multime-
dia containers can facilitate interoperatibility amongst devices, by
incorporating metadata describing content and how it could/should
be used.

While the interoperatibility afforded by XML containers has
clear advantages, a significant drawback in mobile environments
is the large volume of XML descriptors which may need to be
incorporated to cater for diverse scenarios, content and applica-
tions. While, these can be compressed to some degree, they in-
evitably waste bandwidth, processing power and limited mobile
device memory. A solution to these problems would be to only
deliver the XML fragments [8] which are relevant (i.e. keeping
the XML primarily on a server and restricting delivery to a mobile
client). Some of these issues are addressed in [9] for text based
XML, but in this paper we significantlyexpand that work to create
a full two-way protocol for the delivery of XML fragments. Re-
mote XML Exchange Protocol (RXEP) is fully defined in XML
Schema but may be compressed using schema based compression

This work was partially funded by the Smart Internet Technology CRC

<RXEP xmlns="RXEP:2004">
<Add location="/Media/Music/Song[2]"

ns="mediaNS:2004">
<Title>Hit.2</Title>
<Description>Song 2</Description>
<Artist>B. Artist</Artist>
<Format>OGG</Format>
<Length>03:46</Length>

</Add>
</RXEP>

Fig. 1. Example RXEP packet

to minimise bandwidth costs. Thus, RXEP offers all the structural
and processing advantages of XML/XML schema while minimis-
ing costs in the mobile environment. It achieves this by explicitly
utilising the two-way communication available on networks.

The most commonly used XML protocol is Simple Object Ac-
cess Protocol (SOAP) [10] this is a text based format. This is a dis-
advantage for protocol-based exchange of binary content embed-
ded in XML files as such data must be converted to base64 [11]
increasing the data size by 33%. There have been binary encap-
sulation proposals such as DIME [12] but this ignores the XML
structure in favour of a new binary format. Alternatively, ‘SOAP
attachments’ and XML-binary Optimised Packaging [13] avoid the
problem by referencing binary content rather than conveying it in
the message. RXEP is, instead, an XML definedprotocol which
can be binarised; this means that binary content can be conveyed
natively in the binary format of RXEP while protocol messages
are still entirely XML text compliant when in RXEP text form.
This avoids conversions to base64 thus saving bits and keeps to
the ‘text-only’ mantra of the XML. While RXEP messages could
be encapsulated in SOAP messages this appears to be a needless
overhead for what is intended to be a bit-efficientprotocol.

In the following sections, we overview RXEP, summarise
XML binarisation/compression and then, detail the mechanisms
by which binarisation is applied to RXEP commands and the XML
fragment responses.

2. REMOTE XML EXCHANGE PROTOCOL

Remote XML Exchange Protocol (RXEP) is a new method for
requesting relevant data from an XML document located on a re-
mote server (or peer). RXEP has the ability to create XML frag-
ments building upon pull-parsing techniques [14] (navigating on
an element-by-element basis), or from queries (i.e. using XPath).
RXEP queries can receive multiple fragments at once, i.e. XPath
query //Item, to retrieve all Items in the remote XML document.
RXEP can operate on a request-response basis or in streaming
mode. In the request-response scenario, commands are used to
send instructions to the server. A brief summary of RXEP com-

0-7803-9332-5/05/$20.00 ©2005 IEEE

Table 1. RXEP Commands
Command Definition

Get Initiates a connection and identifies an XML
fileto be exchanged.

XPath Specifies an XPath expression requesting an
XML Element(s).

XML-Pull commands (client to server):
Next Retrieves the next sibling node in the order that

the nodes appears in the XML document.
Expand Expands the current node, allowing access to

the children.
Up Moves up to the parent node.

Back Moves to the previous sibling.
RXEP commands:

Add Adds the fragment to the client’s local XML
instance.

Delete Deletes the specified fragment from the
client’s local XML instance.

Update Updates the fragment in the client’s local
XML instance.

Insert Inserts the fragment before/after the specified
element in the clients local XML instance.

mands are given in Table 1 and further information can be found
at [15]. XML fragments generated from queries are packaged into
the RXEP XML and transmitted to the client. In this paper, we
will only consider in detail the RXEP Add command, which in-
structs the client to add the XML fragment to its local version,
using a location attribute to specify the XPath location. A simple
example of an Add command for RXEP is illustrated in Fig. 1, the
fragment is derived from the example XML Document as shown
in Fig. 3. The remaining RXEP commands such as, delete, insert
and update, provide for full collaborative editing between peers.
This illustrates the versatility and wider application of RXEP.

3. SUMMARY OF XML BINARISATION

Generally compression of XML files is referred to as binarisa-
tion i.e. the conversion from human-readable textual format to
a binary format. To date, a number of XML compression tech-
niques have been reported; typically they can be classifiedas re-
dundancy, schema or hybrid (a combination of the redundancy
and schema) methods. The most notable methods are, Millau [3],
xmill [4], MPEG-7 Binary format for MPEG-7 Metadata (BiM)
[5] and xmlppm [6]. Studies of XML compression techniques,
such as [16], as well as our own tests, reveal that, on average,
tree/schema based schemes such as BiM achieve the lowest data
filesize.

Some techniques, such as BiM [5], support one-way streaming,
which is particularly useful when streaming multimedia, and re-
ceiving associated metadata relevant to the media (e.g lyrics with
the associated part of a music file).A shortcoming of all the com-
pression techniques, is that there is no mechanism to allow the
client to request and retrieve just the information required, or to
simply navigate though an XML document and receive responses
in binary. These are both important facets of systems delivering
complex multimedia containers and combining binarisation with
RXEP offers a suitable solution.

4. BINARISATION IN RXEP (BINRXEP)

Native RXEP commands are expressed in XML valid to an asso-
ciated XML Schema; the protocol itself is thus inherently able to

Media
[CHOICE] {1,Unbounded}
Music (0) {0,1}
[CHOICE] {0,Unbounded}

Song (0) {0,1}
[SEQUENCE] {1,1}

Title {1,1}
Description {0,1}
Artist {1,1}
Format {1,0}
Rating {0,1}
Length {0,1}

...
Videos (1)

...

Fig. 2. Tree View of Schema

be binarised. Thus, the problem remaining is the binarisation of
randomly requested fragments of the XML file. While any com-
pression technique can be applied to the fragments, this is most
efficientlyperformed when the XML is schema valid and schema
based compression (e.g. BiM) can be employed. BiM is not able to
perform this task directly because it does not possess mechanisms
to control the binarisation process - an assumption is made that the
whole XML document will eventually be transmitted. Generally,
BiM and schema-based compression schemes will encode the en-
tire document subtree at once, but provides one exception, deferred
nodes; that mechanism is, however, not helpful when the require-
ment is to ‘navigate’ remotely through the XML document. Thus,
BinRXEP extends tree/schema compression techniques to incor-
porate controls on the binarisation derived from the RXEP com-
mands (i.e. node location, level depth). In particular, this requires
that the binarisation is applied only to direct children of nodes with
all their information such as attributes and values. It is also possi-
ble to specify level depths to request all descendants of a node to
a certain level and, further, to utilise full XPath expressions to ac-
cess multiple elements and descendants in a single request. Thus
RXEP provides a complete binary/compressed protocol specify-
ing versatile requests and delivery formats for randomly accessed
fragments.

BinRXEP is used for the protocol commands and optionally for
XML fragments (when they are schema valid). Essentially, Bin-
RXEP is a schema/tree based compression scheme which relies on
the fact that the metadata structure (the XML Schema) is known
by both the client and sender. Thus, each schema element can be
assigned a unique binary code. This eliminates the need to send
the entire element tag as a string, which results in significant bit
savings. For demonstration purposes, we have represented a por-
tion of an example schema, illustrated in Fig. 2, in a tree view.
The generated binary codes are surrounded by round brackets, i.e.
(010) definesthe second child. The minimum occurrence and max-
imum occurrence of all nodes are surrounded by curly braces re-
spectively, i.e. {0, Unbounded} indicates that the node does not
need to occur, and there is no upper bound on the number of times
it may appear. To illustrate the bit savings, we will refer to the
Media element from the schema in Fig. 2. Here, the Media ele-
ment has a choice of two children, which are Music and Videos.
Since there are only two options, this can be represented with just
one bit. Thus, the Music node, which is 40 bits as a string, can be
represented by its binary code of just 1 bit, ‘0’.

Beyond the basic BinRXEP schema/tree mechanisms, it has
been necessary to introduce specificmechanisms to cater for nav-

<Media xmlns="mediaNS:2004">
<Music>
<Song id="Hit1">

<Title>Hit.1</Title>
<Description>Song 1</Description>
<Artist>A. Artist</Artist>
<Format>MP3</Format>
<Length>02:23</Length>

</Song>
<Song id="Hit2">

<Title>Hit.2</Title>
<Description>Song 2</Description>
<Artist>B. Artist</Artist>
<Format>OGG</Format>
<Length>03:46</Length>

</Song>
</Music>

</Media>

Fig. 3. Example XML

igation and binarisation of XPath expressions. These are detailed
in the following subsections.

4.1. Binary XPath Locators in BinRXEP

XPath locators, within RXEP, can be used to specify the element
for retrieval. An XPath locator is definedas the XPath expression
which specifies the path and position of an element in an XML
file. These locators are used with the RXEP response commands
such as Add, Delete, Update and Insert. Since the XML is valid
to a schema, then we know that the XPath Locators must follow
the schema rules to be valid. Exploiting this information, we can
apply the same binarisation techniques as we do to the XML. This
process is slightly different however, as the Binarised XPath Lo-
cators do not contain the XML model group information and the
action is always a choice (identifying exactly one node). The bina-
risation of an XPath locator has three steps: 1. get the binary code
for current element; 2. if the parent allows multiple children, then
a mandatory integer needs to be encoded to indicate the position
of the child element; and 3. an integer indicating the child element
counter (for multiply occurring child nodes).

For example, in Fig. 1 the XPath locator is “/Me-
dia/Music/Song[2]”. Since Media is the only root node, it is
mandatory and thus no bits are required. The binary code for Mu-
sic is 0 and since there can be an unbounded number of Music (via
the choice), a position code of one is encoded using VLC5, i.e.
00001. Following the same process for Song[2] we get a 0 to se-
lect the Song node and 00010 for the second position code. Since
there may be a number of Songs the ‘counter’ is needed to repre-
sent the [2], which would be 00010 as VLC5. The total output is
00000100001000010 (17 bits) which is significantlyless then the
string representation of 160 bits.

This binary representation contains an additional number indi-
cating where element is positioned (see step 2 above). This allows
us to exactly place the element in its correct position preserving
element order (if necessary). For example, if the Music node had
3 children, Song, Other and Song, /Media/Music/Song[2] from the
XPath selects the second song (third child), however, at the client
side, if nodes are not retrieved in order, i.e from a query, then its
position of three is unknown from the XPath.

4.2. Navigation with BinRXEP encoded XPath Locators

Since we have an efficient method of representing the XPath lo-
cators as binary, which are used for fragment location and posi-
tion. The navigation part of the protocol will ensure that for each
element selected by the XPath locator, all direct child nodes are
returned. Referring to Fig. 2 and Fig. 3, we will illustrate this
process via a simple example. Initially, after an initial RXEP GET
request, the document root node, Media, is selected (server side).
The namespace URIs are transmitted to the client, in order, along
with the root node binary code. This now gives the client enough
information to load all necessary schemas and create binary codes
for the decompression process. The modelgroup [CHOICE] and
only its direct child nodes are then encoded. First, using VLC5
which is a method for encoding numbers of an unknown size [5],
the number of choices are encoded; in the example shown in Fig. 3
there are 2 children so 00001 is written. Here we see that the XML
element Music is present in this XML instance, thus a 0 is written
which is the choice code to select Music. Since this node does not
allow attributes we continue to the next sibling. The second choice
is Videos, and a 1 is written. The total bits sent to the client in this
request would be just seven bits, i.e. 0000101. This process would
continue for the next requested node.

4.3. Navigation with BinRXEP XML-Pull

We will now consider using XML-Pull commands (refer to Table
1) rather than XPath Locators. Instead of receiving all the direct
child nodes from a selected node, here we step though the XML on
a per-node basis. This is analogous to XML Remote Pull-parsing
but by using RXEP the ‘parsing’ is truly remote (i.e. across a
network).

The same example as in Section 4.2 will be used and the binary
requests and responses for the XML-Pull commands are given in
Table 2. The XML document is requested and the code represent-
ing the root element is returned, i.e. Media. The client sends the
binary code representing the Expand command, which instructs
the server to expand the Media node and returns the binary code
for the firstchild node, in this case ‘0’, the code for Music. The
user selects music which sends the binary code expand, the re-
ceived binary code ‘0’ indicates that a Song element is present and
the following bits represent the attribute ‘Hit1’. The user does not
want this song and the binary code for next is sent which moves
the position to the next sibling on the server. The server sends the
binary bit ‘0’ to indicate another Song element is present and the
following bits indicate the attribute ‘Hit2’. The user determines
this is the desired song, and sends the binary code for Expand, in
this case the firstelement Title is mandatory and no code is needed
to represent the element. The bits received indicate the value for
the Title of the requested song.

4.4. BinRXEP Fragments from Queries

There are many cases when it is desirable to request multiple el-
ements or fragments in a single query and this is facilitated using
XPath queries in RXEP. The process will be illustrated using the
simple ‘Example XML’ in Fig. 3 and the RXEP packet shown in
Fig. 1. For the example, the XPath for the query is assumed to
be //Song[@id=“Hit2”] which asks for all songs beginning from
the root node, which also have an attribute ID “Hit2”. In the XML
of Fig. 3, there is only one matching element and the fragment
of XML, returned by RXEP, will be that element and its imme-
diate children; this fragment is placed between the Add tags of
RXEP. Fig. 1 shows the complete RXEP packet response for this
query and illustrates the extra information which must be provided

Table 2. RXEP XML-Pull Navigation
Request Binary Response Description
Expand 0 Expands the Media Node and returns its 1st child, Music
Expand 0 plus (bits for attribute id value “Hit1”) This indicates the Song Element and its id attribute
NEXT 0 plus (bits for attribute id value “Hit2”) This indicates the 2nd Song element and its id value
Expand (bits for Title value “Hit.1”) Expands the Song node and returns the 1st child, Title

to the client alongside the fragment itself. This is provided using
an XPath locator and its corresponding namespace; in this case,
/Media/Music/Song[2] and ns. This Locator tells the client the ex-
act starting location within the Schema to begin decompression of
this fragment, while the ns attribute selects the correct namespace
to evaluate the XPath locator. For binarisation, the binary codes
will follow the same procedure as given in the example in Sec-
tion 4.2. In more complex cases, where a level depth parameter is
included with the query, the encoder continues down all subtrees
until reaching either the end of the subtree, or the desired level.
When nodes are selected on the basis of a Query (from the client),
it cannot be assumed that the client already has the element, thus it
must be sent, along with its information such as the ‘id’ attribute in
the example. The resulting binary bitstream for the RXEP packet
in Fig. 1 would be:

1. The RXEP node is mandatory and no code is needed
2. Two bits to represent the Add command e.g. (00)
3. One bit (1) to represent the non-mandatory Location attribute

and bits to represent the value “/Media/Music/Song[2]” en-
coded as a binary XPath locator e.g. (00000100001000010)

4. One bit (1) to represent ns attribute and bits to represent the
value “mediaNS:2004” encoded as a String

5. Bits for encoding the value “Hit2” (Song id=’Hit2’)
6. Sequence is mandatory - no code is needed
7. One bit (1) - the Title tag is present in the XML
8. Bits to encode value “Hit.2” as a String
9. One bit (1) - Description tag is present in the XML

10. Bits to encode value “Song 2” as a String
11. One bit (1) - that the Artist tag is present in the XML
12. Bits to encode value “B. Artist” as a String
13. One bit (1) - Format tag is present in the XML
14. Bits to encode value “OGG” as a String type
15. One bit (0) - Rating tag is not used in the XML
16. One bit (1) - Length Tag is present in the XML
17. Bits to encode value “03:46” as a Time type

4.5. Embedded Resources with BinRXEP

BinRXEP has the ability to retrieve desired fragments from an
XML document, this also applies to embedded resources within
the XML. The ability to embed resources within XML has it ad-
vantages, most notably, eliminating the need to send a URL point-
ing to a resource and the client retrieving itself, often using ad-
ditional protocols. However, currently embedding resources into
XML has the penalty of increased resource size (due to base64 en-
coding) as well as overall filesize of the XML (many embedded
base64 encoded resources). Using BinRXEP, these factors are no
longer an issue since everything is transmitted in binary. Thus for
BinRXEP, the base64 size increase is eliminated and most impor-
tantly, only selected parts of the XML are retrieved, i.e. unused
embedded resources are not retrieved.

5. CONCLUSION

This paper has demonstrated the effectiveness of combining RXEP
with a binarisation technique (tree/schema compression) to effi-
ciently transmit required parts of an XML document. Access to
the required parts of the XML can be achieved by remotely navi-
gating or querying the XML file.By eliminating unnecessary data
transmission, RXEP significantly reduces overall bandwidth and
storage requirements. The extension of RXEP to XML fileswith
embedded resources highlights the potential of compressed XML
as a multimedia container format.

6. REFERENCES

[1] W3C, “Extensible Markup Language (XML) 1.0 (Third
Edition),” http://www.w3.org/TR/REC-xml/, 04
February 2004.

[2] W3C, “XML Schema Part 0: Primer,” http://www.w3.
org/TR/xmlschema-0/, 2 May 2001.

[3] M. Girardot and N. Sundaresan, “Ef ficient Representation
and streaming of XML content over the Internet medium,”
IEEE ICME 2000, vol. 1, 2000.

[4] H. Liefke and D. Suciu, “XMill: An EfficientCompressor
for XML Data,” Technical Report MS-CIS-99-26, Univ. of
Pennsylvania, 1999.

[5] MPEG, “ISO/IEC 15938-1:2001, Information Technology -
Multimedia Content Description Interface - Part 1: Systems,”
2001.

[6] J. Cheney, “Compressing XML with Multiplexed Hierarchi-
cal PPM Models,” http://www.cs.cornell.edu/
People/jcheney/xmlppm/paper/paper.html,
2000.

[7] J. Bormans and K. Hill, “MPEG-21 Overview v.5,” ISO/IEC
JTC1/SC29/WG11/N5231, October 2002.

[8] W3C, “XML Fragment Interchange,” http://www.w3.
org/TR/xml-fragment, 2001.

[9] S. Boettcher and A. Turling, “XML Fragment Caching for
Small Mobile Internet Devices,” Web, Web-Services, and
Database Systems, NODe 2002, Germany, pp. 268–279, Oc-
tober 7-10 2002.

[10] W3C, “SOAP,” http://www.w3.org/TR/soap/.
[11] RFC, “Multipurpose Internet Mail Extensions Pt.1, rfc-

2045,” 1996.
[12] Microsoft, “Direct Internet Message Encapsulation

(DIME),” http://msdn.microsoft.com.
[13] W3C, “XML-binary Optimized Packaging,” http://

www.w3.org/TR/xop10/, 16th November 2004.
[14] XMLPULL, “XML Pull Parsing Common API,” http://

www.xmlpull.org.
[15] S. Davis and I. Burnett, “Remote XML Exchange Pro-

tocol,” http://www.whisper.elec.uow.edu.au/
people/sdavis/RXEP.html, 2005.

[16] M. Cokus and D. Winkowski, “XML Sizing and Compres-
sion Study For Military Wireless Data,” XML Conference
and Exposition 2002, Baltimore convention center, Blati-
more, MD USA, Dec. 2002.

	University of Wollongong
	Research Online
	2005

	Exchanging XML multimedia containers using a binary XML protocol
	S. J. Davis
	I. Burnett
	Publication Details

	Exchanging XML multimedia containers using a binary XML protocol
	Abstract
	Disciplines
	Publication Details

	tmp.1140668066.pdf.cKIXX

