
University of Wollongong University of Wollongong 

Research Online Research Online 

Centre for Statistical & Survey Methodology 
Working Paper Series 

Faculty of Engineering and Information 
Sciences 

2010 

The impact of complex survey design on prevalence estimates of intakes The impact of complex survey design on prevalence estimates of intakes 

of food groups in the Australian National Children’s Nutrition and Physical of food groups in the Australian National Children’s Nutrition and Physical 

Activity Survey Activity Survey 

Alexandra Burden 
University of Wollongong, sburden@uow.edu.au 

Yasmine Probst 
University of Wollongong 

David G. Steel 
University of Wollongong, dsteel@uow.edu.au 

L. C. Tapsell 
University of Wollongong, ltapsell@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/cssmwp 

Recommended Citation Recommended Citation 
Burden, Alexandra; Probst, Yasmine; Steel, David G.; and Tapsell, L. C., The impact of complex survey 
design on prevalence estimates of intakes of food groups in the Australian National Children’s Nutrition 
and Physical Activity Survey, Centre for Statistical and Survey Methodology, University of Wollongong, 
Working Paper 24-10, 2010, 21p. 
https://ro.uow.edu.au/cssmwp/74 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/cssmwp
https://ro.uow.edu.au/cssmwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/cssmwp?utm_source=ro.uow.edu.au%2Fcssmwp%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages


Copyright © 2008 by the Centre for Statistical & Survey Methodology, UOW. Work in progress, 
no part of this paper may be reproduced without permission from the Centre. 
 

Centre for Statistical & Survey Methodology, University of Wollongong, Wollongong NSW 
2522. Phone +61 2 4221 5435, Fax +61 2 4221 4845. Email: anica@uow.edu.au 

 
 
 
 

Centre for Statistical and Survey Methodology 

 

The University of Wollongong 
 
 

Working Paper 
 
 

24-10 
 
 

The impact of complex survey design on prevalence estimates of 
intakes of food groups in the Australian National Children’s Nutrition 

and Physical Activity Survey 
 

 
Sandy Burden, Yasmine Probst, David Steel and Linda Tapsell 

 



1 

 

                                                

The impact of complex survey design on prevalence estimates of intakes of food groups in the 

Australian National Children’s Nutrition and Physical Activity Survey 

 

Sandy Burden (corresponding author)1, Yasmine Probst2, David Steel1, Linda Tapsell2 

 

Abstract 

Objective: To assess the impact of the complex survey design used in the 2007 Australian National 

Children’s Nutrition and Physical Activity Survey (ANCNPAS) on prevalence estimates for intakes 

of groups of foods in the population of children.  

Design: The impacts on prevalence estimates were determined by calculating design effects for 

values for food group consumption.  The implications of ignoring elements of the sample design 

including stratification, clustering and weighting were discussed.  

Setting:  The 2007 ANCNPAS used a complex sample design involving stratification, a high 

degree of clustering and estimation weights.  

Subjects: Australian children aged 2-16 years. 

Results:  Design effects ranging from <1 to 5 were found for the values for means and proportions 

of food groups consumed.  When survey weights were ignored, prevalence estimates were also 

biased. 

Conclusions: Ignoring complex survey design used in the ANCNPAS could result in 

underestimating the width of confidence intervals, higher mean square errors and biased estimators.  

The magnitude of these effects depends on both the parameter under consideration and the chosen 

estimator.   

Introduction 

The degree of complexity in survey design depends on the nature of the research question, just as 

the method of data collection influences the choice of sampling technique.  For example, 

straightforward telephone interviews allow relatively simple sample designs, but comprehensive 

nutrition surveys tend to be longer and more complex.  Moreover, collection of reliable 

anthropometric data involves face-to-face interviewing. In this case, nutrition and physical activity 

surveys often use complicated sample designs, involving stratified multistage sampling techniques.  

To improve efficiency and reduce costs, these designs can include the use of stratification, 
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clustering and unequal probabilities of selection for different individuals.  The resulting sample is 

not spread evenly throughout the population, but occurs in groups or clusters. 

 

The 2007 Australian National Children’s Nutrition and Physical Activity Survey (ANCNPAS07) 

(1) was undertaken to obtain food, nutrient, physical activity and anthropometric data on a national 

sample of children aged 2-16 years.  The purpose of the survey was to enable food, beverage, 

supplement, and nutrient intakes and physical activity levels among children to be assessed against 

relevant national guidelines.   

 

The survey was conducted using a sampling scheme stratified by state/territory and by capital city 

statistical division/rest of state into 13 strata.  The number of children included from each state was 

proportional to the population of children in that state or territory.  To collect physical activity data, 

anthropometric measurements and a 24 hour diet history, an initial face-to-face interview was used.  

To facilitate the face-to-face interviewing and to help meet budget and time restrictions, the sample 

was obtained from 246 postcodes clustered in 54 locations which were effectively Primary 

Sampling Units (PSUs).  Initial selection and contact was made using Random Digit Dialing (RDD) 

and data was collected using Computer Assisted Personal Interviewing (CAPI) and subsequent 

Computer Assisted Telephone Interviewing (CATI).  One child was selected per household leading 

to 4837 selected children and complete data for 4487 children.  Within selected clusters, the 

probability of selection of a child depended on their location (stratum), age, gender and household 

composition.  To account for the non-proportional sampling, weights were created based on age 

(divided into 4 groups), gender and stratum.  A single weight, called the initial weight and denoted 

, was produced for each child in the survey on the basis of a sample size of 4837.   

 

For these data, the use of clustering, unequal selection probabilities, stratification and sample 

weighting lead to estimates having a sampling variance different from that which would have been 

obtained using a Simple Random Sample (SRS). An SRS gives each possible sample the same 

chance of selection and means that the sample is spread approximately evenly through the 

population.  For an SRS the calculation of estimates and associated standard errors is relatively 

straightforward.  Standard methods of statistical analysis assume that an SRS has been obtained. 

 

If the analysis of a nutrition survey ignores the complex design, the results will be methodologically 

unsound and subject to serious dispute. Typically confidence intervals will be too small, leading to 
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inflation of type I error rates. That is, statistical significance is found when there is no real effect.  

The problem is not solved merely by using the sample weights, which account for differences in 

selection probabilities, although this is often incorrectly assumed.  In fact this view is implicitly 

encouraged if the survey data are released with, for example, no cluster information. Even when an 

analysis uses sample weights and the contribution of the clustering to the overall design effect is 

low, use of standard analysis will not reflect the impact of the weights on variances. The use of 

sampling weights and the impact of complex sampling methods on survey analysis has received 

considerable attention over the past two decades, see (2) (3) (4) and (5). 

 

The importance of properly accounting for sampling weights and the sample design is strongly 

emphasized in well established surveys in the USA, for example the National Health and Nutrition 

Examination Survey (NHANES).  Information on the NHANES website (6) states “For NHANES 

datasets, the use of sampling weights and sample design variables is recommended for all analyses 

because the sample design is a clustered design and incorporates differential probabilities of 

selection. If you fail to account for the sampling parameters, you may obtain biased estimates and 

overstate significance levels.” Moreover the National Centre for Health Statistics (NCHS) Analytic 

and Reporting Guidelines state that "Sample weights and the stratification and clustering of the 

design must be incorporated into an analysis to get proper estimates and standard errors of 

estimates” and that proper variance estimation procedures be used (7 p. 7). 

 

Complex sample design also needs to be taken into account in meta analysis in which the results of 

two or more surveys are combined or survey data is combined with data from clinical trials. This 

may be done, for example, in establishing an evidence base for the effects of food consumption 

patterns on health. In undertaking meta analysis the results or data from each study is weighted 

according to its quality and this leads to the use of effective sample size, which depends on the 

design. Thus it is important that the design features are considered if appropriate conclusions 

regarding food intake patterns are to be made. The aim of the study reported here was to assess the 

impact of complex survey design used in the ANCNPAS07 on prevalence estimates for intakes of 

groups of foods in the population of Australian children.  

 



Methods 

The study used the concept of design effects to quantify the effect of the sample design on 

prevalence estimates.  For each estimate, design effects were used to measure the impact of 

stratification, clustering, unequal inclusion probabilities and other features of the sampling used.  

The design effect (deff), is the ratio of the sampling variance obtained using a complex survey 

design relative to the variance that would have been obtained from a simple random sample without 

replacement (SRSWOR) with the same expected sample size (8).  The deff for a parameter  is 

calculated using the relationship  where  is the design based estimate of 

the variance for the parameter estimate  from a complex survey of size , and  is the 

variance estimate of the parameter  estimated from a similar hypothetical survey using SRSWOR 

and a sample size of .  

 

A design effect greater than one increases the width of confidence intervals, reduces the amount of 

disaggregation that is possible and reduces the power of analyses that are properly carried out. This 

limits the strength and value of the results.  For example, suppose a survey has been designed using 

standard methods which assume a SRS to give a power of detecting important effects of 80%. With 

a deff of 1.5 the power reduces to 65%; for a deff of 2 it becomes 45%; and for deff of 4 it is 35%.  

Tests of statistical significance are also affected and a deff of 4 increases the conventional 5% false 

positive rate used in hypothesis testing to 33%.   

 

A deff can also be expressed as the effective sample size, neff =
n

deff
 .  For example, a sample of 

4000 respondents has an effective sample size of 1000 if the deff is 4.  So selecting several 

respondents within a cluster will be less efficient in terms of variance than using SRS.  This has 

substantial implications for the way in which the survey data may be acceptable to the wider 

community and used in policy development. 

 

For ANCNPAS07, the use of RDD led to the inclusion of individuals from 481 postcodes, due to 

both the overlap between telephone number prefixes and postcodes and telephone number 

portability.  In the available data files, locations for the sample were recoded after selection in such 

a way that participants in a close geographic proximity, based on their postcodes, were given the 

same location.  To enable variance calculations, locations with single observations were grouped 
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within strata, reducing the total number of locations from 210 to 194.  Locations had an average 

size of 24.8 responding children (for the CAPI), varying from 2 to 177 (standard deviation (SD) of 

29).  The publically available dataset initially included only these locations, along with state and 

region variables, not the original 54 PSUs (which have subsequently been released), so deffs were 

calculated using both the locations and the 54 PSUs.  One additional PSU was also created to 

enable variance calculations, resulting in 55 clusters.  We found the responding sample to be highly 

clustered with an average of 89 children per cluster, varying from 19 to 161 (SD of 28.6).   

 

Weights were created to account for non-proportional sampling based on age (divided into 4 

groups), gender and location.  A single weight was produced for each child in the survey on the 

basis of a sample size of 4837.  The initial weight for child  equals  , 

where  is the number of respondents in stratum h and  is the corresponding population.  

Separate weights were not included for respondents who did not complete all components of the 

survey and household size and family structure were not included in the weights.  The probability of 

selection was therefore only partially accounted for in the weights.  Furthermore, as there was only 

complete nutrient data from the CAPI for 4826 of the 4837 participants, the population totals using 

the weights did not correspond to those for Australia available from the 2006 Census.   

 

Due to the limitations in the weighting process, a final weight ( ) was created by adjusting  to 

fit population benchmarks and accounting for the probability of selection of each child in a 

household.  Assuming that all children in a household had an equal probability of selection, the 

probability of selection for each subject was calculated as =1/(no. children aged 2-16 in 

household).  The total effective sample size in stratum  using the final weight was  

and using initial weights was .  The final weight for each subject in stratum  was obtained 

using . 

 

Sample weights are used to produce an estimate which is less biased than its unweighted 

counterpart.  However, the increased accuracy must be balanced against the increased design effect 

(9).  One approach to choosing the most efficient estimator is to examine the mean square error 

( ) for each parameter (10 p. 176). For multiple variables, the relative mean 

square error (RMSE) can be used.  Assuming the final weights produced unbiased estimates, the 
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RMSE for the estimate of a mean ( ) is .  Where    is the variance 

of the estimate, calculated using the final weight .  Otherwise, 

.  The estimator with the smallest RMSE is preferred.   

 

Cw =
sw

w 
The coefficient of variation of the weights is given by , where  is the standard deviation 

of the weights and 

sw

w  is the mean.  It measures the increased variance of the estimate due to the use 

of weights.  When selection probabilities are not correlated with a variable, the deff due to 

weighting is given by 1+ Cw
2  (8) (11).  When correlation is present, approximations can be made 

(12).   

 

Under some mild assumptions the contribution of sample clustering for the estimation of prevalence 

of a condition or risk factor is reflected in the relationship , where  is the 

average number of respondents per cluster and  is a measure of the within cluster homogeneity or 

intraclass correlation (ICC). Values of  around 0.05 are common, which with  gives 

deff=5 and with  gives deff=1.5. Hence the more clustered the design the higher the deff.  If 

the size of the clusters varies considerably, more complicated formulas apply.  For applications 

where the clustering and weighting effects are multiplicative, the deff is given by 

 (11). 

 

Statistical Analysis 

Deffs were estimated for the prevalence estimates of food consumption for ANCNPAS07 using 

STATA (StataCorp. 2007. Stata Statistical Software: Release 10. College Station, TX: StataCorp 

LP).  The variables chosen for analysis were the 120 three digit sub-major groups used in the food 

categorization.  The parameters chosen for analysis were mean consumption of each sub-major food 

group in grams and the proportion of the population consuming each food group.  The CAPI 24 

hour recall diet history was used for all analyses.   

 

Estimates and estimates of sampling variances were produced under a number of options for 

treating the weights and sample design features including: 
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1. Unweighted analysis assuming SRS  

2. Weighted analysis assuming SRS  

3. Weighted analysis incorporating stratification (13 strata) and clustering using the 210 

locations in the data file. 

4. Weighted analysis incorporating stratification (13 strata) and clustering using 55 PSUs. 

 Analysis under 1 was the naive analysis. The estimates and estimated variances were compared 

with analyses under 4, which properly reflected the weighting and complex design.  Option 2 

accounts for the weighting but ignores the sample design and option 3 uses incorrect clusters. 

Results 

Of the 120 sub-major food groups, 36 had less than 55 non-zero observations, fewer than or equal 

to the number of clusters.  For these groups, the observed deffs averaged only 1.11 compared with 

2.35 for the other groups (Table 1) and 44% of the groups had a final deff of less than one (Figure 

1).  The lower deffs occurred because the average number of observations per cluster was one or 

less, so there was effectively no clustering.  The results for this group are presented separately, and 

for notational convenience the mean and proportion estimators are denoted mean>55; mean≤55; 

prop>55 and prop≤55.   

The effect of complex survey design 

When consumption of 3 digit food groups was estimated using the correct design, the average deff 

was 1.1(1.4) for mean<=55(prop<=55) (Table 1) and for mean>55(prop>55) was 2.1(2.3).  The 

effect of the survey design was highly variable (Figure 1), with deffs ranging from 0.3 to 5.1 for 

different food groups and estimators.  These results are important for the analysis of nutrition 

surveys because an increase in the deff affects the significance of the results.  For example, a deff of 

2 increases the width of the confidence interval of an estimator by 1.4 and a deff of 4 increases it by 

2.0.   

 

A common error is to regard the estimate with the lowest estimated standard error as the best. 

However, the standard error is only correct when all aspects of the weighting and design are 

accounted for.   For mean>55 (prop>55), 84 (89) groups had greater than 55 observations.  Of these, 

the 45(52) groups with deff > 2.0 are listed in Table 3 (Table 4).  Most estimates were biased when 

a SRS was assumed and in all cases the confidence intervals were substantially wider when the 

correct sample design was used for estimation. 

 



In the following sections, the impacts of elements of the design are considered separately. 

Weighting 

The design and final weights both had a similar right skewed distribution with the same mean.  The 

final weights had a higher standard deviation and a wider range due to the inclusion of the 

additional weighting component (Table 2).   

 

The theoretical deff due to the initial weights was   = 1.33 and the final weights was 

 = 1.63.  The 0.3 increase equals the increase in the average observed deff for groups with 

greater than 55 observations (Figure 3 and Figure 4 and Table 1) as neither set of weights is highly 

correlated with the response variables.  Most food groups were similarly affected, with deffs 

generally below 2 and slightly higher for the final weights.  The exceptions were two groups with 

deffs >3 and four groups with deffs between 2 and 3.   

 

Weighted estimation increased the deff, but it also reduced the bias of estimators in the survey.  

Assuming the estimate obtained using the final weights was unbiased, when an SRS was incorrectly 

assumed the percentage bias for the mean>55 [prop>55] estimator was between (-15%, 16%)[(-

10%, 22%)] for 95% of groups.  Using the initial weights the percentage bias was (-9%, 11%)[(-

4%,9%)] (Figure 2).  For mean≤55 [prop≤55], the percentage bias had a much wider range for both 

an SRS (-23%, 221%)[(-43%, 235%)] and the initial weights (-23%, 83%)[(-39%, 91%)]  and was 

generally positive.   

 

The RMSE of the estimates assuming SRS, initial weights and final weights all followed a similar 

distribution (Figure 5).  On average, the final estimates had the lowest average RMSE (0.05), 

followed by the initial weighted estimates (0.07) and SRS estimates (0.12).  

Stratification 

For this survey stratification had very little impact on the deffs.  All of the estimates showed no 

change in the deffs when stratification was included (Figure 3 and Figure 4 and Table 1).   

Clustering 

Clustering had a much greater effect, increasing the average deff for mean>55 (prop>55) by 0.4 

(0.7) (Table 1).  The change in deff due to clustering was highly variable for different parameters 

and different estimators of the same parameter (Figure 3 and Figure 4).  It depended on the pattern 
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of responses for the variable and the location and size of clusters.   When the correct clusters were 

not used – for example if location is incorrectly treated as the sampling unit – the variance  was 

underestimated, decreasing the average deff for mean>55 (prop>55) by 0.14 (0.27) since the full 

cluster effect and the variation of locations within clusters was effectively ignored. 

 

The deff associated with clustering was also estimated using the relationship .  

Values of  calculated from the data varied between 0 and 0.039.  For many food groups, assuming 

 overestimated the deff when groups were not consumed by all respondents.  

To predict the deff for a food group, the proportion of the population consuming the food(s) must 

also be estimated to obtain a measure of  for the food group (for example using the values of N in 

Table 3 and Table 4). 

Discussion 

For the groups with less than 55 observations, most of the design effect arises due to weighting, 

with no appreciable change due to stratification and clustering.  This occurs because the average 

number of non-zero observations per cluster is close to one.  There is effectively no clustering, so 

the deff is also close to one (13).  The variability around one is most probably due to estimation of 

the sample variance.  As the effective degrees of freedom may be significantly less than the nominal 

degrees of freedom (= number of sampled PSUs – number of strata = 41) (10) the stability of the 

variance estimator may be questionable.  Sampling error can then cause the observed deff to vary 

randomly above and below one (14).  However, further investigation of this possibility is beyond 

the scope of this paper. 

 

Considering the food groups with greater than 55 observations per cluster, the effect of weighting is 

generally similar to that expected by the theory.  Deffs due to weighting depend on the coefficient 

of variation of the weights and the correlation between the weights and the survey variables (9).  

The inclusion of a component of weight due to the number of children per household increased the 

design effect by a relatively small and consistent amount for most food groups in the survey.  Those 

with larger changes were food groups which have a different consumption pattern for households 

with small or large numbers of children.  For example the groups ‘dishes other than confectionery 

where sugar is the main ingredient’ and ‘jam and lemon spreads, chocolate spreads, sauces’. 

 

The results illustrate that choosing an appropriate estimator entails a tradeoff between bias and deff.  
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Ignoring sample weights, or using the wrong weight can result in a biased estimator.  However, the 

use of weights may increase the deff which affects the potential significance of the results.  The 

effect of weighting also depends on the coefficient of variation of the weights and the correlation 

between the weights and the survey variables (9).  For the 3 digit food groups, if the clustering 

effect is ignored, the relatively small deff from weighting means that in some cases an un-weighted 

estimator has lower RMSE and may be preferred.  However, it is not always possible to quantify all 

sources of bias.  An alternative to a weighted estimator is to include survey design variables in a 

model for the variable of interest with un-weighted regression estimation (10). 

 

The effect of stratification is generally to decrease the deff, because stratification removes one 

component of variance from the estimator.  However, unless there is a large difference between 

strata the impact on the deff is small, as it is in this case.  The effect of clustering is determined by 

the number of sample units per cluster and the ICC within each cluster.  As the ICC varies between 

0 and 0.04 for different variables, the deff due to clustering is highly variable and estimator specific. 

 

Overall, deffs can be large and they depend on both the chosen parameter and estimator.  The main 

outputs from a survey frequently consist of prevalence estimates, such a means, proportions and 

population totals and the deff for each of these will be different (15), (13).  Similarly, complex 

sample design also has an impact on the estimates of parameters of statistical analysis, such as 

regression parameters from a linear or logistic regression and associated odds ratios, but they differ 

from the deff on prevalence estimates and are not considered here.  Furthermore, care must be taken 

when accounting for ratios, post-stratification and how deff is calculated both for the population and 

for estimates for subgroups.   

 

Deffs arise due to the interaction of the sample design and the population structure, so they will be 

low for universal items which do not vary geographically or by cluster such as the groups ‘milk’ or 

‘savoury biscuits’.  They are higher when consumption varies by, for example, geographic location, 

age and/or gender.  Deffs arise through both unequal selection probabilities and other elements of 

the sample design such as stratification and clustering.  Hence, to obtain accurate standard errors, 

all of these elements need to be taken into consideration during analysis of complex survey data. 

 

Many statistical computing packages use a designed-based or pseudo likelihood approach which 

uses sample weights to estimate what would have resulted had population data been available. The 



complex design is then accounted for in the variance estimation.  To properly account for the 

design, the data file needs to include stratum and cluster indicator variables.  

 

Knowing the approximate magnitude of design effects for a particular estimator is useful when 

designing future surveys.  The variables chosen here were particular food groups and the estimators 

were means and proportions, but design effects can be calculated for any variable, including macro 

or micro nutrient intakes for the population or for sub-populations.  Also for any estimator, 

including means, totals, proportions or more complex estimators such as regression estimators – for 

which cluster effects are often lower (13).   Being able to estimate the design effects allows required 

sample sizes for future surveys to be estimated.  The use of weighting and choice of weights and 

also the degree of clustering and stratification in the survey can be tailored to achieve the desired 

standard error or power.  Developing an appropriate design for a nutrition survey is difficult 

because there is considerable uncertainty about the values of relevant population characteristics 

such as δ . Also these parameters vary between variables and the type of analysis. A high degree of 

clustering can lead to large deffs, but reducing the clustering when it is not necessary increases 

costs.   
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Figure 1 Final design effects for mean consumption of the three digit food groups by number of observations.   
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Figure 2 Density plot of the percentage bias of estimates of the mean and proportional consumption of the three digit food 

groups.  The solid lines shows SRS estimation compared with initial weighted estimation and the dashed line shows initial 

weights compared with final weights. 
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Figure 3 Deffs for mean population consumption (g) of each 3 digit sub-major food group from ANCNPAS 2007.  The 

contribution of each sample design feature to the deff is illustrated by incremental addition of (A) final weights; (B) 

stratification; (C) clustering using provided locations; and (D) clustering using original 54 clusters. 
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Figure 4 Deffs for proportion of population who consumed each 3 digit sub-major food group from ANCNPAS 2007.  The 

contribution of each sample design feature to the deff is illustrated by incremental addition of (A) final weights; (B) 

stratification; (C) clustering using provided locations; and (D) clustering using original 54 clusters. 
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Figure 5 difference between RMSE of SRS and initial weighted estimates and the RMSE of the final weighted estimate for 

mean and proportion parameters.  Positive values indicate that the final weighted estimate has a lower RMSE. 

 
Table 1 Average ((SD), [min,max]) design effects for the three digit food groups for mean consumption (g) (mean) and 

proportion of population (prop) who consumed each food group.  The results are split by the number of non-zero 

observations. 

 Initial weight Final weight Stratification  Strat/clustering 

210 locations 

Strat/clustering 

54 clusters 

Mean≤55 1.1 (0.32) 

 [0.5, 1.7] 

1.1 (0.45)  

[0.3, 2.1] 

1.1 (0.45)  

[0.3, 2.1] 

1.1 (0.44)  

[0.3, 2.0] 

1.1 (0.48)    

[0.3, 2.1] 

Prop≤55 1.2 (0.29) 

 [0.5, 1.8] 

1.3 (0.69)  

[0.3, 4.3] 

1.3 (0.69)  

[0.3, 4.3] 

1.4 (0.71)  

[0.3, 4.4] 

1.4 (0.75)   

 [0.3, 4.2] 

Mean>55 1.3 (0.09) 

 [1.1, 1.6] 

1.7 (0.32)  

[1.1, 3.3] 

1.7 (0.32)  

[1.1, 3.3] 

2.0 (0.53) 

 [0.9, 3.7] 

2.1 (0.66) 

[0.8, 4.4] 

Prop>55 1.3 (0.05)  

[1.2, 1.4] 

1.6 (0.11)  

[1.3, 2.1] 

1.6 (0.11)  

[1.3, 2.1] 

2.1 (0.53)  

[0.9, 3.7] 

2.3 (0.75)   

[0.9, 5.1] 

 
Table 2 Distributional information for the initial weights and final weights and their correlation with the survey variables. 

 Mean Median SD Min Max  
Initial weights  727 596 419 114 1722 0.575 

Final weights  727 541 577 62.1 5845 0.792 

Corr3( , ) 0.0014 0.0028 0.0269 -0.0926 0.0769 - 

Corr( , ) -0.0005 -0.0006 0.0252 -0.1032 0.0660 - 
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3 Corr, correlation 
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Table 3 Food groups with deffs > 2.0 for mean consumption in grams of each three-digit food group.  For each group the deff, 

the number of observations (N), and for both a simple random sample (SRS) and the clustered design (Clustered) the 

estimated mean consumption and the 95% confidence interval limits (CI) are included in the table. 

    SRS4 Clustered   

deff N 
Mn
5 CI Mn CI Name 

2.02 1529 13.6 (12.6, 14.6) 12.9 (11.6, 14.2) Other Vegetables And Vegetable Combinations 

2.02 109 12.2 (9.68, 14.7) 11.9 (8.3, 15.6) Electolyte, Energy and Fortified Drinks 

2.04 916 21.0 (19.3, 22.6) 21.3 (18.9, 23.7) Poultry And Feathered Game 

2.06 3697 67.1 (65.4, 68.9) 69.4 (66.7, 71.8) Regular Breads, And Bread Rolls 

(Plain/Unfilled/Untopped Varieties) 

2.06 760 5.71 (5.18, 6.23) 6.44 (5.63, 7.27) Potato Snacks 

2.07 1172 13.7 (12.7, 14.8) 13.6 (12.1, 15.2) Other Fruiting Vegetables 

2.07 344 13.6 (11.9, 15.4) 13.8 (11.2, 16.4) Mixed Dishes Where Beef, Veal Or Lamb Is The Major 

Component 

2.08 1746 5.47 (5.08, 5.87) 5.89 (5.25, 6.52) Sugar, Honey And Syrups 

2.15 855 5.47 (4.92, 6.02) 5.70 (4.89, 6.51) Leaf And Stalk Vegetables 

2.15 999 17.5 (16.2, 18.7) 18.3 (16.4, 20.3) Cakes, Buns, Muffins, Scones, Cake-Type Desserts 

2.16 601 9.07 (8.25, 9.9) 9.51 (8.22, 10.8) Sausages, Frankfurts And Saveloys 

2.16 1036 48.8 (45.3, 52.3) 48.9 (43.8, 54) Mixed Dishes Where Cereal Is The Major Ingredient 

2.16 1199 9.42 (8.68, 10.2) 9.7 (8.6, 10.8) Chocolate And Chocolate-Based Confectionery 

2.19 314 6.61 (5.65, 7.56) 7.27 (5.85, 8.71) Dishes Where Vegetable Is The Major Component 

2.24 132 3.61 (2.91, 4.31) 4.18 (3.05, 5.31) Other Dishes Where Milk Or A Milk Product Is The 

Major Component 

2.24 1875 63.1 (60.2, 66.1) 65.6 (61.2, 70.1) Pome Fruit 

2.30 992 14.2 (13, 15.4) 14.1 (12.3, 15.8) Cordials 

2.31 583 1.27 (1.14, 1.4) 1.22 (1.02, 1.41) Dairy Blends 

2.31 924 7.83 (7.19, 8.47) 7.71 (6.71, 8.71) Peas And Beans 

2.31 784 25.2 (22.9, 27.6) 26.1 (22.4, 29.8) Other Fruit 

2.32 117 2.59 (2, 3.17) 2.60 (1.72, 3.49) Fin Fish (Excluding Commerically Sterile) 

2.32 683 4.77 (4.38, 5.15) 4.90 (4.31, 5.49) Cereal-, Fruit-, Nut- And Seed-Bars 

2.34 2163 20.2 (18.9, 21.6) 21.2 (18.8, 23.6) Gravies And Savoury Sauces 

2.35 635 2.87 (2.52, 3.22) 2.94 (2.39, 3.5) Nuts And Nut Products 

2.41 117 0.67 (0.52, 0.82) 0.84 (0.48, 0.95) Extruded Or Reformed Snacks 

2.43 640 17.3 (15.5, 19) 18.3 (15.4, 21.3) Mixed Dishes Where Poultry Or Game Is The Major 

Component 

2.46 601 8.52 (7.63, 9.41) 8.70 (7.29, 10.1) Batter-Based Products 

2.46 287 0.12 (0.09, 0.14) 0.13 (0.06, 0.14) Multivitamin and/or Mineral 

2.47 1361 13.1 (12.3, 14) 13.0 (11.7, 14.3) Processed Meat 

                                                 
4 SRS, simple random sample 
5 Mn, mean 
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2.60 2067 53.5 (50.9, 56) 54.4 (50.3, 58.6) Potatoes 

2.66 1347 26.2 (24.6, 27.9) 27.2 (24.4, 29.8) Muscle Meat 

2.67 122 7.24 (5.63, 8.84) 6.61 (4.15, 9.06) Dairy Milk Substitutes, Unflavoured 

2.71 1085 2.70 (2.01, 3.38) 2.80 (1.47, 4.12) Herbs, Spices, Seasonings And Stock Cubes 

2.72 1371 124 (116, 131) 129 (117, 142) Soft Drinks, And Flavoured Mineral Waters 

2.80 400 0.51 (0.43, 0.60) 0.58 (0.41, 0.74) Vegetable/Nut Oil 

2.80 237 1.26 (1.03, 1.49) 1.21 (0.834, 1.59) Cream 

2.83 315 22.7 (19.7, 25.6) 23.0 (17.8, 28.2) Soup (Prepared, Ready to Eat) 

2.84 1013 15.8 (14.6, 17) 16.5 (14.4, 18.6) Tomato And Tomato Products 

3.08 410 9.90 (8.68, 11.1) 11.9 (9.25, 14.6) Dishes And Products Other Than Confectionery Where 

Sugar Is the main component 

3.49 1230 30.5 (28.7, 32.4) 28.9 (25.5, 32.3) Tropical Fruit 

3.57 742 2.57 (2.33, 2.82) 2.88 (2.31, 3.45) Jam And Lemon Spreads, Chocolate Spreads, Sauces 

3.89 4518 792 (774, 810) 826 (789, 862) Mineral Waters And Water 

4.05 878 29.6 (27, 32.3) 30.9 (25.5, 36.2) Flours And Other Cereal Grains And Starches 

4.37 1813 3.87 (3.67, 4.07) 3.76 (3.34, 4.17) Margarine and Table Spreads 
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Table 4 Food groups with deffs > 2.0 for proportion of population consuming the food group.  For each group the deff, the 

number of observations (N), and for both a simple random sample (SRS) and the clustered design (Clustered) the estimated 

proportion of the population consuming the food group and the 95% confidence interval limits (CI) are included in the table. 

    SRS Clustered   

deff N Mn CI Mn CI Name 

2.01 1268 0.3 (0.25, 0.28) 0.3 (0.24, 0.28) Pasta And Pasta Products 

2.04 1746 0.4 (0.35, 0.38) 0.4 (0.34, 0.38) Sugar, Honey And Syrups 

2.04 635 0.1 (0.12, 0.14) 0.1 (0.12, 0.15) Nuts And Nut Products 

2.05 583 0.1 (0.11, 0.13) 0.1 (0.1, 0.13) Dairy Blends 

2.07 126 0.03 (0.02, 0.03) 0.03 (0.02, 0.03) Single vitamin 

2.13 601 0.1 (0.12, 0.13) 0.1 (0.11, 0.14) Sausages, Frankfurts And Saveloys 

2.14 175 0.0 (0.03, 0.04) 0.0 (0.03, 0.05) Packed (Commercially Sterile) Fish And Seafood 

2.16 640 0.13 (0.12, 0.14) 0.13 (0.12, 0.15) Mixed Dishes Where Poultry Or Game Is The Major 

Component 

2.17 410 0.08 (0.08, 0.09) 0.09 (0.08, 0.11) Dishes And Products Other Than Confectionery Where 

Sugar Is the major component 

2.22 344 0.1 (0.06, 0.08) 0.1 (0.06, 0.08) Mixed Dishes Where Beef, Veal Or Lamb Is The Major 

Component 

2.24 518 0.11 (0.1, 0.12) 0.11 (0.1, 0.12) Eggs 

2.25 117 0.0 (0.02, 0.03) 0.0 (0.02, 0.03) Fin Fish (Excluding Commerically Sterile) 

2.29 132 0.03 (0.02, 0.03) 0.0 (0.02, 0.04) 

Other Dishes Where Milk Or A Milk Product Is The 

Major Component 

2.30 315 0.07 (0.06, 0.07) 0.06 (0.05, 0.07) Soup (Prepared, Ready to Eat) 

2.33 1875 0.39 (0.37, 0.4) 0.39 (0.37, 0.41) Pome Fruit 

2.35 129 0.0 (0.02, 0.03) 0.0 (0.02, 0.03) Dishes Where Egg Is The Major Ingredient 

2.39 829 0.2 (0.16, 0.18) 0.2 (0.14, 0.18) Cabbage, Cauliflower And Similar Brassica Vegetables 

2.40 683 0.14 (0.13, 0.15) 0.15 (0.13, 0.16) Cereal-, Fruit-, Nut- And Seed-Bars 

2.40 287 0.06 (0.05, 0.07) 0.06 (0.05, 0.07) Multivitamin and/or Mineral 

2.40 1172 0.2 (0.23, 0.25) 0.2 (0.22, 0.26) Other Fruiting Vegetables 

2.43 4518 0.94 (0.93, 0.94) 0.94 (0.93, 0.95) Mineral Waters And Water 

2.45 1361 0.28 (0.27, 0.29) 0.28 (0.26, 0.3) Processed Meat 

2.45 900 0.2 (0.18, 0.2) 0.2 (0.17, 0.21) Citrus Fruit 

2.45 916 0.19 (0.18, 0.2) 0.19 (0.17, 0.2) Poultry And Feathered Game 

2.51 835 0.17 (0.16, 0.18) 0.19 (0.17, 0.2) English-Style Muffins, Flat Breads, And Savoury and 

Sweet Breads 

2.54 122 0.0 (0.02, 0.03) 0.0 (0.02, 0.03) Dairy Milk Substitutes, Unflavoured 

2.60 601 0.12 (0.12, 0.13) 0.13 (0.11, 0.14) Batter-Based Products 

2.63 322 0.07 (0.06, 0.07) 0.07 (0.05, 0.08) Tea 

2.65 266 0.1 (0.05, 0.06) 0.0 (0.04, 0.05) Berry Fruit 
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2.65 237 0.0 (0.04, 0.06) 0.0 (0.04, 0.06) Cream 

2.70 1036 0.2 (0.2, 0.23) 0.2 (0.2, 0.24) Mixed Dishes Where Cereal Is The Major Ingredient 

2.70 1813 0.38 (0.36, 0.39) 0.36 (0.34, 0.38) Margarine and Table Spreads 

2.74 1622 0.34 (0.32, 0.35) 0.32 (0.3, 0.34) Carrot And Similar Root Vegetables 

2.76 178 0 (0.03, 0.04) 0 (0.03, 0.04) Pickles, Chutneys And Relishes 

2.77 1347 0.28 (0.27, 0.29) 0.28 (0.26, 0.3) Muscle Meat 

2.77 999 0.21 (0.2, 0.22) 0.21 (0.19, 0.23) Cakes, Buns, Muffins, Scones, Cake-Type Desserts 

2.78 760 0.2 (0.15, 0.17) 0.2 (0.16, 0.19) Potato Snacks 

2.81 1001 0.2 (0.2, 0.22) 0.2 (0.2, 0.24) Other Confectionery 

2.96 314 0.07 (0.06, 0.07) 0.1 (0.06, 0.08) Dishes Where Vegetable Is The Major Component 

3.01 992 0.2 (0.19, 0.22) 0.2 (0.19, 0.23) Cordials 

3.03 784 0.16 (0.15, 0.17) 0.16 (0.14, 0.18) Other Fruit 

3.22 117 0 (0.02, 0.03) 0 (0.02, 0.03) Extruded Or Reformed Snacks 

3.23 2195 0.5 (0.44, 0.47) 0.4 (0.4, 0.45) Cheese 

3.32 2067 0.4 (0.41, 0.44) 0.4 (0.4, 0.45) Potatoes 

3.37 855 0.2 (0.17, 0.19) 0.2 (0.17, 0.21) Leaf And Stalk Vegetables 

3.46 924 0.2 (0.18, 0.2) 0.2 (0.16, 0.2) Peas And Beans 

3.53 400 0.1 (0.08, 0.09) 0.1 (0.06, 0.09) Vegetable/Nut Oil 

3.62 1013 0.2 (0.2, 0.22) 0.2 (0.19, 0.24) Tomato And Tomato Products 

3.69 1371 0.3 (0.27, 0.3) 0.3 (0.27, 0.32) Soft Drinks, And Flavoured Mineral Waters 

3.78 1230 0.3 (0.24, 0.27) 0.2 (0.21, 0.26) Tropical Fruit 

4.03 2163 0.4 (0.43, 0.46) 0.5 (0.42, 0.48) Gravies And Savoury Sauces 

4.46 878 0.2 (0.17, 0.19) 0.2 (0.16, 0.21) Flours And Other Cereal Grains And Starches 

5.09 1085 0.22 (0.21, 0.24) 0.22 (0.2, 0.25) Herbs, Spices, Seasonings And Stock Cubes 
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