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Regression analysis for longitudinally linked data

Gunky Kim and Raymond Chambers

Centre for Statistical and Survey Methodology

University of Wollongong

Abstract

Most probability-based methods used to link records from two distinct data sets correspond-

ing to the same target population do not lead to perfect linkage, i.e. there are linkage errors

in the merged data. Chambers (2008) describes modifications to standard methods of regres-

sion analysis that can be used with such imperfectly linked data. However, these methods

assume that the linkage process is complete, i.e. all records on the two data sets are linked.

This paper extends theses ideas to accommodate the situation when the number of data sets

are more than two.

key words: Record matching; linkage errors; linear regression; logistic regression; estimating

equations.

1 Introduction

In recent years, because of its advantage of creating new information from already existing

files by linking them, the linkage process becomes an important research tool in many areas

such as health, business, economics and sociology. One important linkage application is

where different data sets relating to the same individuals at different points in time are

linked to provide a longitudinal data record for each individual, thus permitting longitudinal

analysis for these individuals. To illustrate, the Census Data Enhancement project of the
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Australian Bureau of Statistics aims to develop a Statistical Longitudinal Census Dataset

by linking data from the same individuals over a number of censuses. It is expected that this

linked data set will provide a powerful tool for future research into the longitudinal dynamics

of the Australian population. However, without access to the same unique identifier in each

of the linked data sets, there is always the possibility that linkage errors in the merged data

could lead to a longitudinal record ostensibly relating to a single individual being actually

made up of a composite of data items from different individuals. This in turn could lead to

bias and loss of efficiency for the longitudinal modelling process. Further, as the number of

censuses to be linked increase, the structure of linkage error will be more complicated as it

will increase more bias and inefficiency for the modelling process.

The work of Neter et al. (1965) shows that small mismatching could cause significant response

error. Their work has become a foundation of the analysis on the linkage error. Some authors,

such as Scheuren and Winkler (1993), Scheuren and Winkler (1997) and Lahiri and Larsen

(2005), have tried to extend the work of Neter et al. (1965) on regression setting. However,

the volume of works on the analysis of the linkage error is not rich. In Chambers (2008),

Chambers has developed new methods to adjust the bias in the linear regression parameters

for the linkage process when two data sets were merged. In this study, we extended the ideas

of Chambers (2008) to accommodate longitudinally linked data sets where the number of

merged data sets are more than two.

In general, most of works for linkage error correction has been done when two data sets are

merged. However, the linkage error structure of longitudinally linked data sets, when the

number of data sets are more than two, are more complicated compared to the linkage error

structure of two data sets. As far as our knowledge, this is the first attempt to correct the

linkage errors in the merged data sets when the number of data sets are more than two. We

will use three data set case as an illustration of our regression analysis, but it is trivial to

see that it can be easily extended to deal with any number of data sets.

1.1 Backgrounds and assumptions

Suppose that we are interested in fitting a regression model of the form

EX(Y ) = f(X; θ),
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where f is a known function, but the parameter θ is to be estimated, and X has more than

one data sets. For example, consider a linear regression model of the form

Y = β0 + X1β1 + X2β2 + ǫ = Xβ + ǫ,

where we have three different files, one for Y , one for X1 and one for X2. When these three

data sets were created separately, and if there is no unique identifier among them to match

each other, matching yi with the correct values of x1i from one file and x2i from another file

could be a difficult task and there could be a strong chance of mismatching. If there exist

mismatches, the estimation of β could be biased if we ignore them in the estimation process.

The purpose of our study is to develop some methodological frames to adjust the bias of β

estimations when the mismatches are expected.

For the assumptions we made in this papers are:

1. For the case of register-register, there exist a population of N units for all Y , X1 and

X2 such that each one of yi should be linked with one of x1i from one file and x2i from

another file.

2. X can be partitioned into Q different blocks1. Let us call this block as “m-block”.

3. The linkage errors occur only within the m-block, in the sense that records in distinct

m-blocks can never be linked. The records from X that make up the qth m-block is

denoted Xq.

4. In case of sample-register, suppose that we only have sample2 s from a bench mark

register, for example, X1 with possible relation E(Y |X1, X2) = f(X1, X2; θ) when

they are correctly linked. f could be either linear of logistic function.

5. Denote X1s the sample records X1 of the sample size s and some of records in X1s

may not be linked to the records in Y or X2.

6. Even though some of records are not linked, we assume that the regression model of

linked records would be valid for the non-linked records if the links are found.

1See Chambers (2008) for more detailed discussion about the block.
2The sample set can be drawn from any data set. To explain our assumptions in more details, here we

assume that the samples are drawn from X1, while Y and X2 are registers.
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2 Register-register case

When there are three data sets, usually one of them is regraded as a bench mark data set

and mismatches happens when someone try to link this bench mark data set with other data

sets. Thus, when there are three data sets, we expect that at most two kinds of possible

mismatches can happen. For example, if we set X1 as the bench mark data set, possible

mismatches happen when we link Y with X1 or link X1 with X2. We will consider the case

of one mismatch situations and the case of two possible mismatches case separately. For the

two mismatches case, we assume that mismatches from the linkage process between Y and

X1 are independent of the mismatches from the linkage process between X1 and X2.

2.1 Three data sets and one mismatch cases: A ratio-type esti-

mator

Note that our model is of the form

Y = β0 + X1β1 + X2β2 + ǫ = Xβ + ǫ,

where X = (1, X1, X2). Suppose that X1 is the bench mark data set. Then, possible

mismatch can happen either when one links records from X1 with Y or when one links

records from X1 with X2. However, if the mismatch happens only when one links records

from X1 with Y and X1 and X2 can be linked perfectly, one can regards X = (1, X1, X2)

as a one data set, and this case has been dealt extensively in Chambers (2008). Hence, we

will only consider the case where mismatch happens when one links records from X1 with

X2. Let us call this situation as Case 0.

Case 0: When each x1i is correctly linked with corresponding yi, but some of x2i are not

correctly linked with x1i, one has

Y q = β0 + X1qβ1 + X∗
2qβ

∗
2 + ǫq = X∗

qβ
∗ + ǫq,

where

X∗
q = (1q, X1q, X

∗
2q) , X∗

2q = B2qX2q

and B2q is a permutation matrix. Note that X2q is not observable, and we only observe

X∗
2q. However, if the matrix B2q is known, one has

X2q = BT
2qX

∗
2q.
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Thus,

Xq = (1q, X1q, X2q) = (1q, X1q, B
T
2qX

∗
2q).

Let

XB2

q = (1q, X1q, B
T
2qX

∗
2q). (1)

Note that XB2

q is only observable if B2q is known. But, generally, B2q is unknown and in

this case we adapt the non-informative linkage assumption3, that is,

EX
∗(X2q) = EX

∗(BT
2q)X

∗
2q = EB2q

X∗
2q,

where EB2q
satisfies the exchangeable linkage error model. It means

EB2q
= (λB2q

− γB2q
)Iq + γB2q

1q1
T
q ,

where

λB2q
= pr(correct linkage between X1q and X∗

2q)

and

γB2q
= pr(incorrect linkage between X1q and X∗

2q).

Let

XE
q = EX

∗(Xq) = EX
∗

[

(1q, X1q, X2q)
]

= (1q, X1q, EB2q
X∗

2q). (2)

Then, by OLS, one has

β̂
∗

=
[

∑

q

(X∗
q)

T X∗
q

]−1[ ∑

q

(X∗
q)

T Y q

]

,

where

EX
∗(β̂

∗
) =

[

∑

q

(X∗
q)

T X∗
q

]−1[∑

q

(X∗
q)

T XE
q

]

β = D1β.

Hence, if the matrix EB2q
is known and the inverse of D1 exists, a ratio form of an unbiased

estimator of β is of the form

β̂R1 = D−1
1 β̂

∗
.

Let
f q = Xqβ,

f ∗
q = X∗

qβ,

fE
q = XE

q β.

(3)

3We assume that the distribution of B2q is independent of X∗

2q given X∗.

5



Proposition 1. An asymptotic variance estimator of β̂R1 can be defined by

V̂ 1(β̂R1) =
[

∑

q

(X∗
q)

T XE
q

]−1[ ∑

q

(X∗
q)

T V̂ 1(Y q)X
∗
q

]([

∑

q

(X∗
q)

T XE
q

]−1)T

,

where

V̂ 1(Y q) = σ̂2Iq + V̂ B2q
.

Here, V̂ 1(Y q) can be estimated by

σ̂2 = N−1
∑

q

(Y q − fE
q )T (Y q − fE

q )

and, given f ∗
B2q

:= X∗
2qβ2,

V B2q
= diag

[

(1 − λB2q
)
{

λB2q
(f ∗

B2q ,i − f̄ ∗
B2q

)2 + f̄
∗(2)
B2q

− (f̄ ∗
B2q

)2
}

]

,

where f∗
B2q

= (f ∗
B2q ,i) and f̄ ∗

B2q
, f̄

∗(2)
B2q

are the averages of f ∗
B2q ,i and their squares respectively

in f∗
B2q

.

2.2 Three data sets and two mismatches cases: A ratio-type esti-

mator

When there are three data sets and and two mismatches in the data linkage processes, there

are two possible scenarios.

• Case 1: Y is the bench mark data set and the linkages between Y and X1 and the

linkages between Y and X2 are done with some errors.

• Case 2: Either X1 or X2 is the bench mark data set4 and the linkage between the

bench mark data and other X data set and the linkage between the bench mark data

set and Y are done with some errors.

Let us consider the Case 1 first. So, we assume that the data set for yi is correctly recorded,

but there are mismatches between yi and x1i as well as between yi and x2i. Also, we assume

that mismatches between yi and x1i are independent of the mismatches between yi and x2i.

In this case, our regression model is of the form

Y q = β0 + X∗
1qβ

∗
1 + X∗

2qβ
∗
2 + ǫq = X∗

qβ
∗ + ǫq,

4In this paper, we assume that X1 is the bench mark.
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where

X∗
q = (1q, X

∗
1q, X

∗
2q) , X∗

1q = B1qX1q and X∗
2q = B2qX2q,

and B1q and B2q are permutation matrices. If B1q and B2q are known, one has

Xq = (1q, X1q, X2q) = (1q, B
T
1qX

∗
1q, B

T
2qX

∗
2q).

Since, B1q and B2q are unknown in general, we apply the non-informative linkage assumption

so that

XE2
q = EX

∗(Xq) = (1q, EB1q
X∗

1q, EB2q
X∗

2q), (4)

where,

EBiq
= (λBiq

− γBiq
)Iq + γBiq

1q1
T
q

and
λBiq

= pr(correct linkage between Y q and X∗
iq)

γBiq
= pr(incorrect linkage between Y q and X∗

iq).

Then, by OLS,

β̂
∗

=
[

∑

q

(X∗
q)

T X∗
q

]−1[ ∑

q

(X∗
q)

T Y q

]

,

where

EX
∗(β̂

∗
) =

[

∑

q

(X∗
q)

T X∗
q

]−1[ ∑

q

(X∗
q)

T XE2
q

]

β = D2β.

Hence, if the matrices EB1q
and EB2q

are known and the inverse of D2 exists, a ratio form

of an unbiased estimator of β is of the form

β̂R2 = D−1
2 β̂

∗
.

Let

fE2
q = XE2

q β.

Proposition 2. An asymptotic variance estimator of β̂R2 can be defined by

V̂ 2(β̂R2) =
[

∑

q

(X∗
q)

T XE2
q

]−1[ ∑

q

(X∗
q)

T V̂ 2(Y q)X
∗
q

]([

∑

q

(X∗
q)

T XE2
q

]−1)T

,

where

V̂ 2(Y q) = σ̂2Iq + V̂ B1q
+ V̂ B2q

.

Here, V̂ 2(Y q) can be estimated by

σ̂2 = N−1
∑

q

(Y q − fE2
q )T (Y q − fE2

q )
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and, given f ∗
Bjq

:= X∗
jqβj for j = 1 or 2 ,

V Bjq
= diag

[

(1 − λBjq
)
{

λBjq
(f ∗

Bjq ,i − f̄ ∗
Bjq

)2 + f̄
∗(2)
Bjq

− (f̄ ∗
Bjq

)2
}

]

,

where f ∗
Bjq

= (f ∗
Bjq ,i) and f̄ ∗

Bjq
, f̄

∗(2)
Bjq

are the averages of f ∗
Bjq ,i and their squares respectively

in f∗
Bjq

.

Now, we are considering the Case 2. When some of x1i are incorrectly linked with corre-

sponding yi or with x2i, our regression model is of the form

Y ∗
q = β0 + X1qβ1 + X∗

2qβ
∗
2 + ǫq = X∗

qβ
∗ + ǫq,

where

Y ∗
q = AqY q, X∗

2q = B2qX2q

and Aq and B2q are permutation matrices. By non-informative linkage assumption5 on Aq,

one has

EX
∗(Y ∗

q) = EX
∗(AqY q) = EX

∗(Aq)EX
∗(Y q) = EAq

EX
∗(Y q) = EAq

XE
q β, (5)

where

EAq
= (λAq

− γAq
)Iq + γAq

1q1
T
q

with

λAq
= pr(correct linkage between X1q and Y ∗

q)

and

γAq
= pr(incorrect linkage between X1q and Y ∗

q).

Further, we assume that the mismatch between x1i and yi is uncorrelated6 with the mismatch

between x1i and x2i. With these assumption, by OLS, one has

β̂
∗

=
[

∑

q

(X∗
q)

T X∗
q

]−1[ ∑

q

(X∗
q)

T Y ∗
q

]

=
[

∑

q

(X∗
q)

T X∗
q

]−1[ ∑

q

(X∗
q)

T AqY q

]

and

EX
∗(β̂

∗
) =

[

∑

q

(X∗
q)

T X∗
q

]−1[∑

q

(X∗
q)

T EAq
XE

q

]

β = D3β.

5Here we assume the randomness of the linkage error between Y ∗

q and X∗

q . See Chambers (2008) for a

more detailed discussion.
6We will try to relax this assumption soon.
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Thus, if the matrices EX∗(B2q) = EB2q
and EX∗(Aq) = EAq

are known and the inverse of

D3 exists, a ratio form of an unbiased estimator of β for this case is of the form

β̂R3 = D−1
3 β̂

∗
.

Proposition 3. An asymptotic variance estimator of β̂R3 can be defined by

V̂ 3(β̂R3) =
[

∑

q

(X∗
q)

T XE
q

]−1[∑

q

(X∗
q)

T V̂ 3(Y
∗
q)X

∗
q

]([

∑

q

(X∗
q)

T XE
q

]−1)T

,

where

V̂ 3(Y
∗
q) = σ̂2Iq + V̂ B2q

+ V̂ C2q
.

Here, V̂ 3(Y
∗
q) can be estimated by

σ̂2 = N−1
(

∑

q

(Y ∗
q − fE

q )T (Y ∗
q − fE

q ) − 2
∑

q

(fE
q )T

[

Iq − EAq

]

fE
q

)

and, given f ∗
B2q

:= X∗
2qβ2,

V B2q
= diag

[

(1 − λB2q
)
{

λB2q
(f ∗

B2q ,i − f̄ ∗
B2q

)2 + f̄
∗(2)
B2q

− (f̄ ∗
B2q

)2
}

]

,

where f∗
B2q

= (f ∗
B2q ,i) and f̄ ∗

B2q
, f̄

∗(2)
B2q

are the averages of f ∗
B2q ,i and their squares respectively

in f∗
B2q

. Further, one has

V C2q
= AqVarX

∗

[

EX
∗(Y q|B2q

)
]

AT
q ,

and it can be estimated by

V C2q
= diag

[

(1 − λC2q
)
{

λC2q
(f ∗

B2q ,i − f̄ ∗
B2q

)2 + f̄
∗(2)
B2q

− (f̄ ∗
B2q

)2
}

]

,

where f∗
B2q

= (f ∗
B2q ,i) and f̄ ∗

B2q
, f̄

∗(2)
B2q

are the averages of f ∗
B2q ,i and their squares respectively

in f∗
B2q

. Moreover, CB2q
= AqB

T
2q

and λC2q
is the probability of correct linkages in CB2q

.

2.3 The estimating function

we will modify the estimating functions used in Chambers (2008) to accommodate the lon-

gitudinal linkage case.

Suppose that one has E(Y |X) = g(X; θ), where θ can be estimated by solving

H(θ) = 0,
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and H(θ) is a function that satisfies EX

[

H(θ0)
]

= 0 when θ0 is the true value of θ. Let ∂θ

be the partial differentiation operator with respect to θ. Suppose that θ̂ satisfies H(θ̂) = 0.

Then, under some regularity condition for the smoothness and Taylor expansion,

0 = H(θ̂) ≈ H(θ0) + (θ̂ − θ0)∂θH(θ0).

If H(θ) is an unbiased estimating function and ∂θH(θ0) is non-singular, one has

EX

[

θ̂ − θ0

]

≈ −
[

∂θH(θ0)
]−1

EX

[

H(θ0)
]

= 0.

Then, the variance function for θ̂ can be derived by

VarX(θ̂) ≈
[

∂θH(θ0)
]−1

VarX

[

H(θ0)
]

(

[

∂θH(θ0)
]−1

)T

.

In Chambers (2008), the estimating function is of the form

H(θ) =
∑

q

Gq(θ)
{

Y q − f q

}

,

where f q = EX(Y q) and Gq(θ)7 is a function of θ and Xq but not of Y q.

In the longitudinal case for the three data set, we have three different cases to consider.

Firstly, consider the Case 0 where Y and X1 are correctly linked, but X1 and X2 are not

correctly linked. Hence, we can observe true Y q, but we cannot observe the true X . Instead,

we observe X∗, which is of the form

X∗ = (1, X1, X
∗
2) , X∗

2 = B2X2

and B2 is a permutation matrix that is not observable in general. Then, a naive estimating

function can be of the form

H∗(θ) =
∑

q

Gq(θ)
{

Y q − f ∗
q(θ)

}

,

where f ∗
q(θ) = X∗

qβ. Then, it is easy to see that the estimator from the naive estimating

function is biased, because

EX
∗(Y q) = fE

q (θ) 6= f ∗
q(θ).

Thus, an unbiased estimating function can be of the form

H∗
1(θ) =

∑

q

Gq(θ)
{

Y q − fE
q (θ)

}

, (6)

7Some examples of Gq for different estimators are given in the simulation section.
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where fE
q (θ) = XE

q β = (1q, X1q, EB2q
X∗

2q)β.

Let us consider the Case 1 where Y is the bench mark data set and the linkages between

Y and X1 and the linkages between Y and X2 are done with some errors. In this case, we

have similar estimating function

H∗
2(θ) =

∑

q

Gq(θ)
{

Y q − fE2
q (θ)

}

, (7)

where, by (4), fE2
q (θ) = XE2

q β = (1q, EB1q
X∗

1q, EB2q
X∗

2q)β.

Now, consider the Case 2 where X1 is the bench mark data set and the linkage between

X1 and X2 and the linkage between X1 and Y are done with some errors. In this case, Y ∗
q

is observed instead of Y q and also the true X is not observable. Instead, we observe X∗,

which is of the form

X∗ = (1, X1, X
∗
2) , X∗

2 = B2X2

and B2 is a permutation matrix that is not observable in general. Hence, a naive estimating

function can be of the form

H∗(θ) =
∑

q

Gq(θ)
{

Y ∗
q − f ∗

q(θ)
}

,

where f∗
q(θ) = X∗

qβ. Then, as before, it is easy to see that the estimator from the naive

estimation function is biased, because

EX
∗(Y ∗

q) = EAq
fE

q (θ) 6= f ∗
q(θ).

Hence, by (2), (5) and (28), an unbiased estimator is of the form

H∗
3(θ) =

∑

q

Gq(θ)
{

Y ∗
q − EAq

fE
q (θ)

}

, (8)

and the estimator θ̂
∗

3 is defined as the the solution of

H∗
3(θ̂

∗

3) = 0.

Theorem 4. Let θ̂
∗

1 be the solution of (6). Then, an asymptotic variance estimator is of the

form

V1|X∗(θ̂
∗

1) =
[

∑

q

Gq∂θf
E
q (θ̂

∗

1)
]−1[ ∑

q

GqΣ̂
∗1
q GT

q

]([

∑

q

Gq∂θf
E
q (θ̂

∗

1)
]−1)T

11



where,

Σ̂∗1
q = σ̂2

qIq + V̂ B2q
.

Also, let θ̂
∗

2 be the solution of (7). Then, an asymptotic variance estimator is of the form

V2|X∗(θ̂
∗

2) =
[

∑

q

Gq∂θf
E2
q (θ̂

∗

2)
]−1[∑

q

GqΣ̂
∗2
q GT

q

]([

∑

q

Gq∂θf
E2
q (θ̂

∗

2)
]−1)T

,

where, by (26), Σ̂∗2
q = σ̂2

qIq + V̂ B1q
+ V̂ B2q

.

Finally, the asymptotic variance estimator for the solution of (8) is of the form

V3|X∗(θ̂
∗

3) =
[

∑

q

GqEAq
∂θf

E
q (θ̂

∗

3)
]−1[∑

q

GqΣ̂
∗3
q GT

q

]([

∑

q

GqEAq
∂θf

E
q (θ̂

∗

3)
]−1)T

,

where,

Σ̂∗3
q = σ̂2

qIq + V̂ C2q
+ V̂ Aq

.

2.4 Variance estimation when linkage probabilities are estimated

So far, we assume that we know the correct linkage probabilities which is a very strong

assumption. In this subsection, we consider the case where the correct linkage probabilities

are estimated by checking a random ‘audit’ sample of linked records in each m-block. More

details of this audit estimates when there are two data sets can be found in Chambers (2008),

and we will modify his idea to accommodate the cases when there are more than two data

sets.

Let us consider the Case 2 where x1i is neither correctly linked with corresponding yi, nor

with x2i. In this case, we need to consider two different linkage probabilities:

λAq
= pr(correct linkage between X1q and Y ∗

q)

λB2q
= pr(correct linkage between X1q and X∗

2q),

where there is no correlation between them. Thus, the estimating function (8) can be replaced

by

H∗
3(θ, λA, λB2

) =
∑

q

Gq

{

Y ∗
q − EAq

(λAq
)fE

q (θ, λB2q
)
}

=
∑

q

U q(θq, λAq
, λB2q

),
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and a first order Taylor series approximation is of the form

0 = H∗
3(θ̂

∗∗

3 , λ̂A, λ̂B2
)

≈ H∗
3(θ0, λ

0
A, λ0

B2
) + ∂θH

∗
3(θ0, λ

0
A, λ0

B2
)(θ̂ − θ0)

+ ∂λA
H∗

3(θ0, λ
0
A, λ0

B2
)(λ̂A − λ0

A) + ∂λB2
H∗

3(θ0, λ
0
A, λ0

B2
)(λ̂B2

− λ0
B2

),

where θ0, λ0
A and λ0

B2
denote the true values of θ, λA and λB2

respectively. Denote

H∗
0 = H∗

3(θ0, λ
0
A, λ0

B2
),

∂λ1
= ∂λA

and

∂λ2
= ∂λB2

.

Then, one has

θ̂
∗∗

3 = θ0 −
[

∂θH
∗
0

]−1
[

H∗
0 + ∂λ1

H∗
0(λ̂A − λ0

A) + ∂λ2
H∗

0(λ̂B2
− λ0

B2
)
]

.

If the estimates of the linkage probabilities are obtained by a random audit sample (of the

size mA
q for λAq

and mB
q for λB2q

) of linked records, one has

VarX
∗(λAq

) = (mA
q )−1λAq

(1 − λAq
)

and

VarX
∗(λB2q

) = (mB
q )−1λB2q

(1 − λB2q
).

Theorem 5. An asymptotic variance estimator of θ̂
∗∗

3 is of the form

V̂
λ

3|X∗(θ̂
∗∗

3 ) =
[

∂θĤ
∗

0

]−1
[

V̂3|X∗

(

θ∗∗
3

)

+
(

∂λ1
Ĥ

∗

0

)

VarX
∗(λ̂A)

(

∂λ1
Ĥ

∗

0

)T

+
(

∂λ2
Ĥ

∗

0

)

VarX
∗(λ̂B2

)
(

∂λ2
Ĥ

∗

0

)T
]{

[

∂θĤ
∗

0

]−1
}T

,

where
∂λ1

Ĥ
∗

0 = −
∑

q

Gq

[

(Mq − 1)−1(MqIq − 1q1
T
q )

]

f̂
E

q (θ̂, λ̂B2q
) and

∂λ2
Ĥ

∗

0 = −
∑

q

GqEAq

[

(Mq − 1)−1(MqIq − 1q1
T
q )

]

X∗
2qβ̂2.

and V̂3|X∗ is the asymptotic variance estimator for θ̂
∗

3 in the Theorem 4.

Similarly, an asymptotic variance estimator for θ̂
∗∗

2 , the unbiased estimator for the Case 1

when the linkage probabilities are unknown, can be represented by

V̂
λ

2|X∗(θ̂
∗∗

2 ) =
[

∂θĤ
∗

0

]−1
[

V̂2|X∗

(

θ∗∗
2

)

+
(

∂λB1
Ĥ

∗

0

)

VarX
∗(λ̂B1

)
(

∂λB1
Ĥ

∗

0

)T

+
(

∂λB2
Ĥ

∗

0

)

VarX
∗(λ̂B2

)
(

∂λB2
Ĥ

∗

0

)T
]{

[

∂θĤ
∗

0

]−1
}T

,
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where,
λB1q

= pr(correct linkage between Y q and X∗
1q) and

∂λB1
Ĥ

∗

0 = −
∑

q

Gq

[

(Mq − 1)−1(MqIq − 1q1
T
q )

]

X∗
1qβ̂1.

Finally, an asymptotic variance estimator for θ̂
∗∗

1 , the unbiased estimator for the Case 0

when the linkage probabilities are unknown, can be represented by

V̂
λ

1|X∗(θ̂
∗∗

1 ) =
[

∂θĤ
∗

0

]−1
[

V̂1|X∗

(

θ∗∗
1

)

+
(

∂λB2
Ĥ

∗

0

)

VarX
∗(λ̂B2

)
(

∂λB2
Ĥ

∗

0

)T
]{

[

∂θĤ
∗

0

]−1
}T

.

2.5 Simulation

We use simulation to compare the performances of different estimators we considered in this

study. The linear model we used in this simulation is of the form

Y = 1 + 5X1 + 8X2 + ǫ,

where X1 were drawn from the standard normal distribution and X2 were drawn from the

normal distribution with mean= 2 and the variance of 4. ǫ were drawn from the standard

normal distribution as well.

In this simulation, we consider all three cases we have studied:

• Case 0: X1 is the bench mark data set and the mismatch happens only from the

linkage between X1 and r X2.

• Case 1: Y is the bench mark data set and the linkages between Y and X1 and the

linkages between Y and X2 are done with some errors.

• Case 2: X1 is the bench mark data set and the linkage between X1 and X2 data set

and the linkage between X1 and Y are done with some errors.

Here, we will only explain how we generate the data sets for Case 2. Generating the data

sets for other cases are quite trivial.

There are three m-blocks and in each m block, the pairs (x1i, x
∗
2i) were generated according

to an independent exchangeable linkage error model. Further, given X∗
i = (1, x1i, x

∗
2i), the

pairs (y∗
i , X

∗
i ) were generated according to another independent exchangeable linkage error

model. In this simulation, we use three m-blocks of sizes 500 for each m-block. Also we

14



assume that the probability of correct linkage between Y ∗
q and X∗

q and probability of correct

linkage between X1q and X∗
2q are known.

The estimators for the simulations are

1. the naive OLS estimator (ST),

2. the ratio-type estimator (R),

3. the Lahiri-Larsen estimator (A) and

4. the empirical Best Linear Unbiased Estimator, EBLUE, (C).

Note that different estimating functions have different form of Gq. In our case,

1. the naive estimator: Gq = (X∗
q)

T ,

2. the Lahiri-Larsen estimator: Gq = (ÊAq
XE

q )T and

3. the EBLUE: Gq = (ÊAq
XE

q )T (σ̂2
qIq + V̂ C2q

+ V̂ Aq
)−1.

The assumptions on the probability of correct linkage on each m-block are

• the probability of correct linkage between Y ∗
q and X1q : λA1

= 1, λA2
= 0.95 and

λA3
= 0.75,

• the probability of correct linkage between Y q andX∗
1q : λB11

= 1, λB12
= 0.95 and

λB13
= 0.75 and

• the probability of correct linkage between X1q and X∗
2q : λB21

= 1, λB22
= 0.85 and

λB23
= 0.8.

Under the above scenario, the estimators were independently simulated 1000 times. The

regression parameters were estimated using the four estimators. The following plot box

represent the overall performance of the estimators.

Clearly, the ration-type estimator, the Lahiri-Larsen estimator and the EBLUE correct the

bias due to incorrect linkage, and the EBLUE outperforms other estimators, that was also

noted in Chambers (2008) where two registers were merged. These observations are con-

sistent for all three cases. It is worth to note that the EBLUE(C) outperforms all other

estimators in general. The figures 1-3 clearly show that EBLUE is the best one. How-

ever, our simulation shows that the relative biases of EBLUE, when λs are unknown, are
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larger than the Lahiri-Larsen estimator and the ratio-type estimator. But the overall relative

RMSE are smaller than other estimators.

[

Table 1 here.
]

[

Table 2 here.
]

[

Table 3 here.
]

3 Sample-register case

In this section, we consider the case where we only observe a sample s of records from the

bench mark data set. Suppose that X1 is the bench mark data set. When all the records in

X1-register are linked to the records inX2-register and Y -register, all of the sample records

s from X1-register are perfectly linked with some records in X2-register and Y -register.

However, in reality, some records in the sample s cannot be linked to a record in X2-register

or Y -register. We will consider these two cases separately.

3.1 Sample-register case: When sample records are perfectly linked

As before, we will consider three different cases, Case 0, Case 1 and Case 2.

Let us start with Case 2. If all records in the sample s are linked to the records inX2-

register and Y -register, We can assume that the sample s is a part of X1-register that is

complete register-register linkage. Hence we can use a weighted estimating function. In this

subsection, we will modify the estimating function approach to accommodate this sample-

register linkage.

When the sample records s from X1-register are linked to X2-register and Y -register, we

observe a subset sq of Mq records from Y ∗
q, which we denote by Y ∗

sq. More precisely, let

Mq be the population number in the qth m-block, and let msq be the sample size in the qth

m-block. We use a subscript of sq to denote quantities that depend on the sample records

in the qth m-block. Similarly, the subscript of rq is used to indicate quantities that depend

on the non-sample records in the qth m-block.
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Under perfect linkage of the sample data, when there is no linkage error, the true parameter

θ0 can be estimated by solving the estimating equation

Hs(θ) =
∑

q

Gsq

{

Y sq − f sq(θ)
}

,

where Gsq is modified by the sample weights wsq that depend on the ratio of the sample

size from the population. When there exist linkage errors and we ignore the errors, the

estimating equation is then of the form

H∗
s(θ) =

∑

q

Gsq

{

Y ∗
sq − f ∗

sq(θ)
}

,

where

Y ∗
sq = AsqY

∗
q

and

Aq =

(

Asq

Arq

)

=

(

Assq Asrq

Arsq Arrq

)

is the sample/non-sample decomposition of the complete linkage process in the qth m-block.

This estimating equation leads to a bias because EX
∗(Y ∗

sq) 6= f sq. To correct the bias, by

using the fact that

EX
∗(Y ∗

sq) = EX
∗(AsqY

∗
q) = EAsq

fE
q (θ),

we modify this estimating equation

Hadj
s (θ) =

∑

q

Gsq

{

Y ∗
sq − EAsq

fE
q (θ)

}

=
∑

q

Gsq

{

Y ∗
sq − EAssq

fE
sq(θ) − EAsrq

fE
rq(θ)

}

,
(9)

where

EAq
=

(

EAsq

EArq

)

=

(

EAssq
EAsrq

EArsq
EArrq

)

(10)

is the corresponding sample/non-sample decomposition of the expected value EAq
of Aq.

Now, by the definition of EAq
, one has

EAssq
=

(λAq
Mq − 1

Mq − 1

)

Isq +
(1 − λAq

Mq − 1

)

1sq1
T
sq

and

EAsrq
=

(1 − λAq

Mq − 1

)

1sq1
T
rq
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so that (9) becomes

Hadj
s (θ) =

∑

q

Gsq

{

Y ∗
sq −

(λAq
Mq − 1

Mq − 1

)

Isqf
E
sq(θ) −

(1 − λAq

Mq − 1

)

1sq1
T
q fE

q (θ)
}

.

Using a weighting approach8, the unknown value 1T
q fE

q (θ) can be replaced by wT
sqf

E
sq(θ)

under the assumption that the samples are chosen randomly from the population. This

leads us to the estimating function of the form

H
adj
ws3(θ) =

∑

q

Gsq

{

Y ∗
sq − ẼAsq

fE
sq(θ)

}

, (11)

where

ẼAsq
=

(λAq
Mq − 1

Mq − 1

)

Isq +
(1 − λAq

Mq − 1

)

1sqw
T
sq.

For the Case 1, formulae are similar, but simpler than those in Case 2. Note that, in this

case, we observe true Y sq. Hence, the estimating function is of the form

H
adj
ws2(θ) =

∑

q

Gsq

{

Y sq − fE2
sq (θ)

}

,

where
fE2

sq = XE2
sq β = (1sq, ẼB1sq

X∗
1sq, ẼB2sq

X∗
2sq)β,

ẼB1sq
=

(λB1q
Mq − 1

Mq − 1

)

Isq +
(1 − λB1q

Mq − 1

)

1sqw
T
sq and

ẼB2sq
=

(λB2q
Mq − 1

Mq − 1

)

Isq +
(1 − λB2q

Mq − 1

)

1sqw
T
sq.

Finally, for the Case 0, it has simplest forms for their formulae since there is only one

mismatch. The estimating function is of the form

H
adj
ws1(θ) =

∑

q

Gsq

{

Y sq − fE
sq(θ)

}

,

where
fE

sq = XE
sqβ = (1sq, X1sq, ẼB2sq

X∗
2sq)β and

ẼB2sq
=

(λB2q
Mq − 1

Mq − 1

)

Isq +
(1 − λB2q

Mq − 1

)

1sqw
T
sq.

Theorem 6. Let θ̂
s∗

3 be the solution of the estimating equation (11). Then, under the

assumption that we know true λAq
and λB2q

, an asymptotic variance estimator is of the form

V ws
3|X∗(θ̂

s∗

3 ) =
[

∑

q

GsqẼAsq
∂θf

E
sq(θ̂)

]−1[ ∑

q

GsqΣ̂sqG
T
sq

]([

∑

q

GsqẼAsq
∂θf

E
sq(θ̂)

]−1)T

,

8In this article, we simply use weight wsq =
( Mq

msq

)

1q.
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where

Σ̂sq ≈ diag
((λAq

Mq − 1)di + Mq(1 − λAq
)d̄sq

Mq − 1
+(1−λAq

)
[

λAq
(fE

i −f̄E
sq)

2+f̄E(2)
sq −(f̄E

sq)
2
]

; i ∈ sq

)

with Dsq = diag{di; i ∈ sq} ≈ VarX
∗(Y sq) and d̄sq is the mean of {di; i ∈ sq}.

Let θ̂
s∗

2 be the solution of the estimating equation for the Case 1. Then, under the assump-

tion that we know true λB1q
and λB2q

, an asymptotic variance estimator is of the form

V ws
2|X∗(θ̂

s∗

2 ) =
[

∑

q

Gsq∂θf
E2
sq (θ̂

s∗

2 )
]−1[ ∑

q

GsqΣ̂
(2)
sq GT

sq

]([

∑

q

Gsq∂θf
E2
sq (θ̂

s∗

2 )
]−1)T

,

where

Σ̂(2)
sq = σ̂2

sqIsq + V̂ B1sq
+ V̂ B2sq

.

Finally, let θ̂
s∗

1 be the solution of the estimating equation for the Case 0. Then, an asymp-

totic variance estimator is of the form

V ws
1|X∗(θ̂

s∗

1 ) =
[

∑

q

Gsq∂θf
E
sq(θ̂

s∗

1 )
]−1[ ∑

q

GsqΣ̂
(1)
sq GT

sq

]([

∑

q

Gsq∂θf
E
sq(θ̂

s∗

1 )
]−1)T

,

where,

Σ̂(1)
sq = σ̂2

sqIsq + V̂ B2sq
.

Note that the above asymptotic variance estimator assumes that the λAq
, λB1q

and λB2q
are

known. If we need to estimate these probabilities, the asymptotic variance estimator should

have more terms that count the estimations of λAq
, λB1q

and λB2q
. To see this, note that,

when λAq
and λB2q

are estimated, (11) becomes

H
adj
ws3,λ(θ, λA, λB2

) =
∑

q

Gsq

{

Y ∗
sq − ẼAsq

(λA)fE
sq(θ, λB2

)
}

. (12)

In this case, the asymptotic variance estimator is of the form

VarX
∗(θ̂) ≈

[

∂θH
adj
ws3,0

]−1
[

VarX
∗

(

H
adj
ws3,0

)

+
(

∂λA
H

adj
ws3,0

)

VarX
∗(λA)

(

∂λA
H

adj
ws3,0

)T

+
(

∂λB2
H

adj
ws3,0

)

VarX
∗(λB2

)
(

∂λB2
H

adj
ws3,0

)T
]{

[

∂θH
adj
ws3,0

]−1
}T

,

(13)

where
H

adj
ws3,0 = H

adj
ws3,λ(θ0, λ

0
A, λ0

B2
),

∂λA
H

adj
ws3,0 = −

∑

q

Gsq

[

(Mq − 1)−1(MqIsq − 1sqw
T
sq)

]

fE
sq(θ0, λ

0
B2q

),

∂λB2
H

adj
ws3,0 = −

∑

q

GsqẼAsq

[

(Mq − 1)−1(MqIsq − 1sqw
T
sq)

]

X∗
2qβ2.

(14)
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Corollary 7. Let θ̂
s∗∗

3 be the solution of the estimating equation (12). Then, an asymptotic

variance estimator is of the form

V
ws,λ

3|X∗(θ̂
s∗∗

3 ) =
[

∂θĤ
adj

ws3,0

]−1
[

V ws
3|X∗(θ̂

s∗∗

3 ) +
(

∂λ1
Ĥ

adj

ws3,0

)

VarX
∗(λ̂A)

(

∂λ1
Ĥ

adj

ws3,0

)T

+
(

∂λ2
Ĥ

adj

ws3,0

)

VarX
∗(λ̂B2

)
(

∂λ2
Ĥ

adj

ws3,0

)T
]{

[

∂θĤ
adj

ws3,0

]−1
}T

.

Also, Let θ̂
s∗∗

2 be the solution of the estimating equation for the Case 1. Then, an asymptotic

variance estimator is of the form

V
ws,λ

2|X∗(θ̂
s∗∗

2 ) =
[

∂θĤ
adj

ws2,0

]−1
[

V ws
2|X∗(θ̂

s∗∗

2 ) +
(

∂λB1
Ĥ

adj

ws2,0

)

VarX
∗(λ̂B1

)
(

∂λB1
Ĥ

adj

ws2,0

)T

+
(

∂λB2
Ĥ

adj

ws2,0

)

VarX
∗(λ̂B2

)
(

∂λB2
Ĥ

adj

ws2,0

)T
]{

[

∂θĤ
adj

ws2,0

]−1
}T

,

where
H

adj
ws2,0 = H

adj
ws2(θ0, λB1

, λB2
),

VarX
∗(λB1q

) = (mB1

q )−1λB1q
(1 − λB1q

),

∂λB1
H

adj
ws2,0 = −

∑

q

Gsq

[

(Mq − 1)−1(MqIsq − 1sqw
T
sq)

]

X∗
1qβ1.

Further, let θ̂
s∗∗

1 be the solution of the estimating equation for the Case 0. Then, an asymp-

totic variance estimator is of the form

V
ws,λ

1|X∗(θ̂
s∗∗

1 ) =
[

∂θĤ
adj

ws1,0

]−1
[

V ws
1|X∗(θ̂

s∗∗

1 )

+
(

∂λB2
Ĥ

adj

ws1,0

)

VarX
∗(λ̂B2

)
(

∂λB2
Ĥ

adj

ws1,0

)T
]{

[

∂θĤ
adj

ws1,0

]−1
}T

.

3.2 Sample-register case: When sample records are not perfectly

linked

When some records are not linked, Aq or B2q cannot be a permutation matrix, because the

entries of some rows are all zero due to non-linkage. However, we can still use similar ideas

introduced in the previous subsection.

Firstly, we consider the Case 2. Let X1sq be the set of the sample records from X1q. Also

let X1slq be the set of sample records in X1sq that are linked both to X2-register and to

Y -register. Further, let X1suq := X1sq − X1slq. Then it represents the set of sampled

records in X1sq that cannot be linked either to X2-register or to Y -register. Also, let

X1rq := X1q − X1sq, the set of non-sample records in X1q. We assume that, theoretically,
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there exists X1rlq that represents the set of non-sample records that can be linked both to

X2-register and Y -register. Similarly, X1ruq := X1rq − X1rlq.

Similarly, under the one to one linkage assumption, Y ∗
q can be partitioned into four groups,

namely Y ∗
slq, Y ∗

suq, Y ∗
rlq and Y ∗

ruq. Thus, one has

Y ∗
q =









Y ∗
slq

Y ∗
suq

Y ∗
rlq

Y ∗
ruq









=









Aslsl,q Aslsu,q Aslrl,q Aslru,q

Asusl,q Asusu,q Asurl,q Asuru,q

Arlsl,q Arlsu,q Arlrl,q Arlru,q

Arusl,q Arusu,q Arurl,q Aruru,q

















Y slq

Y suq

Y rlq

Y ruq









= AqY q,

and

E(Aq|X
∗
q) = EAq

=









Eslsl,Aq
Eslsu,Aq

Eslrl,Aq
Eslru,Aq

Esusl,Aq
Esusu,Aq

Esurl,Aq
Esuru,Aq

Erlsl,Aq
Erlsu,Aq

Erlrl,Aq
Erlru,Aq

Erusl,Aq
Erusu,Aq

Erurl,Aq
Eruru,Aq









.

Further, because X∗
2q also can be partitioned into X∗

2slq, X∗
2suq, X∗

2rlq and X∗
2ruq, one

has

E(B2q|X
∗
q) = EB2q

=









Eslsl,B2q
Eslsu,B2q

Eslrl,B2q
Eslru,B2q

Esusl,B2q
Esusu,B2q

Esurl,B2q
Esuru,B2q

Erlsl,B2q
Erlsu,B2q

Erlrl,B2q
Erlru,B2q

Erusl,B2q
Erusu,B2q

Erurl,B2q
Eruru,B2q









.

This leads to the estimating equation of the form

H
adj
sl (θ) =

∑

q

Gslq

{

Y ∗
slq − EAslq

fE
q (θ)

}

=
∑

q

Gslq

{

Y ∗
slq − Eslsl,Aq

fE
slq(θ) − Eslsu,Aq

fE
suq(θ)

− Eslrl,Aq
fE

rlq(θ) − Eslru,Aq
fE

ruq(θ)
}

.

(15)

Under the exchangeable linkage error model, one has

Eslsl,Aq
=

[λAq
Mq − 1

Mq − 1

]

Islq +
[1 − λAq

Mq − 1

]

1slq1
T
slq,

Eslsu,Aq
=

[1 − λAq

Mq − 1

]

1slq1
T
suq,

Eslrl,Aq
=

[1 − λAq

Mq − 1

]

1slq1
T
rlq,

Eslru,Aq
=

[1 − λAq

Mq − 1

]

1slq1
T
ruq.

It leads (15) to the form of

H
adj
sl (θ) =

∑

q

Gslq

{

Y ∗
slq −

[λAq
Mq − 1

Mq − 1

]

Islqf
E
slq(θ) −

[1 − λAq

Mq − 1

]

1slq1
T
q fE

q

}

.
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If we assume that the distribution of Y ∗
slq is the same as that of Y in the population,

the observable population value 1T
q fE

q (θ) can be replaced by weighted sample estimate by

wT
slqf

E
slq(θ)

9 so that one has

H
adj
wsl(θ) =

∑

q

Gslq

{

Y ∗
slq − ẼAslq

fE
slq(θ)

}

,

where

ẼAslq
=

[λAq
Mq − 1

Mq − 1

]

Islq +
[1 − λAq

Mq − 1

]

1slqw
T
slq.

For fE
slq(θ), note that by (2)

fE
slq(θ) = (1slq, X1slq, EBsl,2q

X∗
2q)(β0, β1, β2)

T ,

where

EBsl,2q
X∗

2q = Eslsl,B2q
X∗

2slq + Eslsu,B2q
X∗

2suq + Eslrl,B2q
X∗

2rlq + Eslru,B2q
X∗

2ruq.

The exchangeable linkage error model provides that

Eslsl,B2q
=

[λB2q
Mq − 1

Mq − 1

]

Islq +
[1 − λB2q

Mq − 1

]

1slq1
T
slq,

Eslsu,B2q
=

[1 − λB2q

Mq − 1

]

1slq1
T
suq,

Eslrl,B2q
=

[1 − λB2q

Mq − 1

]

1slq1
T
rlq,

Eslru,B2q
=

[1 − λB2q

Mq − 1

]

1slq1
T
ruq.

If we also assume that the distribution of X∗
2slq is the same as that of X∗

2q in the population,

then EBsl,2q
X∗

2q can be replaced by ẼBsl,2q
X∗

2slq where

ẼBsl,2q
=

[λB2q
Mq − 1

Mq − 1

]

Islq +
[1 − λB2q

Mq − 1

]

1slqw
T
slq.

Then, fE
slq(θ) can be evaluated by

fE
slq(θ) = (1slq, X1slq, ẼBsl,2q

X∗
2slq)(β0, β1, β2)

T .

9We will use wslq = (
Mq

mslq
)1slq , where mslq is the number of linked sample records, while Mq is the total

population number in qthm-block.
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Suppose that we know λAq
and λB2q

, and let θ̂ be the solution of the estimating equation.

To derive the asymptotic variance estimator for θ̂, note that (47) becomes now

VarX∗(θ̂) ≈
[

∂θH
adj
wsl(θ0)

]−1
VarX∗

[

H
adj
wsl(θ0)

]

(

[

∂θH
adj
wsl(θ0)

]−1
)T

with corresponding estimator of the form

VX∗(θ̂) =
[

∂θH
adj
wsl(θ0)

]−1
VX∗

[

H
adj
wsl(θ0)

]

(

[

∂θH
adj
wsl(θ0)

]−1
)T

≈
[

∑

q

GslqẼAslq
∂θf

E
slq(θ̂)

]−1[∑

q

GslqΣ̂slqG
T
slq

]([

∑

q

GslqẼAslq
∂θf

E
slq(θ̂)

]−1)T

,

under the assumption that Gslq is independent of θ. By the similar arguments in (48)-

(49),

Σslq = VarX∗(Y ∗
slq)

≈ VarX∗(Aslsl,qY slq) + VarX∗(Aslsu,qY suq) + VarX∗(Aslrl,qY rlq) + VarX∗(Aslru,qY ruq)

that can be approximated by

Σ̂slq ≈ diag
((λAq

Mq − 1)di + Mq(1 − λAq
)d̄slq

Mq − 1

+ (1 − λAq
)
[

λAq
(fE

i − f̄E
slq)

2 + f̄
E(2)
slq − (f̄E

slq)
2
]

; i ∈ {1, . . . , mslq}
)

.

If we need to estimate λAq
and λB2q

, we still can use the asymptotic variance estimator

defined by (13)-(14), except that the subscripts sp and ws need to be replaced by slp and

wsl. That is, the asymptotic variance estimator is of the form

VarX
∗(θ̂) ≈

[

∂θH
adj
wsl,0

]−1
[

VarX
∗

(

H
adj
wsl,0

)

+
(

∂λ1
H

adj
wsl,0

)

VarX
∗(λ̂A)

(

∂λ1
H

adj
wsl,0

)T

+
(

∂λ2
H

adj
wsl,0

)

VarX
∗(λ̂B2

)
(

∂λ2
H

adj
wsl,0

)T
]{

[

∂θH
adj
wsl,0

]−1
}T

.

Using the above arguments, it is clear that, to deal with Case 0 and Case 1 in this case,

we can use the formulae in the previous subsection by replacing sp and ws with slp and

wsl.

3.3 Simulation

We use simulation to compare the performances of different estimators we considered in this

study for the sample to register linkage case. The linear model we used in this simulation is

the same as before,

Y = 1 + 5X1 + 8X2 + ǫ.
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Most of assumptions and scenarios we made for the register to register case are the same

except that we use the sample here instead of whole population. In this simulation, we

considered the case of complete linkage and incomplete linkage separately. For the case of

complete linkage, we assume that the sample records s from the bench mark data sets are

linked to the records in other registers. The extra assumption we made in this simulation is

that the population size of all registers the same and each m-block has 2000 records, and 500

samples are chosen randomly for each m-block. Further, in case of incomplete linkage, we

assume that, among 2000 records, half of them cannot be linked. In this incomplete linkage

case, we chose 1000 samples. The reason is that because half of them cannot be linked,

we might have around 500 samples that are linked to other registers. This assumption will

provide another consistent comparisons of the same estimators between the complete linkage

case and incomplete linkage case. The results for the complete linkage case can be found in

the Table 4–Table 6, while the results for the incomplete case are in Table 7–Table 9

The result shows very similar pattern in the register to register case. Clearly, while the

ratio-type estimator, the Lahiri-Larsen estimator and the EBLUE correct the bias due to

linkage errors, the EBLUE outperforms all other estimators. Here are the results for the

complete linkage case:
[

Table 4 here.
]

[

Table 5 here.
]

[

Table 6 here.
]

Here are the results for the incomplete linkage case:

[

Table 7 here.
]

[

Table 8 here.
]

[

Table 9 here.
]

The results for the sample-register cases are very similar to the register-register cases as

long as the sample sizes are similar. One thing to note is that the coverage rates are all

higher than 95%. This is not the case when the number of merged data sets are two. One

possible explanation is that the variance terms in these cases are more complicated and, as

the number of merged data sets increase, the variances increase as well so that the confidence

intervals are becoming wider.
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4 Conclusion and further research direction

In this paper we extend the linkage error adjusting technique in regression analysis developed

in Chambers (2008) to accommodated the situation where the number of merged data sets

are more than two. We developed a ration-type estimator for the regression analysis and

then it has been extended to more general adjusted estimating function approach. These

methods can deal with the case where all the data sets are registers, as well as the case where

the bench mark data sets are sample and the others are registers. Even though it hasn’t

been dealt here, it is easy to see that these methods can naturally accommodate the case

where all the data sets are sample. These methods also extended to deal with the situation

where some of sample data are failed to be linked to other registers. However, all of these

bias correction methods have to pay the price of large variance. Furthermore, in the case

of sample-registers case with non-linkage situation, the number of linked sample data, if the

the number of merged data sets are increasing, will be decreasing. Thus, we expect some

sort of loss of information by merging more data sets. We expect to overcome this limitation

by adapting other approaches.

Another limitation of these methods is that we assume that the linkage errors among the

data sets occurs randomly. However, there might be some correlation among the linkage

errors. To deal with this situation, our model should include more complicated covariance

measures in the formulae and it will be dealt in our next research paper.

A Proofs of the Propositions and Theorems

A.1 Proof of Proposition 1

For the variance of the estimator, note that

VarX
∗(β̂R) = D−1

1 VarX
∗(β̂

∗
)
(

D−1
1 )T ,

where

VarX
∗(β̂

∗
) =

[

∑

q

(X∗
q)

T X∗
q

]−1[∑

q

(X∗
q)

T VarX
∗(Y q)X

∗
q

][

∑

q

(X∗
q)

T X∗
q

]−1

.
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Further, one has

VarX
∗(Y q) = EX

∗

[

VarX
∗(Y q|B2q

)
]

+ VarX
∗

[

EX
∗(Y q|B2q

)
]

.

Note that, by (1),

EX
∗(Y q|B2q

) = XB2

q β.

Thus,

VB2q
= VarX

∗

[

EX
∗(Y q|B2q

)
]

= EX
∗

[

XB2

q β − XE
q β

]2

= EX
∗

[

BT
2q

X∗
2qβ2 − EB2q

X∗
2qβ2

]2

.

Denote that

f∗
B2q

= X∗
2qβ2.

Then, by (16) from Chambers (2008),

V B2q
= diag

[

(1 − λB2q
)
{

λB2q
(f ∗

B2q ,i − f̄ ∗
B2q

)2 + f̄
∗(2)
B2q

− (f̄ ∗
B2q

)2
}

]

, (16)

where f∗
B2q

= (f ∗
B2q ,i) and f̄ ∗

B2q
, f̄

∗(2)
B2q

are the averages of f ∗
B2q ,i and their squares respectively

in f∗
B2q

. Furthermore, one has

VarX
∗(Y q|B2q

) = EX
∗(Y q − XB2

q β)2 = EX
∗(ǫq)

2 = σ2
qIq.

Therefore, one has

VarX
∗(Y q) = σ2

qIq + V B2q
(17)

which implies that

VarX
∗(β̂R) =

[

∑

q

(X∗
q)

T XE
q

]−1[ ∑

q

(X∗
q)

T
(

σ2
qIq + V B2q

)

X∗
q

][

∑

q

(X∗
q)

T XE
q

]−1

. (18)

To evaluate VarX
∗(β̂R), Then, one has

(Y q − fE
q )T (Y q − fE

q ) =
[

(Y q − f q) − (fE
q − f q)

]T [

(Y q − f q) − (fE
q − f q)

]

= (Y q − f q)
T (Y q − f q) (19)

− (Y q − f q)
T (fE

q − f q) − (fE
q − f q)

T (Y q − f q) (20)

+ (fE
q − f q)

T (fE
q − f q). (21)

Note that, by the definition,

∑

q

(Y q − f q)
T (Y q − f q) = Nσ̂2. (22)
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Further,

EX
∗

[

(Y q − f q)
T (fE

q − f q) + (fE
q − f q)

T (Y q − f q)
]

= 0 (23)

because Y q − f q = ǫq and cov(ǫq, Xq) = 0. Moreover, one has

EX
∗

[

(fE
q − f q)

T (fE
q − f q)

]

= EX
∗

[

(fE
q )T (fE

q − Y q) + (fE
q )T (Y q − f q)

+ (f q)
T (f q − Y q) + (f q)

T (Y q − fE
q )

]

= 0

(24)

because EX
∗

(

Y q − fE
q

)

= 0. Thus, by (19)-(24),

σ̂2 = N−1
∑

q

(Y q − fE
q )T (Y q − fE

q ). (25)

Consequently, VarX
∗(β̂R) can be evaluated by using (25), (16) and (18).

A.2 Proof of Proposition 2

For the variance of the estimator, one has

VarX
∗(β̂R) = D−1

2 VarX
∗(β̂

∗
)
(

D−1
2 )T ,

where

VarX
∗(β̂

∗
) =

[

∑

q

(X∗
q)

T X∗
q

]−1[∑

q

(X∗
q)

T VarX
∗(Y q)X

∗
q

][

∑

q

(X∗
q)

T X∗
q

]−1

.

Note that one has

VarX
∗(Y q) = EX

∗

[

VarX
∗(Y q|B1q

, B2q
)
]

+ VarX
∗

[

EX
∗(Y q|B1q

, B2q
)
]

.

Then, by the assumption that the mismatches found in X∗
1q are not correlated with the

mismatches found in X∗
2q,

VBq
= VarX

∗

[

EX
∗(Y q|B1q

, B2q
)
]

= EX
∗

[

XB2

q β − XE
q β

]2

= EX
∗

[

(BT
1q

X∗
1qβ1 − EB1q

X∗
1qβ1) + (BT

2q
X∗

2qβ2 − EB2q
X∗

2qβ2)
]2

= EX
∗

[

BT
1q

X∗
1qβ1 − EB1q

X∗
1qβ1

]2

+ EX
∗

[

BT
2q

X∗
2qβ2 − EB2q

X∗
2qβ2

]2

= VB1q
+ VB2q

,

(26)
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where VB2q
is defined in (16) and VB1q

also can be defined similarly. Then, by the similar

arguments to (17)-(25), one has

VarX
∗(β̂R) =

[

∑

q

(X∗
q)

T XE
q

]−1[ ∑

q

(X∗
q)

T
(

σ2
qIq + V Bq

)

X∗
q

][

∑

q

(X∗
q)

T XE
q

]−1

,

where σ̂2 can be evaluated by (25).

A.3 Proof of Proposition 3

To derive the variance of β̂R, note that

VarX
∗(β̂R) = D−1

3 VarX
∗(β̂

∗
)
(

D−1
3 )T ,

where

VarX
∗(β̂

∗
) =

[

∑

q

(X∗
q)

T X∗
q

]−1[ ∑

q

(X∗
q)

T VarX
∗(Y ∗

q)X
∗
q

][

∑

q

(X∗
q)

T X∗
q

]−1

.

Hence, we need to calculate VarX
∗(Y ∗

q) first in order to derive the variance of β̂R. Note

that

VarX
∗(Y ∗

q) 6= VarX(Y q).

To see this, one has

VarX
∗(Y ∗

q) = EX
∗

[

VarX
∗(Y ∗

q |Aq)
]

+ VarX
∗

[

EX
∗(Y ∗

q|Aq)
]

. (27)

Then, by (2) and (3)

EX
∗(Y ∗

q|Aq) = AqEX
∗(Y q) = AqX

E
q β = Aqf

E
q .

Note that f q is not observable, because it is the expectation of Y q, that is also not observable,

under completely correct linkage. f∗
q is observable ,but it contains incorrect linkage between

X1q and X∗
2q. fE

q is a adjusted version of f ∗
q to eliminate the bias due to incorrect linkage

between X1q and X∗
2q. Also let V Aq

= VarX
∗

[

EX
∗(Y ∗

q|Aq)
]

. Then, one has10

V Aq
= VarX

∗(Aqf
E
q ).

10One way to estimate V Aq
is using (16) from Chambers (2008). Then,

V Aq
= diag

[

(1 − λAq
)
{

λAq
(fE

q,i − f̄E
q )2 + f̄E(2)

q − (f̄E
q )2

}

]

, (28)

where fE
q = (fE

q,i) and f̄E
q , f̄

E(2)
q are the averages of fE

q,i and their squares respectively in fE
q .
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Further,

VarX
∗(Y ∗

q |Aq) = VarX
∗(AqY q) = AqVarX

∗(Y q)A
T
q

= Aq

(

EX
∗

[

VarX
∗(Y q|B2q

)
])

AT
q + Aq

(

VarX
∗

[

EX
∗(Y q|B2q

)
])

AT
q ,

(29)

because one has

VarX
∗(Y q) = EX

∗

[

VarX
∗(Y q|B2q

)
]

+ VarX
∗

[

EX
∗(Y q|B2q

)
]

. (30)

Note that, by (1),

EX
∗(Y q|B2q

) = XB2

q β.

Thus,

VarX
∗

[

EX
∗(Y q|B2q

)
]

= EX
∗

[

XB2

q β − XE
q β

]2

= EX
∗

[

BT
2q

X∗
2qβ2 − EB2q

X∗
2qβ2

]2

.

(31)

Denote that

f∗
B2q

= X∗
2qβ2.

Also, let

CB2q
= AqB

T
2q

,

which is another permutation matrix, and let

EC2q
= EX

∗

(

AqB
T
2q

)

.

Further, let

V C2q
= AqVarX

∗

[

EX
∗(Y q|B2q

)
]

AT
q . (32)

Then, one has11

V C2q
= EX

∗

[

C2q
f∗

B2q
(f∗

B2q
)T CT

2q

]

− EC2q
f∗

B2q
(f∗

B2q
)T ET

C2q
.

Furthermore, one has

VarX
∗(Y q|B2q

) = EX
∗(Y q − XB2

q β)2 = EX
∗(ǫq)

2 = σ2
qIq.

11By (16) from Chambers (2008),

V C2q
= diag

[

(1 − λC2q
)
{

λC2q
(f∗

B2q ,i − f̄∗

B2q
)2 + f̄

∗(2)
B2q

− (f̄∗

B2q
)2

}

]

,

where f∗

B2q
= (f∗

B2q ,i) and f̄∗

B2q
, f̄

∗(2)
B2q

are the averages of f∗

B2q ,i and their squares respectively in f∗

B2q
.
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Hence,

Aq

(

EX
∗

[

VarX
∗(Y q|B2q

)
])

AT
q = Aqσ

2
qIqA

T
q = σ2

qAqA
T
q = σ2

qIq. (33)

Thus, by (29), (30), (32) and (33)

EX
∗

[

VarX
∗(Y ∗

q|Aq)
]

= EX
∗

[

AqVarX
∗(Y q)A

T
q

]

= EX
∗

{

σ2
qIq + V C2q

}

= σ2
qIq + V C2q

.

(34)

Then, by (27), (32) and (34),

VarX
∗(Y ∗

q) = σ2
qIq + V C2q

+ V Aq
= Σ∗

q . (35)

Consequently, one has

VarX
∗(β̂

∗
) =

[

∑

q

(X∗
q)

T X∗
q

]−1[ ∑

q

(X∗
q)

T
(

σ2
qIq + V C2q

+ V Aq

)

X∗
q

][

∑

q

(X∗
q)

T X∗
q

]−1

,

and

VR = VarX
∗(β̂R)

=
[

∑

q

(X∗
q)

T EAqX
E
q

]−1[∑

q

(X∗
q)

T
(

σ2
qIq + V C2q

+ V Aq

)

X∗
q

][

∑

q

(X∗
q)

T EAqX
E
q

]−1

.

To define V̂ R , the estimator of V R, let

f̂
∗

B2q
= X∗

2qβ̂2

and

f̂
E

q = XE
q β̂,

where β̂2 and β̂ are the estimates of β2 and β respectively. Then, V̂ Aq
and V̂ C2q

can be

estimated by replacing fE
q and f∗

B2q
, in V Aq

and V C2q
, with f̂

E

q and f̂
∗

B2q
respectively.

Now, to estimate σ2, one has

(Y ∗
q − fE

q )T (Y ∗
q − fE

q ) = (Y ∗
q)

T Y ∗
q − (Y ∗

q)
T fE

q − (fE
q )T Y ∗

q + (fE
q )T fE

q

= Y T
q AT

q AqY q − Y T
q f q − fT

q Y q + fT
q f q

+ Y T
q f q + fT

q Y q − fT
q f q

− (Y ∗
q)

T fE
q − (fE

q )T Y ∗
q + (fE

q )T fE
q ,

(36)
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where

EX
∗

∑

q

(

Y T
q AT

q AqY q −Y T
q f q − fT

q Y q + fT
q f q

)

= EX
∗

∑

q

[

(Y q −f q)
T (Y q −f q)

]

= Nσ2.

(37)

Also, one has

EX
∗

(

fT
q Y q − fT

q f q

)

= EX
∗

(

fT
q [Y q − f q]

)

= EX
∗

(

fT
q ǫq

)

= 0. (38)

Further,

Y T
q f q − (Y ∗

q)
T fE

q − (fE
q )T Y ∗

q + (fE
q )T fE

q = Y T
q f q − (Y ∗

q)
T fE

q − (fE
q )T Y ∗

q + (fE
q )T fE

q

− Y T
q fE

q + Y T
q fE

q − (fE
q )T f q + (fE

q )T f q − (fE
q )T fE

q + (fE
q )T fE

q

=
[

Y T
q fE

q − (Y ∗
q)

T fE
q

]

+
[

(fE
q )T fE

q − (fE
q )T Y ∗

q

]

(39)

+
[

Y T
q − (fE

q )T
]

f q +
[

(fE
q )T − Y T

q

]

fE
q + (fE

q )T
[

f q − fE
q

]

. (40)

Then it is easy to see that the expectation of (40) is zero. Also,

EX
∗

(

[

Y T
q fE

q − (Y ∗
q)

T fE
q

]

+
[

(fE
q )T fE

q − (fE
q )T Y ∗

q

]

)

= 2(fE
q )T

[

Iq − EAq

]

fE
q (41)

Therefore,by (36)–(41),

σ̂2 = N−1
(

∑

q

(Y ∗
q − fE

q )T (Y ∗
q − fE

q ) − 2
∑

q

(fE
q )T

[

Iq − EAq

]

fE
q

)

.

A.4 Proof of Theorem 4

Let θ̂
∗

1 be the solution of (6). Then, the asymptotic variance of θ̂
∗

1 is of the form

VarX∗(θ̂
∗

1) ≈
[

∂θH
∗
1(θ0)

]−1
VarX∗

[

H∗
1(θ0)

]

(

[

∂θH
∗
1(θ0)

]−1
)T

.

Note that, in general Gq(θ) is a function of both θ and X, but, in our case, we only consider

the case where Gq is a function of X. Thus,

∂θH
∗
1(θ) =

∑

q

Gq∂θf
E
q (θ).

Further, by (17), one has

VarX∗

[

H∗
1(θ)

]

=
∑

q

GqVarX∗

(

Y q

)

GT
q

=
∑

q

Gq

[

σ2
qIq + V B2q

]

GT
q

=
∑

q

GqΣ
∗1
q GT

q .
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Therefore, the asymptotic variance estimator is of the form

V 1|X∗(θ̂
∗

1) =
[

∑

q

Gq∂θf
E
q (θ̂

∗

1)
]−1[ ∑

q

GqΣ̂
∗1
q GT

q

]([

∑

q

Gq∂θf
E
q (θ̂

∗

1)
]−1)T

.

Let us consider the Case 1 where Y is the bench mark data set and the linkages between

Y and X1 and the linkages between Y and X2 are done with some errors. In this case, we

have similar estimating function

H∗
2(θ) =

∑

q

Gq(θ)
{

Y q − fE2
q (θ)

}

,

but, by (4), fE2
q (θ) = XE2

q β = (1q, EB1q
X∗

1q, EB2q
X∗

2q)β. This leads the asymptotic variance

estimator of the form

V 2|X∗(θ̂
∗

2) =
[

∑

q

Gq∂θf
E2
q (θ̂

∗

2)
]−1[ ∑

q

GqΣ̂
∗2
q GT

q

]([

∑

q

Gq∂θf
E2
q (θ̂

∗

2)
]−1)T

,

where, by (26), Σ̂∗2
q = σ̂2

qIq + V̂ B1q
+ V̂ B2q

.

Finally, the asymptotic variance of θ̂
∗

3 is of the form

VarX∗(θ̂
∗

3) ≈
[

∂θH
∗
3(θ0)

]−1
VarX∗

[

H∗
3(θ0)

]

(

[

∂θH
∗
3(θ0)

]−1
)T

, (42)

where,

∂θH
∗
3(θ) =

∑

q

GqEAq
∂θf

E
q (θ). (43)

Further, by (35), one has

VarX∗

[

H∗
3(θ)

]

=
∑

q

GqVarX∗

(

Y ∗
q

)

GT
q

=
∑

q

Gq

[

σ2
qIq + V C2q

+ V Aq

]

GT
q

=
∑

q

GqΣ
∗3
q GT

q .

Therefore, the asymptotic variance estimator is of the form

V 3|X∗(θ̂
∗

3) =
[

∑

q

GqEAq
∂θf

E
q (θ̂

∗

3)
]−1[ ∑

q

GqΣ̂
∗3
q GT

q

]([

∑

q

GqEAq
∂θf

E
q (θ̂

∗

3)
]−1)T

,

as required.
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A.5 Proof of the Theorem 5

Let λ1 = λA and λ2 = λB2
. Then the variance of θ̂

∗∗

3 can be approximated by

VarX
∗(θ̂

∗∗

3 ) ≈
[

∂θH
∗
0

]−1
VarX

∗

[

H∗
0 + ∂λ1

H∗
0(λ̂A − λA) + ∂λ2

H∗
0(λ̂B2

− λB2
)
]{

[

∂θH
∗
0

]−1
}T

=
[

∂θH
∗
0

]−1
[

VarX
∗

(

H∗
0

)

+
(

∂λ1
H∗

0

)

VarX
∗(λA)

(

∂λ1
H∗

0

)T

+
(

∂λ2
H∗

0

)

VarX
∗(λB2

)
(

∂λ2
H∗

0

)T
]{

[

∂θH
∗
0

]−1
}T

.

(44)

To derive ∂λi
H∗

0, we assume that the distribution of λi is independent12 of the distribution

of H∗
0. Then, by the similar arguments in Chambers (2008),

∂λ1
H∗

0 = ∂λ1

∑

q

Gq

{

Y ∗
q − EAq

(λAq
)fE

q (θ, λB2q
)
}

= −
∑

q

Gq

[

∂λ1
EAq

(λAq
)
]

fE
q (θ, λB2q

)

= −
∑

q

Gq

[

(Mq − 1)−1(MqIq − 1q1
T
q )

]

fE
q (θ, λB2q

)

(45)

and
∂λ2

H∗
0 = ∂λ2

∑

q

Gq

{

Y ∗
q − EAq

(λAq
)fE

q (θ, λB2q
)
}

= −
∑

q

GqEAq
(λAq

)
[

∂λ2
fE

q (θ, λB2q
)
]

= −
∑

q

GqEAq
(λAq

)
[

∂λ2
(β0 + X1qβ1 + EB2q

X∗
2qβ2)

]

= −
∑

q

GqEAq
(λAq

)
[

∂λ2
(EB2q

)X∗
2qβ2

]

= −
∑

q

GqEAq

[

(Mq − 1)−1(MqIq − 1q1
T
q )

]

X∗
2qβ2.

(46)

Therefore, the variance VarX
∗(θ̂

∗

3) can be evaluated by substituting the estimated values of

(43), (45) and (46) into (44).

For the Case 1 where Y is the bench mark data set and the linkages between Y and X1

and the linkages between Y and X2 are done with some errors, the variance of VarX
∗(θ̂

∗

2) is

12This assumption was originally introduced in Chambers (2008).
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of the form

VarX
∗(θ̂

∗

2) ≈
[

∂θH
∗
0

]−1
VarX

∗

[

H∗
0 + ∂λB1

H∗
0(λ̂B1

− λB1
) + ∂λB2

H∗
0(λ̂B2

− λB2
)
]{

[

∂θH
∗
0

]−1
}T

=
[

∂θH
∗
0

]−1
[

VarX
∗

(

H∗
0

)

+
(

∂λB1
H∗

0

)

VarX
∗(λB1

)
(

∂λB1
H∗

0

)T

+
(

∂λB2
H∗

0

)

VarX
∗(λB2

)
(

∂λB2
H∗

0

)T
]{

[

∂θH
∗
0

]−1
}T

,

where,
λB1q

= pr(correct linkage between Y and X∗
1q),

H∗
0 = H∗

2(θ0, λB1
, λB2

).

Further, it is easy to see that

∂λB1
H∗

0 = −
∑

q

Gq

[

(Mq − 1)−1(MqIq − 1q1
T
q )

]

X∗
1qβ1

and

∂λB2
H∗

0 = −
∑

q

Gq

[

(Mq − 1)−1(MqIq − 1q1
T
q )

]

X∗
2qβ2.

Finally, for the Case 0, one has

VarX
∗(θ̂

∗

1) ≈
[

∂θH
∗
0

]−1
VarX

∗

[

H∗
0 + ∂λB2

H∗
0(λ̂B2

− λB2
)
]{

[

∂θH
∗
0

]−1
}T

=
[

∂θH
∗
0

]−1
[

VarX
∗

(

H∗
0

)

+
(

∂λB2
H∗

0

)

VarX
∗(λB2

)
(

∂λB2
H∗

0

)T
]{

[

∂θH
∗
0

]−1
}T

,

where,
λB2q

= pr(correct linkage between X1q and X∗
2q),

H∗
0 = H∗

1(θ0, λB2
)

with

∂λB2
H∗

0 = −
∑

q

Gq

[

(Mq − 1)−1(MqIq − 1q1
T
q )

]

X∗
2qβ2.

A.6 Proof of the Theorem 6

Let θ̂
s∗

3 be the solution of the estimating equation (11). To derive the asymptotic variance

estimator for θ̂
s∗

3 , note that by (42),

VarX∗(θ̂
s∗

3 ) ≈
[

∂θH
adj
ws (θ0)

]−1
VarX∗

[

Hadj
ws (θ0)

]

(

[

∂θH
adj
ws (θ0)

]−1
)T

(47)
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with corresponding estimator of the form

V ws
3|X∗(θ̂

s∗

3 ) =
[

∂θH
adj
ws (θ0)

]−1
V ws

3|X∗

[

Hadj
ws (θ0)

]

(

[

∂θH
adj
ws (θ0)

]−1
)T

≈
[

∑

q

GsqẼAsq
∂θf

E
sq(θ̂

s∗

3 )
]−1[ ∑

q

GsqΣ̂sqG
T
sq

]([

∑

q

GsqẼAsq
∂θf

E
sq(θ̂

s∗

3 )
]−1)T

,

under the assumption that Gsq is independent of θ. Next step is to define Σsq. Note

that
Σsq = VarX∗(Y ∗

sq)

= VarX∗(AssqY sq + AsrqY rq)

= VarX∗(AssqY sq) + 2covX∗(AssqY sq, AsrqY rq) + VarX∗(AsrqY rq).

(48)

Further, by (30) and with similar arguments in (31)-(34), one has

VarX∗(Y q) = EX
∗

[

VarX
∗(Y q|B2q

)
]

+ VarX
∗

[

EX
∗(Y q|B2q

)
]

= σ2
qIq + V B2q

,

where

V B2q
= VarX

∗

[

EX
∗(Y q|B2q

)
]

that can be approximated with a diagonal matrix13 by the same argument in (16) from

Chambers (2008). Thus, VarX∗(Y q) can be approximately regarded as a diagonal matrix

and set VarX∗(Y q) ≈ Dq = diag{di; i ∈ q}. In this case, one has

covX∗(AssqY sq, AsrqY rq) ≈ 0.

Also, (48) becomes

Σsq ≈ VarX∗(AssqY sq) + VarX∗(AsrqY rq)

= EX
∗

[

VarX
∗(AssqY sq|Aq)

]

+ VarX
∗

[

EX
∗(AssqY sq|Aq)

]

+ EX
∗

[

VarX
∗(AsrqY rq|Aq)

]

+ VarX
∗

[

EX
∗(AsrqY rq|Aq)

]

= EX
∗

(

AssqVarX
∗(Y sq)A

T
ssq

)

+ EX
∗

(

AsrqVarX
∗(Y rq)A

T
srq

)

+ VarX
∗

(

Assqf
E
sq + Asrqf

E
rq

)

≈ EX
∗

(

AssqDsqA
T
ssq

)

+ EX
∗

(

AsrqDrqA
T
srq

)

+ VarX
∗

(

Assqf
E
sq + Asrqf

E
rq

)

13By (16) from Chambers (2008),

V B2q
≈ diag

[

(1 − λB2q
)
{

λB2q
(f∗

B2q ,i − f̄∗

B2q
)2 + f̄

∗(2)
B2q

− (f̄∗

B2q
)2

}

]

,

where f∗

B2q
= (f∗

B2q ,i) and f̄∗

B2q
, f̄

∗(2)
B2q

are the averages of f∗

B2q ,i and their squares respectively in f∗

B2q
.
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where Dsq = diag{di; i ∈ sq} ≈ VarX
∗(Y sq) and Drq = diag{di; i ∈ rq} ≈ VarX

∗(Y rq). Let

d̄sq be the mean of {di; i ∈ sq}. This approximation approach and the same arguments in

(66)-(68) from Chambers (2008) lead to the estimate

Σ̂sq ≈ diag
((λAq

Mq − 1)di + Mq(1 − λAq
)d̄sq

Mq − 1
+(1−λAq

)
[

λAq
(fE

i −f̄E
sq)

2+f̄E(2)
sq −(f̄E

sq)
2
]

; i ∈ sq

)

(49)

under the assumption that we know fE
sq. However, since we only have sample records s,

we do not have B2q. We only have B2sq theoretically. Then by the similar arguments in

(10)-(11), we can estimate fE
sq using

ẼB2sq
=

(λB2q
Mq − 1

Mq − 1

)

Isq +
(1 − λB2q

Mq − 1

)

1sqw
T
sq.

The proofs for the Case 1 and the Case 0 are trivial.

A.7 Proof of the Corollary 7

Let θ̂
∗

2 be the solution of the estimating equation. When we need to estimate λB1q
and λB2q

,

an asymptotic variance estimator is of the form

VarX
∗(θ̂

∗

2) ≈
[

∂θH
adj
ws2,0

]−1
[

VarX
∗

(

H
adj
ws2,0

)

+
(

∂λ1
H

adj
ws2,0

)

VarX
∗(λ̂B1

)
(

∂λ1
H

adj
ws2,0

)T

+
(

∂λ2
H

adj
ws2,0

)

VarX
∗(λ̂B2

)
(

∂λ2
H

adj
ws2,0

)T
]{

[

∂θH
adj
ws2,0

]−1
}T

,

where
H

adj
ws2,0 = H

adj
ws2(θ0, λ

0
B1

, λ0
B2

),

∂λ1
= ∂λB1

,

∂λ2
= ∂λB2

,

VarX
∗(λB1q

) = (mB1

q )−1λB1q
(1 − λB1q

),

VarX
∗(λB2q

) = (mB2

q )−1λB2q
(1 − λB2q

),

∂λ1
H

adj
ws2,0 = −

∑

q

Gsq

[

(Mq − 1)−1(MqIsq − 1sqw
T
sq)

]

X∗
1qβ1 and

∂λ2
H

adj
ws2,0 = −

∑

q

Gsq

[

(Mq − 1)−1(MqIsq − 1sqw
T
sq)

]

X∗
2qβ2.

Finally, for the Case 0, it has simplest forms for their formulae since there is only one

mismatch. The estimating function is of the form

H
adj
ws1(θ) =

∑

q

Gsq

{

Y sq − fE
sq(θ)

}

,
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where
fE

sq = XE
sqβ = (1sq, X1sq, ẼB2sq

X∗
2sq)β and

ẼB2sq
=

(λB2q
Mq − 1

Mq − 1

)

Isq +
(1 − λB2q

Mq − 1

)

1sqw
T
sq.

Let θ̂
∗

1 be the solution of the estimating equation. When we need to estimate λB2q
, the

asymptotic variance estimator is of the form

VarX
∗(θ̂

∗

1) ≈
[

∂θH
adj
ws1,0

]−1
[

VarX
∗

(

H
adj
ws1,0

)

+
(

∂λ2
H

adj
ws1,0

)

VarX
∗(λ̂B2

)
(

∂λ2
H

adj
ws1,0

)T
]{

[

∂θH
adj
ws1,0

]−1
}T

,

where
H

adj
ws1,0 = H

adj
ws1(θ0, λ

0
B2

),

∂λ2
= ∂λB2

.
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Tables

Table 1: Simulation results linear regression for register to register of the Case 0: in terms of

relative bias, RMSE and the actual coverage percentage for nomial 95% confidence intervals

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Simulation results for the intercept estimator

ST 186.38 186.38 188.51 188.51 0 0

R -0.76 -2.37 31.11 69.23 99.3 99.8

A -0.68 3.35 28.69 61.54 99.6 99.8

C 0.45 12.94 14.39 38.63 100 100

Simulation results for the first slope estimator

ST -0.16 -0.16 9.04 9.04 94.1 94.1

R -0.14 -0.14 8.94 8.96 98.6 100

A -0.14 -0.14 8.94 8.96 98.6 100

C -0.12 -0.13 5.78 6.05 100 100

Simulation results for the second slope estimator

ST -11.64 -11.64 33.28 33.28 0 0

R 0.05 0.15 5.48 12.20 97.5 100

A 0.05 -0.21 5.05 10.84 98.2 100

C -0.03 -0.81 2.34 6.72 100 100
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Table 2: Simulation results linear regression for register to register of the Case 1: in terms of

relative bias, RMSE and the actual coverage percentage for nomial 95% confidence intervals

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Simulation results for the intercept estimator

ST 187.22 187.22 189.39 189.39 0 0

R 0.08 1.28 31.18 71.19 99.4 100

A 0.10 7.03 28.83 63.82 99.8 100

C 1.12 15.33 14.53 40.35 100 100

Simulation results for the first slope estimator

ST -9.90 -9.90 24.05 24.05 32.4 32.4

R 0.10 0.34 10.37 13.11 99.1 100

A 0.08 -0.01 9.49 11.56 99.6 100

C 0.03 -0.14 5.70 7.39 100 100

Simulation results for the second slope estimator

ST -11.69 -11.69 33.44 33.44 0 0

R 0.00 -0.07 5.49 12.55 97.2 100

A 0.00 -0.43 5.07 11.25 98.0 100

C -0.07 -0.95 2.41 7.08 100 100
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Table 3: Simulation results linear regression for register to register of the Case 2: in terms of

relative bias, RMSE and the actual coverage percentage for nomial 95% confidence intervals

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Simulation results for the intercept estimator

ST 314.13 314.13 315.87 315.87 0 0

R -1.09 0.06 38.52 82.16 99.9 100

A -0.96 7.40 31.43 66.91 99.9 100

C 0.52 10.94 11.43 31.53 100 100

Simulation results for the first slope estimator

ST -10.17 -10.17 25.70 25.70 46.9 46.9

R -0.20 -0.19 12.87 14.76 99.6 100

A -0.18 -0.45 11.65 13.22 99.7 100

C -0.12 -0.65 5.42 6.83 100 100

Simulation results for the second slope estimator

ST -19.66 -19.66 55.89 55.89 0 0

R 0.07 0.00 6.80 14.57 98.5 100

A 0.06 -0.46 5.54 11.86 99.4 100

C -0.04 -0.69 1.81 5.52 100 100
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Table 4: Simulation results linear regression for sample to register of the Case 0 wtih

complete linkage: in terms of relative bias, RMSE and the actual coverage percentage for

nomial 95% confidence intervals

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Simulation results for the intercept estimator

ST 184.71 184.71 187.36 187.36 0 0

R -2.03 -7.02 34.24 71.10 98.5 99.9

A -1.85 -0.47 32.30 63.24 99.3 99.9

C 0.09 11.81 17.27 40.35 100 100

Simulation results for the first slope estimator

ST -0.25 -0.25 8.48 8.48 95.6 95.6

R -0.26 -0.29 8.30 8.35 99.7 100

A -0.26 -0.29 8.30 8.34 99.7 100

C -0.17 -0.23 5.41 5.74 100 100

Simulation results for the second slope estimator

ST -11.56 -11.56 33.04 33.04 0 0

R 0.12 0.43 5.30 12.28 97.2 100

A 0.11 0.02 4.90 10.85 97.9 100

C -0.01 -0.75 2.24 6.91 100 100
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Table 5: Simulation results linear regression for sample to register of the Case 1 wtih

complete linkage: in terms of relative bias, RMSE and the actual coverage percentage for

nomial 95% confidence intervals

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Simulation results for the intercept estimator

ST 187.83 187.83 190.87 190.87 0 0

R 1.45 2.22 36.44 72.40 98.5 100

A 1.41 7.81 34.32 65.79 99.4 100

C 1.34 15.59 18.43 42.39 100 100

Simulation results for the first slope estimator

ST -10.07 -10.07 24.34 24.34 29.4 29.4

R -0.11 0.03 9.99 13.17 99.0 100

A -0.10 -0.29 9.18 11.57 99.6 100

C -0.09 -0.35 5.60 7.43 100 100

Simulation results for the second slope estimator

ST -11.69 -11.69 33.43 33.43 0 0

R -0.06 -0.11 5.50 12.36 97.1 100

A -0.06 -0.45 5.07 11.17 98.4 100

C -0.06 -0.95 2.36 7.15 100 100
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Table 6: Simulation results linear regression for sample to register of the Case 2 wtih

complete linkage: in terms of relative bias, RMSE and the actual coverage percentage for

nomial 95% confidence intervals

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Simulation results for the intercept estimator

ST 316.83 316.83 319.38 319.38 0 0

R 0.37 -5.17 46.61 89.02 98.8 100

A 0.44 4.46 40.35 72.36 99.5 100

C 1.08 10.12 15.69 32.56 100 100

Simulation results for the first slope estimator

ST -10.09 -10.09 25.36 25.36 47.4 47.4

R -0.11 -0.02 12.36 14.55 99.1 100

A -0.12 -0.33 11.16 12.86 99.5 100

C -0.08 -0.60 5.07 6.27 100 100

Simulation results for the second slope estimator

ST -19.71 -19.71 56.06 56.06 0 0

R 0.06 0.41 7.21 15.23 98.3 100

A 0.05 -0.20 5.90 12.08 99.0 100

C -0.03 -0.60 1.92 5.21 100 100
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Table 7: Simulation results linear regression for sample to register of the Case 0 with

incomplete linkage: in terms of relative bias, RMSE and the actual coverage percentage for

nomial 95% confidence intervals

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Simulation results for the intercept estimator

ST 186.61 186.61 189.33 189.33 0 0

R 0.54 -5.33 34.41 74.38 99.1 100

A 0.56 1.17 32.44 66.57 99.3 100

C 1.07 12.40 16.93 40.94 100 100

Simulation results for the first slope estimator

ST 0.11 0.11 8.52 8.52 95.6 95.6

R 0.08 0.08 8.49 8.57 99.3 100

A 0.07 0.08 8.48 8.57 99.3 100

C 0.05 0.08 5.56 5.91 100 100

Simulation results for the second slope estimator

ST -11.66 -11.66 33.33 33.33 0 0

R -0.03 0.34 5.41 12.72 97.8 100

A -0.03 -0.07 5.00 11.29 98.7 100

C -0.07 -0.78 2.32 6.89 100 100
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Table 8: Simulation results linear regression for sample to register of the Case 1 with

incomplete linkage: in terms of relative bias, RMSE and the actual coverage percentage for

nomial 95% confidence intervals

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Simulation results for the intercept estimator

ST 187.31 187.31 190.18 190.18 0 0

R 0.77 -1.61 35.55 75.43 94.0 100

A 0.83 4.32 33.48 68.18 95.4 100

C 0.26 1.45 6.08 10.13 75.5 100

Simulation results for the first slope estimator

ST -10.15 -10.15 24.68 24.68 30.3 30.3

R -0.19 0.05 10.67 13.55 91.6 100

A -0.19 -0.30 9.82 12.11 94.6 100

C 0.00 -0.01 2.00 2.08 73.3 100

Simulation results for the second slope estimator

ST -11.69 -11.69 33.43 33.43 0 0

R -0.02 0.13 5.54 13.01 92.0 100

A -0.03 -0.24 5.11 11.71 93.9 100

C 0.00 -0.08 0.79 1.63 75.7 100
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Table 9: Simulation results linear regression for sample to register of the Case 2 with

incomplete linkage: in terms of relative bias, RMSE and the actual coverage percentage for

nomial 95% confidence intervals

Estimator Relative Bias Relative RMSE Coverage

λ known λ unknown λ known λ unknown λ known λ unknown

Simulation results for the intercept estimator

ST 318.07 318.07 320.64 320.64 0 0

R 2.91 -4.31 46.65 88.60 98.8 100

A 2.79 5.78 40.63 72.89 99.0 100

C 1.90 11.11 15.98 33.80 100 100

Simulation results for the first slope estimator

ST -10.25 -10.25 25.87 25.87 46.1 46.1

R -0.29 0.10 12.84 15.17 99.4 100

A -0.28 -0.25 11.61 13.38 99.7 100

C -0.17 -0.62 5.37 6.47 100 100

Simulation results for the second slope estimator

ST -19.79 -19.79 56.30 56.30 0 0

R -0.06 0.39 7.19 15.16 98.2 100

A -0.05 -0.24 5.91 12.24 99.2 100

C -0.05 -0.63 1.94 5.60 100 100
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Figure 1: Simulated percentage relative errors for intercept and slope coefficients in linear

regression under random linkage errors: Register - Register of the Case 0.
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Figure 2: Simulated percentage relative errors for intercept and slope coefficients in linear

regression under random linkage errors: Register - Register of the Case 1.

48



STInt RInt AInt CInt

−4
00

−2
00

0
20

0
40

0

Linear model,register−register:  true lambda, Intercept

STInt RInt AInt CInt

−4
00

−2
00

0
20

0
40

0

Linear model,register−register:  estimated lambda, Intercept

STS1 RS1 AS1 CS1

−2
0

−1
0

0
10

20

Linear model,register−register:  true lambda, Slope1

STS1 RS1 AS1 CS1

−2
0

−1
0

0
10

20
Linear model,register−register:  estimated lambda, Slope1

STS2 RS2 AS2 CS2

−2
0

−1
0

0
10

20

Linear model,register−register: true lambda, Slope2

STS2 RS2 AS2 CS2

−2
0

−1
0

0
10

20

Linear model,register−register:  estimated lambda, Slope2

Figure 3: Simulated percentage relative errors for intercept and slope coefficients in linear

regression under random linkage errors: Register - Register of the Case 2.
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Figure 4: Simulated percentage relative errors for intercept and slope coefficients in linear

regression under random linkage errors: Sample - Register of the Case 0 with complete

linkage.
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Figure 5: Simulated percentage relative errors for intercept and slope coefficients in linear

regression under random linkage errors: Sample - Register of the Case 1 with complete

linkage.

51



STInt RInt AInt CInt

−4
00

−2
00

0
20

0
40

0

Complete Linear model,sample−register: true lambda, Intercept

STInt RInt AInt CInt

−4
00

−2
00

0
20

0
40

0

Complete Linear model,sample−register: estimated lambda, Intercept

STS1 RS1 AS1 CS1

−2
0

−1
0

0
10

20

Complete Linear model,sample−register: true lambda, Slope1

STS1 RS1 AS1 CS1

−2
0

−1
0

0
10

20
Complete Linear model,sample−register: estimated lambda, Slope1

STS2 RS2 AS2 CS2

−2
0

−1
0

0
10

20

Complete Linear model,sample−register: true lambda, Slope2

STS2 RS2 AS2 CS2

−2
0

−1
0

0
10

20

Complete Linear model,sample−register: estimated lambda, Slope2

Figure 6: Simulated percentage relative errors for intercept and slope coefficients in linear

regression under random linkage errors: Sample - Register of the Case 2 with complete

linkage.

52



STInt RInt AInt CInt

−4
00

−2
00

0
20

0
40

0

Incomplete Linear model,sample−register: true lambda, Intercept

STInt RInt AInt CInt

−4
00

−2
00

0
20

0
40

0

Incomplete Linear model,sample−register: estimated lambda, Intercept

STS1 RS1 AS1 CS1

−2
0

−1
0

0
10

20

Incomplete Linear model,sample−register: true lambda, Slope1

STS1 RS1 AS1 CS1

−2
0

−1
0

0
10

20

Incomplete Linear model,sample−register: estimated lambda, Slope1

STS2 RS2 AS2 CS2

−2
0

−1
0

0
10

20

Incomplete Linear model,sample−register: true lambda, Slope2

STS2 RS2 AS2 CS2

−2
0

−1
0

0
10

20

Incomplete Linear model,sample−register: estimated lambda, Slope2

Figure 7: Simulated percentage relative errors for intercept and slope coefficients in linear

regression under random linkage errors: Sample - Register of the Case 0 with incomplete

linkage.
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Figure 8: Simulated percentage relative errors for intercept and slope coefficients in linear

regression under random linkage errors: Sample - Register of the Case 1 with incomplete

linkage.
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Figure 9: Simulated percentage relative errors for intercept and slope coefficients in linear

regression under random linkage errors: Sample - Register of the Case 2 with incomplete

linkage.
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