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 Small Area Estimation under Spatial Nonstationarity  

Hukum Chandra1, Nicola Salvati2, Ray Chambers3 and Nikos Tzavidis4  

 
Abstract 

In this paper a geographical weighted pseudo empirical best linear unbiased predictor (GWEBLUP) 

for small area averages is proposed, and two approaches for estimating its mean squared error 

(MSE), a conditional approach and an unconditional one, are developed. The popular empirical best 

linear unbiased predictor (EBLUP) under the linear mixed model and its associated MSE estimator 

are obtained as a special case of the GWEBLUP. Empirical results using both model-based and 

design-based simulations, with the latter based on two real data sets, show that the GWEBLUP 

predictor can lead to efficiency gains when spatial nonstationarity is present in the data. A practical 

gain from using the GWEBLUP is in small area estimation for out of sample areas. In this case the 

efficient use of geographical information can potentially improve upon conventional synthetic 

estimation.  

 

Key words: Borrowing strength over space;   Geographical weighted regression; Out of sample 

small area estimation; Spatial analysis. 
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1. Introduction 

Small area estimation is widely used for producing estimates of population parameters for areas 

(domains) with small, or even zero, sample sizes. In the case of small domain-specific sample sizes 

direct estimation that only relies on domain-specific observations may lead to estimates with large 

sampling variability (Rao, 2003). When direct estimation is not possible, one has to rely upon 

alternative model-based methods for producing small area estimates. One popular approach uses 

mixed (random) effects models for small area estimation (Fay and Herriot, 1979; Battese et. al., 

1988). A mixed effects model consists of a fixed effects part and a random effects part with the 

latter accounting for between area variations beyond that explained by the auxiliary variables 

included in the fixed part of the model.  

In small area estimation it is customary to assume that population units in different small areas 

are uncorrelated. However, in practice the boundaries that define a small area are arbitrarily set and 

hence there appears to be no good reason why population units that belong to neighbouring small 

areas and are close to the boundary between them should not be correlated. This may be the case, 

for example, with agricultural, environmental, economic and epidemiological data where units that 

are spatially close may be more related than units that are further apart, although they may belong 

to different small areas. It is therefore often reasonable to assume that the effects of neighbouring 

areas, defined by a contiguity criterion, are correlated. Extensions of the mixed effects model to 

allow for spatially correlated random effects using for example simultaneous autoregressive (SAR) 

models (Anselin, 1992) have been considered in the small area literature among others by Singh et 

al. (2005) and Pratesi and Salvati (2008). These models define the dependence between areas by 

using a contiguity matrix and allow for spatial correlation in the error structure while the fixed 

effects parameters are spatially invariant. SAR models offer only one possible way of borrowing 

strength over space. Alternative and potentially more flexible approaches, based on non-parametric 

extensions of the mixed effects model, have been also recently proposed in the small area 

estimation literature by Opsomer et al. (2008) and Ugarte et al. (2009). 
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An alternative approach for incorporating the spatial information in the model is by assuming 

that the regression coefficients vary spatially across the geography of interest. Models of this type 

can be fitted using geographical weighted regression (GWR), and are suitable for modelling spatial 

nonstationarity (Brunsdon et al., 1998, Fotheringham et al., 2002). The use of geographically 

weighted predictors in small area estimation has been only very recently investigated by Salvati et 

al. (2010) who proposed a GWR extension to predictors based on the M-quantile small area model 

(Chambers and Tzavidis, 2006). In the present paper we propose a similar extension to the widely 

used empirical best linear unbiased predictor or EBLUP that is often used for small area estimation 

under a linear mixed model. This is referred to below as the Geographical Weighted pseudo- 

Empirical Best Linear Unbiased Predictor or GWEBLUP, and is based on a mixed model that 

allows for spatially non-stationary linear fixed effects as well as random area effects. It is obtained 

by local linear fitting of a linear mixed model, using weights that are a function of the distance 

between the sample data points. Parameter estimation for the GWEBLUP is performed by 

extending the maximum likelihood estimation of the conventional linear mixed model in order to 

incorporate the geographical information contained in these distances. 

The paper is organised as follows. In Section 2 we review the linear mixed model (LMM) and 

present the EBLUP of the small area average under this model. In Section 3 we present a spatially 

non-stationary extension to the LMM and define the GWEBLUP of the small area average under 

this model. MSE estimation for the GWEBLUP is considered in Section 4. In particular, two 

approaches for MSE estimation are discussed, a conditional approach that is based on the pseudo-

linearization approach proposed by Chambers et al. (2009) and an unconditional approach which is 

similar in spirit to that of the Prasad and Rao (1990) MSE estimator. In Section 5 we discuss 

estimation for out of sample areas, i.e. small areas that contain no sample points. In Section 6 we 

empirically evaluate the performance of the GWEBLUP and of its associated MSE estimators using 

both model-based and design-based simulation studies, with the latter based on two real datasets.  

Finally, in Section 7 we conclude the paper with some summary comments. 
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2. Linear Mixed Effects Models for Small Area Estimation 

Let us assume that the target population U of size N is made up of A non-overlapping small areas. 

We index the population units by j and the small areas by i. Each small area i contains a known 

number  of units. Let  denote the value of the variable of interest y for unit j Ni ijy ( 1, , i )j N= …  in 

small area i ( = … and let xij  denote the vector of values of the p unit level auxiliary variables 

associated with this unit. Moreover, zij  is a q-vector of auxiliary variables whose values are known 

for all units in the population. We also assume that there is a linear relationship between ij

1, ,i )A  

y  and xij . 

sample s of size n units is drawn from this population and in  units belo g to area i. That is, the 

total number of units in the population is N =

A n

N
1

A
ii=∑ ,  with corresponding total sample size 

n n=∑  also assume that the sample data are obtained via a non-informative sampling 

method. The aim is to use these data to predict the small area average of 

1 i=

A

i
. We

y . The most popular 

method used for this purpose employs linear mixed models (Rao, 2003). Let y, X and Z denote the 

population level vector and matrices defined by ijy ,  and , respectively. Then, xij zij

 = + +y X Zaβ ε , (1) 

where  is a p vector of regression coefficients regression, β ( , )Na 0∼ Ω  denotes a -vector of 

area specific random effects and  is vector of N specific individual random errors with 

 the identity matrix of order N. In the simplest case, Z is given by a matrix whose i-th column, 

for , is an indicator variable that takes the value 1 if a unit is in area i and is zero otherwise. 

The two error terms are assumed to be mutually independent, both across individuals as well as 

across areas, so that the covariance matrix of the vector 

Aq

2(0, )Nεσ I∼ε

  IN

1i …A=

y  is given by 

2( ) ( ) T
NV εσ= = +y V Z ZΩθ I , 

where θ  are typically referred to as the variance components of (1). 
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Model (1) is a model both for sampled and non-sampled population units. It follows that we can 

partition y, X, Z and  into components defined by the n sampled and N-n non-sampled population 

units, denoted by subscripts of s and r, respectively. We can therefore write (1) as follows:  

ε

  
y =

ys

yr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

Xs

Xr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
β +

Zs

Zr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
a +

ε s

ε r

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, 

with variance of y given by 

V =
Vss Vsr

Vrs Vrr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. 

Thus,  represents the matrix defined by the n sample values of the auxiliary variable vector, 

while    is the matrix of covariances of the response variable among the N – n non-sampled units. 

We use subscript of i to denote restriction to small area i, so that s  denotes the set of sample 

(non-sample) population units from area i, and U  denotes the set of population units 

making up small area i. The variance components in (1) are estimated using Maximum Likelihood 

(ML) or Restricted Maximum Likelihood (REML) (see Harville, 1977). We use a “hat” to denote 

an estimated quality. Given the estimated values 

  Xs

Vrr

i (ri )

i = si ∪ ri

2ˆ ˆ( , )εσΩ  of the variance components we can obtain 

the estimated covariance matrix  and the empirical best linear unbiased estimator (EBLUE) of V̂ β  

is  

 1 1 1ˆ ˆ ˆ( )T T
s ss s s ss s

− − −= X V X X V yβ , (2) 

and the EBLUP of   is a

 . (3) 1 ˆˆ ˆˆ (T
s ss s s

−= −a V y XΩΖ β)

⎟

Under model (1), and using the estimated fixed and random effects, the estimator of the average 

of y in small area i is     

 . (4) 1 ˆ ˆˆ
i i

EBLUP T T
i i ij ij ij i

j s j r
m N y−

∈ ∈

⎛ ⎞
= + +⎜

⎝ ⎠
∑ ∑x z aβ
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Estimator (2) is commonly known as the EBLUP of  (Henderson, 1975; Rao, 2003).   im

 

3. Geographically Weighted Mixed Effects Models for Small Area Estimation 

Under (1) we assume that the fixed effect parameters β  are spatially invariant. There are situations, 

however, where the relationship between y and x is not constant over the study area, a phenomenon 

referred to as spatial nonstationarity. Geographical weighted regression (GWR) is a method that is 

widely used for fitting data exhibiting spatial nonstationarity (Brunsdon et al., 1998, Fotheringham 

et al., 2002). The model underpinning GWR is a local linear model, i.e. a linear model for the 

conditional expectation of y given x at location u0. Salvati et al. (2010) have recently proposed an 

M-quantile extension of GWR for small area estimation and show that this approach represents a 

promising alternative for flexibly incorporating the available spatial information in small area 

estimation. Note that under GWR the data are assumed to follow a location specific or local 

regression function, with the geographical weights used for estimation of the parameters of this 

local regression function. In this Section we use the GWR concept to fit a local mixed model and 

we consider small area estimation under this model. In a slight abuse of notation, we refer below to 

this local mixed model as a geographically weighted linear mixed model (GWLMM). Let  

denotes the coordinates or the spatial location (longitude and latitude) of unit j in area i. The 

GWLMM is expressed as follows, 

iju

  ( )T T
ij ij ij ij i ijy u ε= +x z aβ + 1, , i, j N= … , 1, ,i A= … ,      (5) 

where  is  a parameter of p unknown fixed effects at location . Here    and ( )ijuβ iju a i ijε  are the 

area-specific and individual-specific random errors, which are assumed to be normally distributed. 

That is,    , a i ∼ N (0,Ω) 2(0, )ij eNε σ∼  and , a i ijε  are assumed to be independent. At population 

level, on a point-wise basis model (5) can be written as 

    y = Xβ(u) + Za + ε . (6) 
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The GWR method can be used to fit (6) by assigning a weight to every sample unit that depends on 

its distance from the location u. A similar partition of various quantities into sample and non-

sample components as in Section 2 follows directly. Under the GWLMM (6) and following 

Henderson et al. (1959) we maximize the ‘geographically weighted joint maximum likelihood’ 

function (see Appendix 1 for the detailed development) to obtain the geographically weighted 

BLUE of  at a location  as ( )ijuβ iju

 ( ) 11( ) ( ) ( )T T
ij s ss ij s s ss ij su u

−− −= X V X X V 1 u yβ , (7) 

and the geographically weighted pseudo-BLUP of the random area effects at a location  as iju

  ( )1( ) ( ) ( )T
ij s ss ij s s iju u−= −a V y XΩΖ β u

)1 u

, (8) 

where ( 11 2( ) ( )T
ss ij s s e s iju σ

−− = +V Z Z WΩ − . When unknown parameters in (7) and (8) are replaced by 

sample estimates, we refer to (7) as defining the Empirical BLUE (EBLUE) of  and (8) as 

defining the geographically weighted pseudo-EBLUP of the random area effects at . It is worth 

noting that the GWR estimate of the function 

( )ijuβ

iju

β(u)  in Brunsdon et al. (1998) and Fotheringham et 

al. (2002) is a special case of (7) when the underlying model (6) does not include the term for the 

random area effect. As we shall see later, the predictor of the area effect is obtained by averaging 

these location specific predictors of area affects. Here ( )s ijuW  is a matrix of weights that are 

specific to location j in area i such that observations nearer to location j are given greater weight 

than observations further away. This matrix is referred to as the spatial weighting matrix for 

location j. In particular, { }( )s iju diW ;ijkw k 1,...,ag= = n , where  is the weight given to 

observation  k  with respect to point  j.  There are various approaches to define . In this paper we 

use a Gaussian specification for defining such a weighting function,  

jkw

jkw

 { }2
,( ) exp 0.5( / )s ij ijk j ku w d b= = −W , (9) 
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where  denotes the Euclidean distance between point j and k and b is the bandwidth, which can 

be optimally defined using a least squares criterion (Fotheringham et al., 2002). As the distance 

between point j and k increases the spatial weight decreases exponentially. If j and k coincide, the 

weighting of the data at that point will be equal to one. If 

,j kd

0.5jkw =  and  then 

observations at location j have twice the weight in determining the fit at location k compared with 

observations at location l. That is, the weighting system is based on the concept of distance decay 

and it works by means of a weight function that reduces the influence of distant units in the 

estimation for location j. As mentioned above, the weighting function (9) depends on a unknown 

the bandwidth b. The bandwidth is a measure of how quickly the weighting function decays with 

increasing distance.  For computing the bandwidth we use a cross validation (CV) procedure that 

mimimizes the following CV criterion  

0.25lkw =

 { }2

1
ˆ ( )

i i

A
s si

CV b
−=

= −∑ y y ,  (10) 

where  is the vector of the predicted values of  using bandwidth b with the observations 

of area i omitted from the model fitting process. The value of b that minimizes (10) is then selected. 

It should be noted that alternative weighting functions, e.g. the bi-square function, can also be used. 

The results of GWR are relatively insensitive to the choice of weighting function but they are 

sensitive to the choice of bandwidth and hence obtaining the optimal value of the bandwidth is 

crucial.  

ˆ ( )
is b

−
y ysi

Let  denote the area i average of the . Under (6), the geographically weighted EBLUP type 

predictor of  (Henderson, 1975; Rao, 2003) is then 

im yij

im

  . (11) { }1 ˆ ˆˆ ( ) ( )
i i

GWEBLUP T T
i i ij ij ij ij i ij

j s j r
m N y u u−

∈ ∈

⎛ ⎞
= + +⎜

⎝ ⎠
∑ ∑ x z aβ ⎟

1 uHere ( ) 11ˆ ˆ ˆ( ) ( ) ( )T T
ij s ss ij s s ss ij su u

−
− −= X V X X V yβ  is the geographically weighted EBLUE of β  at 

location j in area i,  ( )ˆ ( )s ij−y X β1ˆ ˆˆ( ) ( )T
ij s ss ij su u−=a VΩΖ u  is the geographically weighted pseudo-
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EBLUP of  at location j in area i and ia 2ˆ ˆ( , )eσΩ

β̂

 are the estimated values of the variance 

components. Predictor (11) under model (6) is a pseudo-EBLUP for the small area mean and we 

refer to it as the geographical weighted empirical best linear unbiased predictor or GWEBLUP. 

Note that computation of (11) requires estimates for  and  for( )iju ˆ( )ijua ij r∈ . We distinguish two 

cases:  

(i) When the spatial locations or the coordinates of the nonsampled units are known. In this case 

one can compute ( )s ijuW  by using (9) where the distances are those between unit j and each 

unit in the sample. This gives a n n×  spatial weight matrix that can be used to estimate ˆ ( )ijuβ  

and ˆ( )ijua  for    ...., A) . j ∈ri  (i = 1,

(ii) When the spatial coordinates for the nonsampled units are not known. In this case one can use 

the centroids of each small area to estimate the fixed and the random effects. In other words, 

it has assigned as spatial position of each unit belonging to area i the spatial coordinates of the 

centroid of area i. That is, there are the same vectors of area-specific coefficients and area-

specific random effects, , ˆ( )iuˆ ˆ( ) ( )ij iu u=β β ˆ( )iju =a a , for all nonsampled units belonging to 

area i, where iu  denotes the spatial coordinates of centroid of area i ( 1,..., ) . i A=

Maximum likelihood (ML) estimation is used to estimate the model parameters in (6). In particular, 

an iterative algorithm for computing the ML estimates of Ω ,  and σ e
2 ( )ijuβ  is implemented. The 

steps are as follows:   

1. Compute the distance matrix of the sample locations; 

2. Compute the optimal bandwidth by the CV criterion (10); 

3. Compute the spatial weights matrix ( )s ijuW  for each sample location; 

4. Assign  starting values to the variance components Ω  and σ e
2 ; 

5. Use these starting values to calculate ( )ss ijuV ; 
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6. Update ( )ijuβ for each sample unit by using ( ) 11 1ˆ ( ) ( ) ( )T T
ij s ss ij s s ss ij su u

−− −= X V X X V u yβ ; 

7. Estimate Ω  and σ e
2  by numerically maximising the log likelihood using for example the 

Nedler-Mead method (Nedler and Mead, 1965); 

8. Return to step 5 and repeat the procedure until convergence. 

 

The convergence is achieved when the difference between the estimated model parameters obtained 

from two successive iterations is less than a very small value. R code (R Development Core Team, 

2010) has been developed for fitting model (6). 

 

4. Mean Squared Error Estimation 

The MSE of the EBLUP predictor (4) can be estimated by using the Prasad and Rao (1990) MSE 

estimator (hereafter denoted by PR). An alternative approach to MSE estimation for the EBLUP has 

been proposed by Chambers et al. (2009) (hereafter denoted by CCT). The PR is an unconditional 

MSE estimator while the CCT is a conditional one. Unconditional methods of MSE estimation for 

small area EBLUPs are based on averaging over the distribution of the random area effects. In 

contrast, conditional methods are based on conditioning on the realised values of the area effects 

(see also Longford, 2007). In what follows we propose two approaches to MSE estimation for the 

GWEBLUP predictor (11), a conditional and an unconditional MSE estimator. The conditional 

estimator is based on the pseudo-linearization approach to MSE estimation proposed by Chambers 

et al. (2009). On the other hand, the unconditional estimator is a second order approximation of the 

MSE based on Henderson’s BLUP theory (Henderson, 1975), followed by the approximations 

proposed by Kackar and Harville (1984), Prasad and Rao (1990) and Datta and Laihiri (2000). 

Hereafter, the conditional and unconditional MSE estimators are respectively denoted by the 

MSE_C and MSE_U. 
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4.1 The conditional MSE of the GWEBLUP 

The conditional approach to MSE estimation is motivated by first re-expressing the GWEBLUP 

predictor (11) in a pseudo-linear form as a weighted sum of the sample values of y, and then 

applying heteroskedasticity-robust prediction variance estimation methods that treat these weights, 

which typically depend on estimated variance components, as known. The GWEBLUP can be 

expressed as (see Appendix 2 for details) as 

 ( )ˆ  , 1
TGWEBLUP GWEBLUP GWEBLUP

i ij j is sj s
m w y i

∈
= =∑ w y … A∈ ,   

with  

 ( ) ( ){ }1 ( )
TGWEBLUP T T

is i is i i jr jrN N n−= + − +w d B C  (12) 

where (i=1, …, A) is the n-vector with jth component takes the value 1 if a unit is in area i and is 

zero otherwise. Here, 

isd

T
jrB  and T

jrC  are 1n× vectors defined as follows: 

• ( )1
( )( )

i

T T
jr i i jj r

N n −
∈

= − ∑B B  with ( ) 11 1
( ) ( )( ) ( )T T T T T T

j ij s ss ij s s ss ij ij s ju u
−− −= =B x X V X X V x H  

• ( )1
( )( )

i

T T
jr i i jj r

N n −
∈

= − ∑C C  with ( )1
( ) ( )

ˆ ˆ ( )
TT T T T T

j ij s ss ij s s j su−= −C z V I H XΩΖ  and 

• ( ) 11 1
( ) ( ) ( )T T T

s j s ss ij s s ss iju u
−− −=H X V X X V . 

The estimated MSE of (11) is then  

 { }2ˆ ˆ ˆˆ ˆ ˆ( ) ( ) (GWEBLUP GWEBLUP GWEBLUP
i i iMSE m Var m Bias m= + ) . (13) 

Let ( )I j i∈  denote the indicator for whether unit j is in area i. An estimator of the conditional 

prediction variance is 

 { }2 2 1 1ˆˆ ˆ( ) ( ) (GWEBLUP
i i ij i i j jj s

Var m N N n n y 2ˆ )jδ λ μ− − −
∈

= + −∑ − , (14) 

where,  and 
  
δ ij = Niwij

GWEBLUP − I( j ∈i) { }2 2
( )

ˆ (1 ) 1 2j jj kj jjk s j k s
2
kjλ φ φ φ

∈ − ∈
= − + = − + φ∑ ∑ . Here 

ˆ j kj kk s
yμ =∑ φ

∈
 is an unbiased linear estimator of the conditional expected value ( , )j jx aj E yμ = , 

kjφ  are weights that are defined implicitly by the expression for ˆ jμ . Under (6) we have  
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 ( )1
( ) ( )

ˆ ˆˆ ( )
TT T T T T

j j s j s ss ij s s j suμ −= + −B sy z V I H X yΩΖ .  (15) 

However, because of the well-known shrinkage effect associated with BLUPs, this specification 

leads to biased estimation of the prediction variance under the conditional model. For this reason, 

Chambers et al. (2009) recommend that ˆ jμ  be computed as the ‘unshrunken’ version of the BLUP 

for jμ . That is, following Chambers et al. (2009) we use  

 ( ) ( )1

( ) ( )ˆ
TT T T T T T

j j s j s s s s s j sμ
−

= + −B sy z Z Z Z I H X y . (16) 

Note that  in this case so that 1ˆ 1 (j O nλ −= + ) ˆ
jλ  will be very close to one in most practical 

applications. This suggests that there is little to be gained by not setting ˆ 1jλ ≡  when calculating the 

conditional prediction variance.  

The simple ‘plug-in’ estimator of bias is 

 1ˆ ˆ ˆ( )
i

GWEBLUP GWEBLUP
i ij j ij s j U

Bias m w N ˆ jμ μ−
∈

= −∑ ∈∑  (17) 

with ˆ jμ  defined above. Using (14) and (17), we derive the estimator of the conditional MSE of the 

GWEBLUP (11). Note that this MSE estimator ignores the extra variability associated with 

estimation of the variance components, and is therefore a heteroskedasticity-robust first order 

approximation to the actual conditional MSE of the GWEBLUP. Since use of the GWEBLUP (11) 

will typically require a large overall sample size, we expect that any consequent underestimation of 

the conditional MSE of the GWEBLUP will be small. The extent of this underestimation will 

depend on the small area sample sizes and the characteristics of the population of interest, 

particularly the strength of the small area effects. Finally, we also expect that for very small domain 

sample sizes the conditional MSE estimator will be unstable. 

 

4.2 The unconditional MSE of the GWEBLUP 

Using the development in Appendix 3 and assuming that the sampling faction 1
i i if n N −=  is non-

negligible, a second order approximation to the MSE of the GWEBLUP (11) is given by 
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 ( ) ( )2

1 2 3 4ˆ ˆ ( ) ( ) ( ) ( )GWEBLUP GWEBLUP
i i i i i iMSE m E m m M M M M= − = + + + iθ θ θ θ

zΩ

ij

 (18) 

where  

 , ( )2 1
1 ( ) ( )

i

T T
i i ij s ss ij s ij
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i ij ij s ss iju −=c z Z VΩ u ˆ( )Var θ  is asymptotic covariance 

matrix of the variance components and obtained as the inverse of the Fisher information matrix 

ˆ( )I θ  with respect to the variance components. It is common practice to estimate the MSE of the 

predictors by replacing the unknown parameters including components of the variance by their 

respective estimators. However, such practice leads to severe underestimation of the true MSE. 

An approximately unbiased estimator of (18) is   
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estimating variance components since in this case 
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is non-negligible when variance components are estimated via maximum likelihood (ML) method. 
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with the ( ,  element given by 1 ˆ( )I − θ )k l th− 1 1 1ˆ( ) 0.5 ss ss
kl ss ss

k l

I tr
θ θ

− − −⎛ ⎞∂ ∂
= ⎜ ∂ ∂⎝ ⎠

V VV Vθ ⎟ , 1,..,k l q=; . Here q 

is the number of variance component parameters in the model. See Datta and Lahiri, (2000). The 

MSE estimator (19) is an approximately model unbiased in the sense that its bias is of order .  

That is, 

1( )o A−

{ } 1ˆ ˆ ˆ( ) ( ) (GWEBLUP
i iE M MSE m o A−= + )GWEBLUPSE m . Both the EBLUP predictor (4) and the PR 

MSE estimator for the EBLUP can be obtained as special case of predictor (11) and the MSE 

estimator (19) respectively.  

 

5. Geographically Weighted Synthetic Prediction  

In real applications of small area estimation domains may be unplanned. This may result in target 

small areas with zero sample sizes also referred to as out of sample areas. Estimation for out of 

sample areas is, however, as important as estimation for in sample areas is. The conventional 

approach for estimating the area average in this case is synthetic estimation (Rao, 2003, page 46) 

and is based on the mixed effects model (1) estimated with data from sampled areas. This is 

equivalent to setting the area effect for the out of sample area equal to zero. Under model (1), the 

synthetic EBLUP predictor for the small area average for out of sample area i is  

  ˆˆ EBLUPSYN T
im i β= x  .         (20) 

A similar approach can be followed with the GWLMM (6). When geo-referenced population 

location data are available, this model has the potential to improve conventional synthetic 

prediction for out of sample areas. We note that with GWLMM-based synthetic estimation all 

variation in the area-specific predictions comes from the area-specific auxiliary information, 

including the locations of the population units in the area. We expect that when a truly spatially 

non-stationary process underlies the data, use of geographically weighted synthetic estimator will 
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lead to improved efficiency relative to more conventional synthetic mean predictors. The 

geographically weighted synthetic predictor (GWSYN) for the average of small area i is defined by 

  .       (21) 1 ˆˆ ( )
i

GWSYN T
i i ij ij

j U
m N −

∈

= ∑ x β u

The unconditional estimator of the MSE for the (21) is  

 { }{ }2 ˆˆ ˆˆ( ) ( )
i
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i i ij ij ij ij ij

j U
MSE m N Var u−

∈

= ∑ x x z Ωzβ ˆ+     (22) 

where { } ( 11ˆˆ ˆ( ) ( )T
ij s ss ij sVar u u

−
−= X V Xβ ) . When only the centroids of the areas are known, then the 

geographically weighted synthetic predictor for area i is ˆˆ ( )GWSYN T
i im = x β iu  with estimates of MSE 

given by { }ˆˆ ˆˆ( ) ( )GWSYN T T
i i i i iMSE m Var u= +x x zβ ˆ

iΩz , where ix  and iz  are the vectors of population 

means of X and Z respectively in area i. Here,  denotes the coordinates of centroid of area i. The 

conditional MSE estimator (13) can be used by expressing GWSYN in the pseudo-linear form as:  

iu
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j U
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−−=B x X V X X V 1 u− . Estimator 

(17) of the area-specific bias cannot be used here since this is an out of sample area. Let us denote 

by A and as the number of sampled and out of sampled areas respectively. Then under model (6) 0A

 { }
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i i ij dj dj dj dj i i i ij s
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E m m w u u u u
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The conditional expectation of the square of this expected bias, given the area effects for the 

sampled areas, is 

 { } { }
2

2
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i i ij dj dj dj dj i i i ij s

d
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∑∑X a x z a x z zβ β Ω . 

Then for a non-sampled area i  the estimate of the squared bias of the GWSYN 

predictor (22) is given by  

0( 1,..., )i A=
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Here  is the ‘unshrunken’ estimated effect for the sampled area d at location j given by (16).  ˆ( )djua

 

6.   Empirical Studies 

In this section we present empirical results from simulation studies designed to contrast the 

performance of the small area estimators described in previous the previous sections.  Two types of 

simulation studies are carried out namely, model-based and design-based simulations. In model 

based simulations a synthetic population is generated at each simulation run under alternative model 

specifications and a sample is drawn from this population. Design based simulations are based on 

realistic population structures obtained from real survey data. Two real survey datasets are used for 

these simulations. The first dataset comes from the Australian Agricultural Grazing Industry Survey 

(AAGIS) conducted by the Australian Bureau of Agricultural and Resource Economics in year 

1995-96 while the second dataset comes from the Environmental Monitoring and Assessment 

Program (EMAP) that forms part of the Space Time Aquatic Resources Modelling and Analysis 

Program (STARMAP) at Colorado State University. In the design-based simulations the survey 

data are first used to generate a synthetic population. The synthetic fixed population is then kept 

fixed and within area random samples of size equal to the area-specific sizes in the original sample, 

are drawn. 

The small area estimators we contrast in the simulations are the EBLUP (4) and the GWEBLUP 

(11) for in sample areas and the synthetic EBLUP (SYN) predictor (20) and the geographically 

weighted synthetic (GWSYN) predictor (21) for out of sample areas. The estimators we considered 

in our empirical evaluations are summarised in Table 1. 

The performance of different small area estimators is evaluated by computing for each small 

area the Average Relative Bias (AvRBias), the Average Relative Root MSE (AvRRMSE) and the 

Average Coverage Rate (AvCR) of nominal 95 per cent confidence intervals defined as follows: 
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Here  denotes the actual average for area i at simulation t, with  denoting the estimated small 

area average and 

itm ˆ itm

ˆ
itMSE  denoting the area i estimated MSE in simulation t. Note that in the design-

based simulation study  since the population is kept fixed over simulations. it im m=

 

6.1. Model based simulations 

Model-based simulations are commonly used for evaluating the performance of estimation 

procedures. Here we fix the number of small areas at A = 20 and use the following two types of 

models to generate the population values of . In particular, the first method of simulation 

generates population values of 

yij

y  and x  according to a two-level model 100 1.5 aij ij i ijy x e= + + + , 

where ,2~ (20)ijx Chi 1,...., ij N=  and 1,i ..., A= , with random area effects  generated as 

independent realizations from  and  distributed as 

a i

( )0, 23.52N ije ( )4.090,9N , which corresponds 

to an intra area correlation equal to 0.20. This simulation set up corresponds to the stationary 

process. The second method of simulation generates population values random effects simulated as 

in the case of the stationary simulation procedure but now also for the intercept and the slope of the 

linear model for y  to vary according to the longitude and latitude (Salvati et al., 2010). This leads 

to a non-stationary process. That is, the two-level model is  0 1ij ijy aij i ijx eij β β= + + +  with  

0 95 0.1 0.1ij ij ijlongitude latitudeβ = + × + × ;  β1ij = 0.2 × longitudeij + 0.2 × latitudeij

and the location coordinates ( ) for each unit of the population are 

independently generated from 

,ij ijlongitude latitude

[ ]0,50U . In the model-based simulations we assume that we know 
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the spatial coordinates for the sampled units but only the centroids for the out of sample units are 

known. The small area population sizes  are randomly drawn from a uniform distribution on 

[450,500] and kept fixed over the simulations. A sample of size 

iN

n = 400  is selected from each 

simulated population with small area sample sizes proportional to the fixed small area population 

sizes, resulting in an average area sample size of . These area specific sample sizes  are 

fixed in the simulations by treating the small areas as strata and carrying out stratified random 

sampling. A total of T = 1000 simulations are then carried out.  In each simulation, the average of 

each small area is estimated by using the predictors outlined in Table 1. Estimates of the 

corresponding MSEs of these estimators are also calculated using the MSE estimators in Table 1.  

ni = 20 in

Table 2 shows the mean and summaries (minimum, first quartile, median, third quartile and 

maximum) of the distribution of values of AvRBias, AvRRMSE and AvCR over simulations. In 

Table 2 we show the corresponding performance of EBLUP and GWEBLUP in the stationary and 

non stationary processes. In the stationary case, as one would expect, the EBLUP has lower average 

and median relative bias and relative RMSE than the GWEBLUP. If one looks at the distribution of 

the relative biases and the relative RMSEs the EBLUP is performs better. However, things change 

when we look at the results for the non- stationary process. In this case, we see a substantial gain in 

terms of relative root mean squared error for the GWEBLUP when compared to the EBLUP. 

In Figure 1 we show how the MSE estimator, using (13) and (19) and averaging over 

simulations, tracks the true MSE of the GWEBLUP. In Figure 1 we see that the proposed MSE 

estimators provide a good approximation to the true MSE. In the case of non-stationary data, the 

conditional MSE estimator (13) traces the variability in the true MSE, however, the unconditional 

estimator (19) leads an average estimate of true MSE. Further, the unconditional estimator (19) is 

slightly underestimating the true MSE for the GWEBLUP. Furthermore, the proposed methods of 

MSE estimation provide confidence intervals with good coverage performance. 
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6.2. Design based simulations 

From a practical perspective, design-based simulations are more interesting than model-based 

simulations since they constitute a more realistic representation of the small area problem. Here 

design based simulations are based on two real survey data. The first dataset is the AAGIS data for 

the year 1995-96. In the original sample there are 759 farms from 12 regions, which are defined as 

the target small areas for the purposes of this study. For this data set there are available the 

centroids of the 12 regions. We have assigned at each unit belonging to area i the spatial 

coordinates of the centroid of area i. Using the original sample data and the survey weights we 

generated a synthetic population of size 39562. A total of 200 independent random samples, each of 

size n = 759, are then drawn from this fixed population by simple random sampling without 

replacement from within the 12 regions. The variable of interest is the total cash costs (TCC) and 

the target is to estimate the average value of TCC in each target area. A range of potential 

explanatory variables is available for building a working small area model. The covariates used in 

the fixed part of our working model provide an R2 value of 0.40; they are the land area, four 

identifiers for the five industries (i.e. specialist croppers, mixed livestock croppers, sheep 

specialists, beef specialists, and mixed sheep beef farms), the number of closing stock-beef, the 

number of closing stock-sheep and the quantity of harvested wheat. In addition, we use an ANOVA 

test proposed by Brundson et al. (1999) for testing the nonstationarity of the model parameters. The 

nonstationarity test for the original AAGIS sample data indicates that the assumption of stationarity 

of the model parameters is rejected.  

The second dataset comes from the U.S. Environmental Protection Agency's Environmental 

Monitoring and Assessment Program (EMAP) Northeast lakes survey (Larsen et al., 2001). 

Between 1991 and 1995, researchers from the U.S. Environmental Protection Agency (EPA) 

conducted an environmental health study of the lakes in the north-eastern states of the U.S.A. For 

this study, a sample of 334 lakes -or more accurately, lake locations- was selected from the 

population of 21,026 lakes in these states using a random systematic design. The lakes making up 
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this population are grouped into 113 8-digit Hydrologic Unit Codes (HUCs), of which 64 contained 

less than 5 observations and 27 did not have any observations. Here we define lakes grouped by 8-

digit Hydrologic Unit Code (HUC) as our small areas of interest. The variable of interest was Acid 

Neutralizing Capacity (ANC), an indicator of the acidification risk of water bodies and we are 

interested in estimating the average of ANC for in and out of sample HUCs. Since some lakes were 

visited several times during the study period and some of these were measured at more than one 

site, the total number of observed sites was 349 with a total of 551 measurements. In addition to 

ANC values and associated survey weights for the sampled locations, the EMAP data set also 

contained the elevation and geographical coordinates of the centroid of each lake in the target area. 

In our simulations we use elevation in the fixed part of the working small area model.  

  In the case of the EMAP data a synthetic population of ANC individual values is 

nonparametrically simulated using a nearest-neighbour imputation algorithm that retains the spatial 

structure of the observed ANC values in the EMAP sample data. The algorithm is the same as used 

in Salvati et al. (2010) and defined as follows: (1) we first randomly order the non-sampled 

locations in order to avoid list order bias and give each sampled location a ‘donor weight’ equal to 

the integer component of its survey weight minus 1; (2) taking each non-sample location in turn, we 

choose a sample location as a donor for the  non-sample location by selecting one of the ANC 

values of the EMAP sample locations with probability proportional to 

. Here  is the Euclidean distance from the   non-sample location 

 to the location  of a sampled location and b is the GWR bandwidth estimated from the EMAP 

data; and (3) we reduce the donor weight of the selected donor location by 1. The synthetic 

population of ANC values is then kept fixed over the Monte-Carlo simulations. A total of 200 

independent random samples of lake locations are then taken from the population of 21,026 lake 

locations by randomly selecting locations in the 86 HUCs that containing EMAP sampled lakes, 

with sample sizes in these HUCs set to the greatest of five and the original EMAP sample size. 

jth

2 2
,( , ) exp / 2  

jj u uw u u d b⎡ ⎤= −⎣ ⎦

 
u j u

  
du j ,u jth
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Lakes in HUCs not sampled by EMAP are also not sampled in the simulation study. This results in 

a total sample size of 652 locations selected within the 86 ‘EMAP’ HUCs. The synthetic ANC 

values at these 652 sampled locations are then noted. Similar to the AAGIS data, the ANOVA test 

(Brundson et al., 1999) rejects the null hypothesis of stationarity of the model parameters in the 

EMAP data. That is, there evidence of nonstationarity in the data. In both design-based simulations 

we assume to know the spatial coordinates of the centroids for non-sample units.  

The results for the AAGIS data are reported in Table 3 and Figure 2. The simulation results for 

the EMAP data set are presented in Table 4 and Figure 3. Note that the EMAP data have both 

sampled and out of sampled areas so the results in Table 4 corresponds to both the 86-sampled and 

the 27-out of sampled areas. In Figure 3 the vertical line in the plots distinguishes the results for 

sampled and out of sampled areas. The values on the left and on the right side of the vertical line 

correspond to sampled and out of sample areas respectively.  

The GWEBLUP has both smaller relative biases and relative root MSE than the EBLUP 

predictor for the AAGIS data in Table 3. Two things stand out from Figure 2. Firstly, the proposed 

unconditional and conditional MSE estimators for the GWEBLUP are performing in exactly the 

same way as the corresponding MSE estimators for the EBLUP. Secondly, a reduction in the true 

MSE can be seen for the GWEBLUP. Furthermore, the unconditional MSE estimator gives an 

average estimate of true MSE while the conditional MSE estimator captures the variability in 

estimating the true MSE. That is, MSE_C provides better estimates for the area-specific MSE. 

However, as discussed by Chambers et al. (2009) the conditional MSE estimator may be unstable 

for areas with small sample sizes. In terms of overall coverage properties neither of the two MSE 

estimators performs overall better.  

Turing now to the results in Table 4 for the EMAP data we see that the GWEBLUP performs 

better than the EBLUP. More interestingly, the results for out of sample areas, reported in the lower 

part of the Table 4, indicate the advantage of using the proposed methods of small area estimation 

since the use of the GWSYN reduces the relative bias and increases the efficiency relative to the 
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SYN. The geographical weighting based predictors have overall better coverage properties. In 

Table 4, the minimum coverage rates of the SYN for both unconditional and conditional MSE 

estimators are noteworthy. In this case, two regions have zero coverage rates. We noticed that these 

two regions have large values of true MSE. This was due to large conditional biases of the SYN 

predictor itself. The MSE estimates of sampled regions presented on the left side of vertical line in 

both plots in Figure 3 have same conclusion as those of Figure 2 for the AAGIS data. The results 

for out of sample regions shown on the right side of the vertical line of the plots in Figure 2 are of 

more interest to see. For SYN predictor, both conditional and unconditional MSE estimators 

perform almost identical. For GWSYN predictor, the conditional MSE estimator (23) provides an 

average estimate of true MSE. However, the unconditional estimator (22) overestimates the true 

MSE in many out of sample regions. An investigation to the results shows these poor performing 

out of sample regions are in the one corner of the lakes. The distances from the sampled regions are 

quite big and this leads to very small weights for these regions. This inflates the variance of fixed 

effect parameter, a term in the unconditional MSE estimator (22).  

 

7. Concluding Remarks 

In this paper we propose a geographically weighted extension of the popular EBLUP, which we 

refer to as the GWEBLUP, for the small area average under the local linear mixed model (6). In 

addition, we propose two methods for estimating its MSE. The empirical results provide evidence 

that the GWEBLUP can be used for efficiently borrowing strength over space in the presence of 

spatial nonstationarity in the data. Moreover, the use of the GWEBLUP can significantly improve 

synthetic estimation for out of sample areas. It is worth noting that in this paper all empirical studies 

are carried out by using the centroids of the small areas. This seems a realistic scenario since in 

practice the geographic locations of non-sample units will be unknown. Nevertheless, we expect 

that the gains from using the GWEBLUP will be further enhanced if information on unit level 

spatial coordinates is available for entire population. 
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Table 1. Definitions of small area predictors and their MSE used in simulations studies.  
 
Predictors MSE Estimators 

EBLUP: Predictor (4) under model (1) MSE_C by CCT MSE  
MSE_U by PR MSE 

GWEBLUP: Predictor (11) under model (6)  MSE_C by (13) with weights (12) 
MSE_U by (19) 

SYN: Predictor (20) under model (1) MSE_C  by CCT MSE 
MSE_U by PR MSE 

GWSYN: Predictor (21) under model (6) MSE_C by (13) with weights (23) and bias (24)  
MSE_U by (22) 

 

Table 2. Summary of results from model based simulation. Values are given in percentage.  

Summary of across small areas distribution Predictor Indicator Min Q1 Median Mean Q3 Max 
ni  18 19 20 20 21 22

Stationary process 
EBLUP RB -0.067 -0.032 -0.010 0.008 0.053 0.131
 RRMSE 1.351 1.404 1.425 1.425 1.450 1.491
 CR_U 94 95 95 95 96 97
 CR_C 93 93 94 94 94 95
GWEBLUP RB -0.071 -0.034 -0.010 0.008 0.058 0.125
 RMSE 1.356 1.412 1.438 1.434 1.460 1.505
 CR_U 94 95 95 95 95 96
 CR_C 92 92 93 93 93 94

Non stationary process 
EBLUP RB -0.551 -0.205 0.038 0.257 0.260 2.807
 RRMSE 2.496 2.672 3.021 4.903 4.586 22.432
 CR_U 81 92 98 95 99 100
 CR_C 93 94 94 94 94 95
GWEBLUP RB -0.955 -0.498 -0.032 0.500 0.817 7.864
 RRMSE 1.693 2.000 2.502 3.329 3.546 12.945
 CR_U 85 91 93 93 94 95
 CR_C 92 93 93 94 94 95
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Table 3. Summary of results from design based simulation using AAGIS data. Values are given in 

percentage. 

Summary of across small areas distribution Predictor Indicator Min Q1 Median Mean Q3 Max 
ni  42 46 61 63 78 88
EBLUP RB -8.19 -3.09 0.94 0.31 4.40 7.52
 RRMSE 7.16 9.16 10.27 11.51 13.51 18.21
 CR_U 64 84 96 90 99 100
 CR_C 65 84 95 89 97 100
GWEBLUP RB -6.85 -1.89 0.20 0.20 3.06 6.08
 RRMSE 6.92 7.73 9.11 10.49 12.63 17.29
 CR_U 68 90 98 93 100 100
 CR_C 67 82 93 88 94 98

  

Table 4. Summary of results from design based simulation using EMAP data. Values are given in 

percentage. 

Summary of across areas distribution Predictor Indicator Min Q1 Median Mean Q3 Max 
86 sampled HUCs 

ni  5 5 5 8 8 34
EBLUP RB -23.31 0.39 10.79 12.55 21.43 83.22
 RRMSE 14.20 23.95 35.18 38.05 49.49 99.00
 CR_U 47 89 96 93 100 100
 CR_C 78 91 95 94 98 100
GWEBLUP RB -10.65 -2.96 -0.80 0.61 3.45 28.28
 RRMSE 4.58 22.16 32.97 29.39 41.07 89.96
 CR_U 68 91 98 95 100 100
 CR_C 56 79 84 83 90 100

27 non-sampled HUCs 
SYN-EBLUP RB -72.50 -57.29 -36.59 -2.47 38.14 288.11
 RRMSE 5.75 40.14 53.76 60.44 62.21 288.61
 CR_U 0 100 100 89 100 100
 CR_C 0 100 100 89 100 100
GWSYN-EBLUP RB -36.99 -16.24 -2.38 -2.83 7.83 66.53
 RRMSE 10.01 18.37 22.17 29.51 30.11 133.68
 CR_U 99 100 100 100 100 100
 CR_C 98 100 100 100 100 100
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Figure 1. Area specific values of actual RMSE (solid line) and average estimated RMSE (dashed 

line and dotted line) in the model-based simulations. Values for the MSE_U estimator are indicated 

by the dotted line and by △ while those for the MSE_C estimator are indicated by the dashed line 

and by ○. The plots show the results for the EBLUP (left) and the GWEBLUP (right) predictors. 

The plots in the top show the results under the stationary scenario, whereas the plots in the bottom 

show the results under the non-stationary case. 
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Figure 2. Region specific values of actual RMSE (solid line) and average estimated RMSE (dashed 

line and dotted line) obtained in the design-based simulations using AAGIS data. Values for the 

MSE_U estimator are indicated by the dotted line and by △ while those for the MSE_C estimator 

are indicated by the dashed line and by ○. The plots show the results for the EBLUP (left) and the 

GWEBLUP (right) predictors.  

 

 

 

Figure 3. Region specific values of actual RMSE (solid line) and average estimated RMSE (dashed 

line) obtained in the design-based simulations using EMAP data. Values for the MSE_U estimator 

are indicated by the dotted line and by △ while those for the MSE_C estimator are indicated by the 

dashed line and by ○. The plots show the results for the EBLUP (left) and the GWEBLUP (right) 

predictors.  
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Appendix 1 

For a given specific location  in geographical space, the ‘joint weighted maximum likelihood 

estimation’ to obtain the estimates of 

u0

β  and a  are as follows. Under model (1), following the 

Henderson et al., (1959), the joint maximum likelihood is  

( ) ( )1 11 1( , ) ( ) ( ) exp
2 2

T T
s s s s s s s s sf f f − −⎧ ⎫= ≈ − − − − − −⎨ ⎬

⎩ ⎭
y a y | a a y X Z a R y X Z a a aβ β Ω  

where 2
s e nσ=R I ,  ( ) (11( ) exp

2
T

s s s s s s sf −⎧ ⎫≈ − − − − −⎨ ⎬
⎩ ⎭

y | a y X Z a R y X Z aβ β )s  and  

11( ) exp
2

Tf −⎧≈ −⎨
⎩ ⎭

a a Ω ⎫
⎬a . Using the geographical weights  with respect to a location u , the 

joint log density function is given by  

0( )uW 0

                  
1

0

1
( )2

T
A A

s s s s s s su

−
×

⎧ ⎫⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎛ ⎞⎪ ⎪≈ −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥− − − −⎝ ⎠ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎪ ⎪⎩ ⎭

a I 0 0 a
y X Z a 0 W 0 R y X Z a

Ω
β β

. 

Differentiating this function with respect to β  and , and equating the derivatives to zero gives the 

Henderson’s mixed model equation of form: 

a

 1 1
0 0( ) ( ) ( )T T T 1

0s s s s s s s su u u− −+ =X W R X X W R Z a X W R yβ s
−

1
0

 

 1 1 1
0 0( ) ( ) ( )T T T

s s s s s s s su u− − −⎡ ⎤+ + =⎣ ⎦Z W R X z W R Z a Z W R yβ Ω su − . 

Following the usual steps as in Henderson et al. (1959) leads to geographically weighted BLUE 

estimate of regression ‘function’    at an arbitrary location u  β(u0 ) 0

( ) 11 11 1
0 0( ) ( ) ( )T T T T

0s s s s s s s s su u
−− −− −⎡ ⎤ ⎡= + +⎣ ⎦ ⎣X Z Z W R X X Z Z W R yβ Ω Ω su ⎤⎦

)0u

, 

and the geographically weighted BLUP of the random area effects 

 .  (
11

0 0( ) ( ) ( )T T
s s s s s su u

−−⎡ ⎤= + −⎣ ⎦a Z Z Z W R y XΩ Ω β
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Appendix 2 

Under the geographical weighted regression model (6) the GWEBLUP (11) is  

{ } { } { }
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Appendix 3 

To motivate the unconditional MSE estimation of the GWEBLUP (11) described in Section 4.2, we 

first consider the situation when the variance components 2( ,eσ= )θ Ω  are known. In this case, 

following Henderson (1975), the MSE of the geographically weighted BLUP (GWBLUP) is  

 1 2ˆ( ) ( )GWBLUP
i iMSE m M M= + ( )iθ θ ,     (A3.1) 

where  and 1 ( )iM θ 2 ( )iM θ  are given below equation (18). The first term,  is due to the 

estimation of random effects, shows the variability in small area predictor when all the model 

parameters are known and is of order . The second term, 

1 ( )iM θ

(1)O 2 ( )iM θ  due to estimating the fixed 

effects parameter, is of order  for large A. The expression (A3.1) assumes that variance 

components are known, which is not the case in practice. Let us consider that the variance 

components  are estimated by the 

1(o A− )

2( , )Ωeσ=θ 2ˆ ˆˆ( ,eσ= )θ Ω . Then the MSE of the GWEBLUP (11) is 

obtained as 

( ) ( )( )2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )GWEBLUP GWBLUP GWEBLUP GWBLUP GWEBLUP GWBLUP GWBLUP

i i i i i i i iMSE m MSE m E m m E m m m m= + − + − −

)

)

.  (A3.2) 

Here E is the expectation under the model (6). The first term on the right hand side of (A3.2) is 

given by (A3.1). A naïve estimator of MSE of the GWEBLUP is obtained by replacing the 

unknown variance components in the  by some suitable estimators. However, this 

naïve MSE estimator of the GWEBLUP severely underestimates the true MSE as the variability due 

to the estimation of the variance components is ignored. Following the pioneering work of Prasad 

and Rao (1990), we obtain a second order approximation to the MSE of GWEBLUP, with the 

assumption of large A and by neglecting all the terms of the order . We assume the regularity 

conditions similar to as given in Prasad and Rao (1990) and Datta and Lahiri (2000), hereafter, PR 

and DL respectively. See also Rao (2003, page 99-104). Here these regularity conditions are 

satisfied. Under the normality assumption of two random errors and translation invariance of 

ˆ( GWBLUP
iMSE m

1(o A−

θ̂ , 
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from the Kackar and Harville (1984), the cross-product term in (A3.2)  is negligible. Therefore, we 

have  

    ( )2 1
1 2 3ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )GWEBLUP GWBLUP GWEBLUP GWBLUP

i i i i i i iMSE m MSE m E m m M M M o A−≈ + − = + + +θ θ θ .  (A3.3) 

The term  comes from estimating the unknown variance components from the sample data 

and this term is generally intractable except the special cases, see Rao (2003, page 103). A second 

order approximation to this term is obtained by using Taylor series linearization method; see for 

example PR and DL. Since the Taylor series linearization approach is fairly well known in small 

area estimation literature we are omitting the technical details for this approximation. Following the 

PR and DL, a second order approximation of the 

3 ( )iM θ

3 ( )iM θ is given by 

 2
3

( ) ( ) ˆ( ) ( ) ( )
i

TT T
i ij i ij

i i ss ij
j r

u u
M N tr u Varθ −

∈

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ∂⎪⎢≈ ⎜ ⎟ ⎜ ⎟⎨⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦
∑

c c
V θ

θ θ
⎪⎥⎬

u

 (A3.4) 

where  and 1( ) ( )T T T
i ij ij s ss iju −=c z Z VΩ ˆ( )Var θ  is asymptotic covariance matrix of θ̂ . Note that the 

 is of the same order  as that of 3 (iM θ) 1(o A− ) 2 ( )iM θ . When the sampling faction 1
i i if n N −=

1( )o A−

 is 

non-negligible, under model (6) the MSE of the GWEBLUP (11), with bias of order ,  is  

 ( ) 1 2 3 4ˆ ( ) ( ) ( ) ( )GWEBLUP
i i i iMSE m M M M M+ + + = iθ θ θ θ

2
e

 (A3.5) 

where 2 1
4 ( ) (1 )

i

i i ij i i
j r

M N Var N fε σ− −

∈

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑θ − . Following DL, we note that 

{ } 1
1 1 5 3

ˆ( ) ( ) ( ) ( ) ( )i i i iE M M M M o A−= + − +θ θ θ θ  with 5 ( ) - ( ) ( )T
i i iM = ∇B 1Mθ θ θ  for large A, 

{ } 1
2 2

ˆ( ) ( ) ( )i iE M M o A−= +θ θ , and  { } 1
3 3

ˆ( ) ( ) ( )i iE M M o A−= +θ θ .  

This leads to approximately, unbiased estimate of the MSE of the predictor  as  ˆ GWEBLUP
im

 .  (A3.6) 1 2 3 4 5
ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) 2 ( ) ( )GWEBLUP

i i i i iMSE m M M M M M≈ + + + −θ θ θ θ ˆ( )i θ

)The order of the bias being  since 1(o A−
2

ˆ( )iM θ  and 3
ˆ( )iM θ  have biases of order .  1( )o A−
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