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Summary

Probabilistic matching of records from different data sets is often used to create

linked data sets for use in research in health, epidemiology, economics, demog-

raphy and sociology. Clearly, this type of matching can lead to linkage errors,

which in turn can lead to bias and increased variability when standard statisti-

cal estimation techniques are used with the linked data. In this paper we develop

unbiased regression parameter estimates when fitting a linear mixed model to prob-

abilistically linked data. Furthermore, since estimation of variance components is

also an important objective when fitting a mixed model, we develop appropriate

modifications to standard methods of variance components estimation in order to

account for linkage error. In particular, we focus on three widely used methods

of variance components estimation: analysis of variance, maximum likelihood and

restricted maximum likelihood. Simulation results show that our estimators per-

formed reasonably well compared to the naive weighted least square estimator that

just uses the linked data.

Key words: analysis of variance; linear mixed model; linkage error; maximum

likelihood; measurement error; record matching; restricted maximum likelihood;

weighted least square.
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1. Introduction

Linked data sets are particular useful for research in health, epidemiology, economics,

demography, sociology and many other scientific areas. To create linked data, proba-

bilistic matching of records from different data sets is often used. Clearly, this type of

matching can lead to linkage errors which are a particular type of measurement error

and therefore can lead to biased inference unless appropriate steps are taken to control

and/or adjust for this bias (Chambers, 2009). Unfortunately, these errors are typically

ignored when analysis is undertaken. Although there has been a number of statistical

methods for linking data sets, there has been quite little methodological research carried

out on the impact of linkage errors on analysis of linked data.

The impact of linkage errors was first raised by Neter et al.(1965). In their study, they

found that relatively small linkage error could lead to a substantial bias in estimating the

relationship between response errors and true values. Scheuren & Winkler (1993) then

investigated the effect of linkage errors on the bias of ordinary least squares estimators of

regression coefficients in a standard regression model and proposed a method of adjusting

for the bias. However, their estimator is not unbiased in general. The best performance

of this estimator still produces a very small bias. Therefore, Lahiri & Larsen (2005) pro-

posed an alternative method for the bias correction which provides an unbiased estimator

directly for a transformed regression model. In their simulations, they found that their

unbiased method performed very well across a range of situations.

A methodological framework of linked data is mainly developed in Chambers (2009).

In his work, appropriate modifications to standard statistical analysis methods are used to

ensure that they remain unbiased when applied to probabilistically linked data. A simple

linear regression model is fitted to linked data from two registers that each cover the same

population. However, the inference used in this work is based on the assumption that all

measurements are independent. Obviously, this assumption is relatively unrealistic since

measurements are usually made on clusters of correlated statistical units, such as people

in a family, patients in a hospital or students in a school, and when analysing such data,

linear mixed models are often used. Consequently, based on the inferential framework of
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Chambers (2009), we develop methodologies for efficient fitting of linear mixed models

to probabilistically linked data. Moreover, estimation of variance components is also of

interest since it is an important objective when fitting a mixed model.

The structure of the paper is as follows. In the following section we review the linkage

errors model used in Chambers (2009) for fitting a simple linear regression model to

linked data. Then in Section 3 we describe a framework for fitting a linear mixed model

to linked data. In this section we obtain unbiased estimators of regression coefficients

when clustering is accounted for. In Section 4 we describe three methods of variance

components estimation: analysis of variance, pseudo-maximum likelihood and pseudo-

restricted maximum likelihood. In Section 5 simulation results comparing all estimators

are presented. Lastly, all conclusions and discussion for further research are revealed in

Section 6 .

2. Linkage errors model

In what follows we assume that there is a population of N units, indexed by i =

1, ..., N. For each unit in this population, there are the measurement values of a scalar

random variable Y and a vector random variable X. The aim is to model the relationship

between Y and X in this population, particularly fitting the linear regression model where

the regression coefficients are unknown and needs to be estimated. However, the values

of Y and X from this population do not exist. Instead, one can obtain such values from

two registers that separately contain the population values of Y and X and both registers

refer to the same population and have no duplicates. That is, each register consists of N

records.

In order to link records from the two registers, one needs a unique identifier in each

unit in the population. However, such identifier does not exist. Instead, some form

of probability-linking algorithm is used to link records from the two registers. We also

assumed that linkage is complete and one to one between the Y and X-registers. Clearly,

this type of data set can contain linkage errors, i.e. records where the values of Y and X

actually come from different population units.
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In addition, it is assumed that the linked records can be partitioned into Q distinct

blocks such that there is no possibility that linked records in different blocks contain data

for the same population unit. This assumption is based on the fact that best probability

linking algorithms will only attempt to link records that are similar in some sense. That

is, there is a categorical population variable Z that can be obtained from the information

on either register and that different blocks correspond to different values of Z. In other

words, if a record on one register does not have the same value of Z as the record on the

other register, then two records cannot be the same unit in the population. Therefore, Z

is referred as a blocking variable such that population units with the same value of Z are

in the same block. Furthermore, we also assumed that Z is measured without error on

both the Y -register and the X-register which leads to an assumption that linkage errors

can only occur within the same block.

Without loss of generality, we denote Q as distinct values taken by Z by 1,...,Q and

let block q correspond to the Mq population units with Z = q such that N =
∑

q Mq.

Let i denote index records in the linked data set. This index is the same for both

the X-register and the Y -register. y∗i is used to denote the Y -value from block q on the

Y -register that is matched to Xi in block q on the X-register i.e. there are Mq linked

data pairs (y∗i , Xi) in block q. Thus, y∗q is used to denote the vector of order Mq of the

linked values y∗i in block q and Xq as the matrix with rows defined by the values Xi in

the same block. Lastly, yq is denoted to be the unknown vector of the true Y values in

block q that are associated with Xq.

Since the linkage is assumed to be complete and one to one between the Y and X-

registers, Chambers (2009) modeled randomness in the outcome of the linkage process

via the identity

y∗q = Aqyq (1)

where Aq = [aq
ij] is an unknown random permutation matrix of order Mq i.e. the entries

aq
ij of Aq are either zero or one, with a value of one occurring just once in each row and

column. In addition, due to an assumption that linkage errors can occur within blocks,

then Aq1 and Aq2 are independently distributed when q1 6= q2.
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Since some assumptions about the distribution of the Aq will be needed for the infer-

ence, Chambers (2009) assumed that linkage is non-informative at each level of Z such

that the distribution of Aq is independent of yq given Xq. Let

E(Aq | Xq) = Eq. (2)

By assuming that a linked data is more likely to be correct than incorrect and the proba-

bility of correct linkage is the same for all records in a block, Chambers (2009), following

the suggestion of Neter et al. (1965), characterized both of these assumptions via an

exchangeable linkage errors model, where for each value of q

Pr(correct linkage) = Pr(aq
ii = 1) = λq (3)

and, for i 6= j,

Pr(incorrect linkage) = Pr(aq
ij = 1) = γq. (4)

Given (3) and (4) hold, (2) is then of the form

Eq = (λq − γq)Iq + γq1q1
>
q (5)

where Iq is the identity matrix of order Mq and 1q denotes a vector of ones of length Mq.

Since 1>q Aq = 1>q and Aq1q = 1q thus, 1>q Eq = 1>q and Eq1q = 1q. That is, (5) implies

λq + (Mq − 1)γq = 1

γq =
1− λq

Mq − 1
. (6)

Obviously, λq is the key parameter to completely specify the first order properties of the

linkage mechanism under the model (5). All of these properties and models will be used

throughout this paper for the theory development.
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3. Estimation of regression coefficients

Fitting a simple linear regression model to linked data is described in Chambers

(2009). In this section we consider the situation where the group structure is allowed

for and thus the linear mixed model is the focus of inference. In addition to what we

describe in Section 2, here we have a grouping variable F which is taken by 1, ..., G and

let group g correspond to the Ng population units with F = g such that Mq =
∑

g nqg

and Ng =
∑

q nqg where nqg is the number of population in block q group g. The linear

mixed model is then given by

Y = Xβ + Zu + e

where X and Z are the design matrices,

E




u

e


 =



0

0


 and Cov




u

e


 =




ζ 0

0 R




where ζ = σ2
uIG and R = σ2

eIN . Thus, the variance-covariance matrix of Y is of the form

V = ZζZ> + R = σ2
uZZ> + σ2

eIN

and the population values of Y and X in each block satisfy

EX(yq) = Xqβ = fq (7)

VarX(yq) = σ2
uZqZ

>
q + σ2

eIq (8)

CovX(yq,yr) = σ2
uZqZ

>
r (9)

where r is another block index, σ2
u is between-group variance, and σ2

e is within-group

variance. Note that apart from the regression parameter β in (7), which is the target of

inference, variance components σ2
u and σ2

e in (8) are also included as unknown parameters

which need to be estimated. Given the yr and Xq, the naive linked data weighted least

squares (WLS) estimator of β is
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β̂∗ =

(∑
q

∑
r

X>
q WqrXr

)−1 (∑
q

∑
r

X>
q Wqry

∗
r

)
(10)

where W = V −1 is a weight matrix and that Wqr is a partitioned matrix of matrix W .

We see that under the linkage error model (1), the naive WLS estimator (10) based

on the linked data set is biased since

EX(β̂∗) =

(∑
q

∑
r

X>
q WqrXr

)−1 (∑
q

∑
r

X>
q WqrErXr

)
β = Dβ. (11)

Given Er and Wqr are known and the inverse of D in (11) exists, Chambers (2009)

suggested an unbiased estimator using a ratio-type correction for the bias in the naive

estimator of β,

β̂R = D−1β̂∗ =

(∑
q

∑
r

X>
q WqrErXr

)−1 (∑
q

∑
r

X>
q Wqry

∗
r

)
(12)

where
∑

q

∑
r

X>
q WqrErXr is of full rank.

Alternatively, since y∗q = Aqyq, and Aq and yq are independently distributed given

Xq it follows

EX(y∗q ) = EX(Aq)EX(yq) = EqXqβ = Hqβ. (13)

We see that the y∗q are also in a linear form with regression coefficient β but with a

modified set of explanatory variables Hq in block q. According to Lahiri & Larsen (2005)

and Chambers (2009), β can be estimated by using the WLS estimator for this situation

as

β̂A =

(∑
q

∑
r

H>
q WqrHr

)−1 (∑
q

∑
r

H>
q Wqry

∗
r

)

=

(∑
q

∑
r

X>
q E>

q WqrErXr

)−1 (∑
q

∑
r

X>
q E>

q Wqry
∗
r

)
. (14)

Nevertheless, this estimator would be optimal if the regression errors under (13) were
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homoscedastic. Clearly, this generally does not hold, since the variances of the regression

errors defined by the linked data vary between blocks. That is

VarX(y∗q ) = EX

{
VarAX(y∗q )

}
+ VarX

{
EAX

(
y∗q

)}

= σ2
uEX

(
AqZqZ

>
q A>

q

)
+ σ2

eIq + Vq

= σ2
u Kq + σ2

eIq + Vq (15)

where Vq was approximated by Chambers (2009) that

Vq ≈ diag

[
(1− λq)

{
λq(fi − f̄q)

2 + f̄q
(2) − f̄ 2

q

}]

where fq = (fi) and f̄q, f̄q
(2)

denote the block q averages of the components of fq and

their squares respectively. The approximation of Kq is however developed similarly to

Vq. We define Kq = [kij] as

Kq =





λ + (1−λ)
Mq−1

(Gqnqh − 1), if i = j

{
λ + (nqh − 2) (1−λ)

Mq−1

}2

+(nqh − 1)
{

(1−λ)
Mq−1

}2

{1 + (Gq − 1)nqh} , if i 6= j;

i, j ∈ g; g = h

(nqh − 1) (1−λ)
Mq−1

{
2λ + (1−λ)

Mq−1
(Gqnqh − 2)

}
, if i 6= j; i ∈ g

j ∈ h; g 6= h.

where Gq is number of groups in block q. Also, using the law of total covariance, the

covariance between y∗q and y∗r is then
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CovX(y∗q , y
∗
r) = CovX(Aqyq, Aryr)

= EX

{
AqCovX(yq, yr)A

>
r

}
+ CovX(Aqfq, Arfr)

= σ2
u

(
EqZqZ

>
r E>

r

)
.

Thus, the best linear unbiased estimator (BLUE) for β given these data is

β̂C =

(∑
q

∑
r

H>
q ΣqrHr

)−1 (∑
q

∑
r

H>
q Σqry

∗
r

)

=

(∑
q

∑
r

X>
q E>

q ΣqrErXr

)−1 (∑
q

∑
r

X>
q E>

q Σqry
∗
r

)
(16)

where Σ = Var−1(y∗) and that Σqr is a partitioned matrix of matrix Σ.

4. Variance component estimation

When fitting a mixed model, estimation of variance components is also an important

objective. In this section we develop appropriate modifications to standard methods

of variance components estimation in order to account for linkage error. In particular,

we focus on three widely used methods of variance components estimation: Analysis

of Variance (ANOVA), pseudo-maximum likelihood (pseudo-ML) and pseudo-restricted

maximum likelihood (pseudo-REML). The details of each method are described in Section

4.1, 4.2 and 4.3, respectively.

4.1. Analysis of Variance (ANOVA)

Historically, ANOVA is the starting point of methods of estimating variance com-

ponents (Searle et al., 2006). This method is based on deriving the expected values of

sum of squares between groups (SSA) and sum of squares within groups (SSE) from the

definitions. One then equates observed and expected values and solves for estimators.
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The two sum of squares that are the basis of ANOVA of the linked data are

SSA = y∗
>
B y∗, ; B = {bij} =





1
Ng
− 1

N
, if i, j ∈ g

− 1
N

, if i ∈ g, j ∈ h, g 6= h

SSE = y∗
>
C y∗, ; C = {cij} =





1− 1
Ng

, if i, j ∈ g, i = j

− 1
Ng

, if i, j ∈ g, i 6= j

0, otherwise.

We then need to obtain EX(SSA) and EX(SSE) and equate them to the observed values

mentioned above. The details of method of deriving the expected values of the two sum

of squares are illustrated in Appendix I which yields the variance components estimators

σ̂2
e =

mc− na

bc− da
(17)

and

σ̂2
u =

m− σ̂2
eb

a
(18)

where

a =
∑

q

tr (BqqKq) +
∑

q

∑

r 6=q

tr
(
ErZrZ

>
q E>

q Bqr

)

b =
∑

q

tr (Bqq)

c =
∑

q

tr (CqqKq) +
∑

q

∑

r 6=q

tr
(
ErZrZ

>
q E>

q Cqr

)

d =
∑

q

tr (Cqq)
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m = SSA−
∑

q

{
tr (BqqVq) + f>q E>

q BqqEqfq

}−
∑

q

∑

r 6=q

f>q E>
q BqrErfr

n = SSE−
∑

q

{
tr (CqqVq) + f>q E>

q CqqEqfq

}−
∑

q

∑

r 6=q

f>q E>
q CqrErfr

Note that if linkage is perfect , c = 0 i.e. σ̂2
e = n/d and σ̂2

u = (m− σ̂2
eb)/a

where

a = N −
∑

g N2
g

N

b = G− 1 is degrees of freedom of SSA

d = N −G is degrees of freedom of SSE

m = SSA−
∑

q

∑
r

f>q Bqrfr

n = SSE−
∑

q

∑
r

f>q Cqrfr

However, the ANOVA estimates in (17) and (18) can be negative. According to Searle

et al. (2006), there is nothing in the ANOVA method of estimation that will prevent a

negative estimate. A more serious alternative would be to use a method of estimation

that explicitly excludes the possibility of negative estimates. Such methods are maximum

likelihood (ML) and restricted maximum likelihood (REML) which will be detailed in the

next two sections.

4.2. Pseudo-Maximum Likelihood (Pseudo-ML)

One of the most well-established and well-respected statistical methods used for fit-

ting a statistical model to data, and providing estimates for the model’s parameters is

maximum likelihood estimation. Here we use this method as an alternative approach to

constructing efficient estimators of β, σ2
u and σ2

e given the linked data.
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Unlike the ANOVA method of estimation, one of the basic requirements of ML esti-

mations is that we have to assume an underlying probability distribution for the data. In

this data, the multivariate normal distribution is assumed. However, in general, there are

no analytical expressions for the variance component estimators obtained by using ML.

These have to be done numerically. In this section, we will use the method of scoring as

an algorithm to obtain the estimators.

We assume that y∗ ∼ N(Ef ,Σ), therefore the likelihood function is given by

L = (2π)−N/2|Σ|−1/2exp

{
−1

2
(y∗ −Ef)>Σ−1(y∗ −Ef)

}

and the log-likelihood function is denoted by l:

l = −N

2
ln(2π)− 1

2
ln|Σ| − 1

2
(y∗ −Ef)>Σ−1(y∗ −Ef). (19)

To maximize l, we differentiate (19), first with respect to β which yields

∂l

∂β
= lβ = X>E>Σ−1(y∗ −Ef). (20)

where the differentiation of Σ with respect to β has been ignored.

Second, differentiating (19) with respect to σ2
u gives

∂l

∂σ2
u

= lσ2
u

= −1

2
tr

(
Σ−1Σu

)
+

1

2
(y∗ −Ef)>Σ−1ΣuΣ

−1(y∗ −Ef) (21)

where Σu = ∂Σ/∂σ2
u. Finally, differentiating (19) with respect to σ2

e gives

∂l

∂σ2
e

= lσ2
e

= −1

2
tr

(
Σ−1

)
+

1

2
(y∗ −Ef)>Σ−1Σ−1(y∗ −Ef). (22)

The ML estimators for β, σ2
u and σ2

e are defined by setting (20), (21) and (22) to zero and

solving for these parameters. Since Σ is a function of β, σ2
u and σ2

e this needs to be done

numerically. A numerical method commonly used for maximizing nonlinear functions is
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the Newton-Raphson method. However, to avoid the heavy computational burden of the

second-derivative matrix, another method that has been used is the method of scoring in

which the Hessian is replaced by its expected value (Searle et al., 2006).

Let θ denote all the parameters to be estimated, i.e., θ> = (β> σ2
u σ2

e). The method

of scoring thus uses an iteration scheme defined by

θ(m+1) = θ(m) + {I(θ(m))}−1 ∂l

∂θ

∣∣∣∣∣
θ(m)

,

where I(θ(m)) is the information matrix calculated using θ = θ(m).

We now develop I(θ) for β, σ2
u and σ2

e .

Following (20),

∂2l

∂β ∂β>
= lββ = −X>E>Σ−1EX

∂2l

∂β ∂σ2
u

= lβσ2
u

= −X>E>Σ−1ΣuΣ
−1(y∗ −Ef)

∂2l

∂β ∂σ2
e

= lβσ2
e

= −X>E>Σ−1Σ−1(y∗ −Ef)

Furthermore, following (21) and (22) we have

∂2l

∂σ2
u ∂σ2

u

= lσ2
uσ2

u
=

1

2
tr

(
Σ−1ΣuΣ

−1Σu

)− (y∗ −Ef)>Σ−1ΣuΣ
−1ΣuΣ

−1(y∗ −Ef)

∂2l

∂σ2
u ∂σ2

e

= lσ2
uσ2

e
=

1

2
tr

(
Σ−1Σ−1Σu

)− (y∗ −Ef)>Σ−1Σ−1ΣuΣ
−1(y∗ −Ef)

and

∂2l

∂σ2
e ∂σ2

e

= lσ2
eσ2

e
=

1

2
tr

(
Σ−1Σ−1

)− (y∗ −Ef)>Σ−1Σ−1Σ−1(y∗ −Ef).

In taking expected values of all derivatives obtained above we use E(y∗) = Ef and hence
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E(y∗ −Ef) = 0, and

E(y∗ −Ef)>C(y∗ −Ef) = tr(CΣ) for non-stochastic C

gives the information matrix as

I




β

σ2
u

σ2
e




= −E




lββ lβσ2
u

lβσ2
e

lσ2
uβ lσ2

uσ2
u

lσ2
uσ2

e

lσ2
eβ lσ2

eσ2
u

lσ2
eσ2

e




=
1

2




2X>E>Σ−1EX 0 0

0 tr (Σ−1ΣuΣ
−1Σu) tr (Σ−1Σ−1Σu)

0 tr (Σ−1Σ−1Σu) tr (Σ−1Σ−1)




. (23)

However, the variance component estimators obtained by this method are usually

biased. Therefore, restricted maximum likelihood (REML) is an alternative maximum

likelihood procedure which maximizes the likelihood of linear combinations of elements

of y∗ (McCulloch & Searle, 2001).

4.3. Pseudo-Restricted Maximum Likelihood (Pseudo-REML)

One criticism of the ML method is that in estimating variance components it takes

no account of the degrees of freedom that are involved in estimating fixed effects (Searle

et al., 2006). Also, the variance component estimators obtained by solving the likelihood

equations are not, in general, in good agreement with those obtained by ANOVA methods,

and they are generally biased, unlike the ANOVA estimators (Harville 1977, Searle et al.

2006).

The property of ML estimation not taking account of the degrees of freedom used for

estimating fixed effects when estimating variance components is overcome by a method
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known as restricted maximum likelihood (REML) (Searle et al., 2006). The procedure of

this method is that rather than using y∗ directly, REML is based on linear combinations

of elements of y∗, chosen in such a way that those combinations do not contain any fixed

effects, no matter what their value. That is, with a set of values s>y∗, vectors s> are

chosen so that E(s>y∗) = s>EXβ = 0.

Hence

s>EX = 0. (24)

However, in terms of the linked data in this situation, variance of y∗ is implicitly

a function of β. Therefore, we call this method “pseudo-REML” as we use the same

procedure as REML except our variance still contains fixed effects.

With EX of order N × p of rank r, there are only N − r linearly independent vectors

s> satisfying (24) (Searle et al., 2006). Using a set of such N − r linearly independent

vectors s> as rows of S>, we then have S>y∗ where S> is a (N−r)×N matrix whose rows

are any N−r linearly independent rows of the matrix I−EX{(EX)>(EX)}−1(EX)>.

With y∗ ∼ N(EXβ,Σ) we have, for S>EX = 0

S>y∗ ∼ N(0,S>ΣS).

With lR being the log likelihood function of S>y∗ define

lR = −1

2
(N − r)ln(2π)− 1

2
ln|S>ΣS| − 1

2
y∗

>
My∗ where M = S(S>ΣS)−1S>.

Note that,

∂M

∂σ2
u

=
∂

∂σ2
u

S(S>ΣS)−1S>

= −S(S>ΣS)−1S>ΣuS(S>ΣS)−1S> = −MΣuM

∂M

∂σ2
e

= −MM .
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For the information matrix we need first and second derivatives of lR :

∂lR
∂σ2

u

= lσ2
u

= −1

2
tr (MΣu) +

1

2
y∗

>
MΣuMy∗

∂2lR
∂σ2

u ∂σ2
u

= lσ2
uσ2

u
=

1

2
tr (MΣuMΣu)− y∗

>
MΣuMΣuMy∗

∂lR
∂σ2

e

= lσ2
e

= −1

2
tr (M ) +

1

2
y∗

>
MMy∗

∂2lR
∂σ2

e ∂σ2
e

= lσ2
eσ2

e
=

1

2
tr (MM )− y∗

>
MMMy∗.

In Appendix II we show that taking expected values of second derivatives of lR gives the

information matrix as

∴ I




σ2
u

σ2
e


 = −E




lσ2
uσ2

u
lσ2

uσ2
e

lσ2
eσ2

u
lσ2

eσ2
e




=
1

2




tr (MΣuMΣu) tr (MMΣu)

tr (MMΣu) tr (MM )


 . (25)

5. Simulation studies

In the previous sections we have theoretically shown the various bias adjusted estima-

tors of the coefficient parameters and variance components in the linear mixed model. In

this section we illustrate simulation results comparing them under repeated application of

probabilistic linkage based on the exchangeable linkage error model defined by equations

(1) - (5).

In a simulation, data were generated for a population of size N = 800 which consists

of four blocks of size 200 in each block. Also, each block is made up of 50 groups with four

subjects in each group. Values of X were then independently drawn from the uniform
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distribution over [0,1] with corresponding values of Y given by

yig = 2 + 4xig + ug + eig

where eig were independently drawn from the N(0, 3) distribution and ug were indepen-

dently drawn from the N(0, 1) distribution. Then true data pairs (yig, xig) were randomly

allocated to blocks and groups. Next, linked data pairs (y∗ig, xig) were generated by using

the exchangeable linkage errors model defined by (1) - (5) with correct linkage proba-

bilities λ1 = 1, λ2 = 0.95, λ3 = 0.85 and λ4 = 0.75. Note that all links for block 1

were assumed to be correct, while those for blocks 2, 3 and 4 were assumed to have some

errors. Here we present simulation results for two scenarios. The first set of results were

obtained from known linkage probabilities. The second set of results were obtained from

estimated linkage probabilities by taking random samples of mq = 25 linked pairs from

each of block 2, 3 and 4 and checking to see whether these sampled links were correct.

Following Chambers (2009), the estimate of λq is calculated as

λ̂q = min
{
m−1

q (mq − 0.5), max(M−1
q , lq)

}

where lq is the proportion of correctly linked pairs identified in the audit sample in block

q.

A total of 800 independent simulations were carried out. Table 1 illustrates the relative

biases and relative root mean squared errors of the coefficient estimators described in

Section 3 whereas Table 2 reveals the relative biases and relative root mean squared

errors of variance components estimators described in Section 4. The WLS estimator

based on perfectly linked data, TR, as well as the naive WLS estimator, were obtained

using the default settings of the lme function in the R software package. Note that

variance components estimators obtained using ANOVA method are functions of β. The

estimator R, A, C and B presented in Table 2 represent the ANOVA estimators obtained

using those coefficient estimators. The actual coverages of the nominal 95% confidence

intervals for all of the model parameters are then illustrated in Table 3.
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The results set out in Table 1 show that the naive WLS estimator that just used the

linked data was clearly biased. Since linkage error is a particular type of measurement

error, this bias attenuated the estimate of the slope parameter and exaggerated that of

the intercept. On the other hand, all four of the adjusted estimators corrected this bias

in which the estimator C, the empirical BLUE from (16), was the most efficient. Under

Scenario 2 where linkage probabilities were estimated by taking small audit samples, we

see that the results were also in a similar way of those under Scenario 1 except that the

estimator MLE turned out to be the most efficient in this case.

Table 1
Simulation results for the coefficient parameters of the linear mixed model

Relative Bias Relative RMSE
Estimator Intercept Slope Intercept Slope

Scenario 1: Linkage Probabilities Correctly Specified
TR 0.04 0.03 18.48 19.07
Näıve 10.99 -10.92 24.27 29.12
R -0.18 0.25 19.99 21.70
A -0.14 0.21 19.98 21.64
C -0.11 0.18 20.01 21.65
MLE -0.24 0.31 20.00 21.65
Scenario 2: Linkage Probabilities Estimated From Audit Sample
TR 0.29 -0.33 17.77 18.12
Näıve 11.46 -11.50 24.27 29.65
R -0.12 0.07 19.53 21.22
A 0.22 -0.26 19.31 20.92
C 0.31 -0.35 19.26 20.89
MLE 0.19 -0.23 19.27 20.90

Investigation of the results displayed in Table 2 shows that the naive variance com-

ponents estimators that just used the linked data were also biased. As expected, the

estimator obtained using the ML approach was slightly biased since degrees of freedom

for fixed effects did not get taken into account. All of the remaining adjusted estima-

tors were essentially unbiased in which the estimator REML was the most efficient. The

results under Scenario 2 were also in the same direction of those under Scenario 1.

The results displayed in Table 3 show that variance estimators that allowed for the

extra variability induced by estimation of these parameters led to confidence intervals

with good coverage properties.
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Table 2
Simulation results for the variance components of the linear mixed model

Relative Bias Relative RMSE
Estimator Between-Group Within-Group Between-Group Within-Group

Scenario 1: Linkage Probabilities Correctly Specified
TR 1.07 0.04 31.30 15.49
Näıve -20.82 5.50 34.69 23.27
R 0.50 -0.13 37.17 17.21
A 0.50 -0.11 37.17 17.13
C 0.50 -0.10 37.17 17.13
MLE -2.84 -0.07 34.76 16.93
REML 0.93 -0.02 35.32 16.95
Scenario 2: Linkage Probabilities Estimated From Audit Sample
TR -1.38 0.13 29.71 15.51
Näıve -22.30 5.53 34.64 23.63
R -0.01 -0.30 36.78 17.94
A -0.01 -0.19 36.78 17.78
C -0.01 -0.16 36.78 17.77
MLE -5.04 0.05 33.75 17.46
REML -1.34 0.09 34.05 17.49

Table 3
The actual coverages of the nominal 95% confidence intervals for the model parameters

Coverage
Estimator Intercept Slope Between-Group Within-Group

Scenario 1: Linkage Probabilities Correctly Specified
TR 95.4 94.5 96.9 94.5
Näıve 84.6 78.9 98.2 82.5
R 95.4 95.4 93.8 95.9
A 95.2 94.6 93.8 95.9
C 95.1 94.5 93.8 96.1
MLE 94.9 94.5 92.2 94.1
REML - - 94.6 94.4
Scenario 2: Linkage Probabilities Estimated From Audit Sample
TR 95.8 95.9 97.1 94.8
Näıve 86.5 78.6 98.2 79.9
R 95.4 96.5 92.4 95.4
A 95.4 96.1 92.4 95.6
C 95.2 96.1 92.4 95.5
MLE 94.6 95.5 91.9 94.4
REML - - 93.4 94.4
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6. Closing remarks

In this paper we have shown how to develop the inferential framework of Chambers

(2009) to obtain unbiased regression parameter estimates when fitting a linear mixed

model to probabilistically linked data. Moreover, since estimation of variance components

is also an important objective when fitting a mixed model, we have appropriately modified

standard methods of variance components estimation in order to account for linkage error.

Particularly, we focus on three widely used methods of variance components estimation:

ANOVA, psuedo-ML and psuedo-REML. Our simulation results indicate that all the

methods developed in this paper work reasonably well in terms of correcting bias induced

by linkage error. However, they also show an evidence of increases in variability due to

application of linear mixed models to the linked data.

Although the theoretical results described in the previous sections are well developed,

there are a lot of issues that still need investigation such as application these methods

to real life linked data, the characteristics of the linkage situation, and application to

longitudinal modeling.

Appendix

I. ANOVA Estimation

If the linkage is not perfect, then we have

SSA = y∗
′
By∗

EX(SSA) = EX

(∑
q

y∗
′

q Bqqy
∗
q

)
+ EX

(∑
q

∑

r 6=q

y∗
′

q Bqry
∗
r

)

=
∑

q

EX

(
y∗

′
q Bqqy

∗
q

)
+

∑
q

∑

r 6=q

EX

(
y∗

′
q Bqry

∗
r

)
.
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Now, we consider the first term of EX(SSA).

∑
q

EX

(
y∗

′
q Bqqy

∗
q

)
=

∑
q

tr
{
BqqV ar(y∗q)

}
+

∑
q

f ′qE
′
qBqqEqfq

=
∑

q

tr
{
Bqq(σ

2
uKq + σ2

eIq + Vq)
}

+
∑

q

f ′qE
′
qBqqEqfq

= σ2
u

∑
q

tr (BqqKq) + σ2
e

∑
q

tr (Bqq)

+
∑

q

tr
{
(BqqVq) + f ′qE

′
qBqqEqfq

}

The second term of EX(SSA) is then given by

∑
q

∑

r 6=q

EX

(
y∗

′
q Bqry

∗
r

)
=

∑
q

∑

r 6=q

EX

{
EXy∗r

(
y∗

′
q Bqry

∗
r

)}

=
∑

q

∑

r 6=q

EX

[{
Eqfq + ΣqrΣ

−1
rr (y∗r −Erfr)

}′
Bqry

∗
r

]

=
∑

q

∑

r 6=q

EX

[{
f ′qE

′
q + (y∗

′
r − f ′rE

′
r)Σ

−1
rr Σ′

qr

}
Bqry

∗
r

]

=
∑

q

∑

r 6=q

EX

(
f ′qE

′
qBqry

∗
r

)
+

∑
q

∑

r 6=q

EX

(
y∗

′
r Σ−1

rr Σ′
qrBqry

∗
r

)

−
∑

q

∑

r 6=q

EX

(
f ′rE

′
rΣ

−1
rr Σ′

qrBqry
∗
r

)

=
∑

q

∑

r 6=q

f ′qE
′
qBqrErfr +

∑
q

∑

r 6=q

tr
(
Σ−1

rr Σ′
qrBqrΣrr

)

+
∑

q

∑

r 6=q

f ′rE
′
rΣ

−1
rr Σ′

qrBqrErfr −
∑

q

∑

r 6=q

f ′rE
′
rΣ

−1
rr Σ′

qrBqrErfr

=
∑

q

∑

r 6=q

f ′qE
′
qBqrErfr + σ2

u

∑
q

∑

r 6=q

tr
(
ErZrZ

′
qE

′
qBqr

)

where Σqr is the covariance between y∗q and y∗r .
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Combining the first and second term of EX(SSA) gives

EX(SSA) = σ2
u

{∑
q

tr (BqqKq) +
∑

q

∑

r 6=q

tr
(
ErZrZ

′
qE

′
qBqr

)
}

+ σ2
e

∑
q

tr (Bqq)

+
∑

q

{
tr (BqqVq) + f ′qE

′
qBqqEqfq

}
+

∑
q

∑

r 6=q

f ′qE
′
qBqrErfr

= σ2
ua + σ2

eb + m0

where

a =
∑

q

tr (BqqKq) +
∑

q

∑

r 6=q

tr
(
ErZrZ

′
qE

′
qBqr

)

b =
∑

q

tr (Bqq)

m0 =
∑

q

{
tr (BqqVq) + f ′qE

′
qBqqEqfq

}
+

∑
q

∑

r 6=q

f ′qE
′
qBqrErfr.

Similarly,

EX(SSE) = σ2
u

{∑
q

tr (CqqKq) +
∑

q

∑

r 6=q

tr
(
ErZrZ

′
qE

′
qCqr

)
}

+ σ2
e

∑
q

tr (Cqq)

+
∑

q

{
tr (CqqVq) + f ′qE

′
qCqqEqfq

}
+

∑
q

∑

r 6=q

f ′qE
′
qCqrErfr

= σ2
uc + σ2

ed + n0

where

c =
∑

q

tr (CqqKq) +
∑

q

∑

r 6=q

tr
(
ErZrZ

′
qE

′
qCqr

)

d =
∑

q

tr (Cqq)

n0 =
∑

q

{
tr (CqqVq) + f ′qE

′
qCqqEqfq

}
+

∑
q

∑

r 6=q

f ′qE
′
qCqrErfr.
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By solving two linear equations,

σ̂2
ua + σ̂2

eb = m ; m = SSA−m0

and

σ̂2
uc + σ̂2

ed = n ; n = SSE− n0

it yields the estimators

σ̂2
e =

mc− na

bc− da

and

σ̂2
u =

m− σ̂2
eb

a
.

II. Pseudo-REML information matrix derivation

−E lσ2
uσ2

u
= −1

2
tr (MΣuMΣu) + tr (MΣuMΣuMΣ)

+ β>X>E>MΣuMΣuMEXβ

= −1

2
tr (MΣuMΣu) + tr (ΣuMΣuMΣM ) + 0, ∵ MEX = 0

=
1

2
tr (MΣuMΣu) , ∵ MΣM = M

−E lσ2
uσ2

e
= −1

2
tr (MMΣu) + tr (MMΣuMΣ) + β>X>E>MMΣuMEXβ

=
1

2
tr (MMΣu)

−E lσ2
eσ2

e
= −1

2
tr (MM ) + tr (MMMΣ) + β>X>E>MMMEXβ

=
1

2
tr (MM ) .
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