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Introduction

At a meeting held in Canberra in July 2010, it was agreed to undertake a study
to investigate whether a combined analysis of the 08/09 series of LMA exper-
iments and the single 2010 experiment was feasible. The current protocol for
classification of lines relies on obtaining information from two valid LMA screen-
ing experiments. The analysis of the 08/09 series of experiments represented the
first attempt to undertake a combined analysis of LMA screening experiments. It
is well known (see for example, Mrode [1995]) that the optimum methodology to
evaluate genetic material for eventual selection is to use a multivariate or multi-
trait analysis. This multi-trait analysis takes account of the relationships which
exist between the different traits. In our example, each experiment is considered
as a trait and so for these data we have three traits, one for each experiment.

One of the major advantages of the multi-trait analysis is that it increases the
accuracy of evaluation (hence the accuracy of selection). The gain in accuracy
is a function of several factors. The most important factor which affects the
gain in accuracy from conducting a multi-trait analysis, is the absolute difference
between the (true) genetic and residual correlations between the traits. The
larger the differences, the greater the gain in accuracy [Thompson and Meyer,
1986]. Since these traits are measured on different experimental units then the
residual correlation is zero, and hence we would expect a significant increase in
accuracy if there is a non-zero (hopefully positive) genetic correlation between
traits. Even though there may be a (true) positive genetic correlation between
traits, the realised increase in accuracy depends on the ability to reliably estimate
this genetic correlation.

The reliability of the estimation of the genetic correlation between traits (ex-
periments) is driven by the genetic connectivity between the traits. We define
the genetic connectivity between two traits/experiments as the number of lines
in common. Clearly if there are no lines in common then we cannot estimate
the genetic correlation. We are unaware of any study which has examined what
would be regarded as a “sufficient” degree of genetic connectivity between a series
of experiments. Our empirical evidence from the analysis of multi-environment
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trials using the approach of Smith et al. [2001] would suggest that between 10-20
would be a reasonable level of connectivity. We stress, however, that this estimate
requires validation with a detailed and rigorous study.

In this report, we therefore will consider a multi-trait analysis of the three LMA
screening experiments conducted in 2008, 2009 and 2010. The analyses of these
experiments has been presented in two previous reports. The first report consid-
ered a re-analysis of two experiments (winter 2008 and summer 2008/2009) which
attempted to take account of some features of the “experiment design” as well
as incorporating other sources of variation which Butler et al. [2009b] identified
as significant contributors to the variation in LMA expression. By applying a
more comprehensive analysis it was shown that there was good agreement be-
tween the two experiments in terms of LMA expression giving more confidence
in the information arising from these experiments, which were conducted prior
to the implementation of the new protocol. The second report considered the
analysis of the LMA screeing experiment which was conducted over the summer
of 2009/2010. This experiment was the first successful experiment which used
the new protocol based on the work of Butler et al. [2009b] in which appropriate
replication and randomisation is used for the key phases.



2 Experimental details & statistical
methods

2.1 Phenotypic Data & Experiment design

The details of the phenotypic data and experiment design for these trials has
already been presented in previous reports. The first two experiments were not
designed using a valid statistical experimental design. The 2009/2010 experiment
was designed using the new protocol advocated by Butler et al. [2009b]. These
experiments will be referred to by E1, E2 and E3. Table 2.1 presents a summary
of genetic connectivity for the three LMA screening experiments. Numbers on the
diagonals represent the number of lines tested in each experiment, while numbers
on the off-diagonals represent the number of lines on common between pairs of
experiments. So for example there were 364 lines in E1, 178 in E2 and 193 in
E3. Similarly, there were 176 lines in common between E1 and E2, but only 23
and 19 lines in common between E1 and E2 and E3 respectively. Thus there was
excellent genetic connectivity between E1 and E2 but somewhat less between E3
and the other two experiments, as these were part of another LMA screening
series.

El E2 E3
E1 364 176 34
E2 176 178 29
E3 34 29 193

Table 2.1: Summary of genetic connectivity for LMA screening experiments: diago-
nals represent lines tested, off-diagonals represent lines in common

There were 155 lines tested in two experiments and 28 lines tested in all three ex-
periments. The latter included mainly check varieties such as Cranbrook, Hartog,
Janz, Kennedy, RAC655 and Seri.



2 Experimental details & statistical methods 4

2.2 Statistical Methods

As before, we consider an analysis of the optical density data (od) based on a
linear mixed model. Terms in the mixed model have been described in previous
reports and involve both those to account for the restricted randomisation of IDs
to pots and seeds within tillers, tillers within plants, plants within pots, pots
within IDs, wells within a plate, and the natural blocking of the plate phase
for E3 and the pseudo experimental design terms and factors created for the
analysis of E1 and E2. The additional feature of the multi-experiment (MEX)
analysis is the inclusion of the main effect of Experiment and the interaction of
ID:Experiment, the former included as a fixed effect, the latter included as a
random effect with a special variance structure. If we regard the ID:Experiment
effects as a 535 x 3 matrix, then we assume that the effects in each of the 535
rows of this matrix are realisations of a multivariate normally distributed random
variable, with zero mean and variance matrix given by

g1 912 913
921 G922 923
g31 932 933

where g;;,7 # j is the genetic covariance between experiments ¢ and j, and g;; is
the genetic variance for experiment 7. Note that g;; = g;;. The genetic correlation
between experiments (7, j) is computed as

- 9ij

The analysis was conducted on the conducted using the linear mixed models
software ASReml-R [Butler et al., 2009a].




3 Results

3.1 Estimation of genetic correlation between experiments

The original analysis of E1 and E2 was conducted on a log (base e) scale, how-
ever for consistency with the analysis of E3 we used the scaled empirical logit
transformation defined in the following. For given (ar,ar), being determined for
each experiment (from the optical density for the negative and positive controls

respectively), we let

od — ay,

y=—"
aR — ar,

and define the variate for analysis (z) by

z = logit(y)
= log(y/(1 —y))

The values of ay, for the 08/09 experiments were 0.046 and 0.040, while the values
of ap were 0.856 and 1.401 respectively.

El E2 E3
E1 1.000
E2 0940 1.000
E3 0.602 0.734 1.000

Table 3.1 REML estimate of the genetic correlation between experiments

Table 3.1 presents the REML estimate of the genetic correlation between exper-
iments. The correlation between E1 and E2 is very high, while the correlation
between E1 and E3 and E2 and E3 is still acceptable. The latter two estimates
would be subject to much more sampling variation give the lower genetic connec-
tivity for these pairs of experiments.
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3.2 Prediction of LMA expression

Empirical Best Linear Unbiased Prediction

For conducting inferences on the true, but unknown, LMA expression of an ID
for these experiments, we consider the conditional distribution of the true effects
given the observed data. From this conditional distribution, which is approxi-
mately normal, with mean being the Empirical Best Linear Unbiased Prediction
(e-BLUP) and variance given by the “plug-in” prediction error variance, we can
obtain probabilities of the true LMA expression being say lower than an express-
ing control variety and higher than a non-expressing control variety for any given
experiment. Since there is a strong positive association between experiments at
the genetic level, we would expect the multi-trait analysis to have improved the
accuracy of our predictions, compared to separate univariate analyses.

Figure 3.1 presents a pairs plot of the e-BLUPs, expressed as deviations from the
experiment means, between experiments, but only using those lines which are in
common for each pair. There is excellent agreement, as expected, given the above
REML estimate of the genetic correlation matrix. Figure 3.2 presents a similar
pairs plot but only for the check varieties. The slightly reduced genetic correlation
between E1 and E3 seems most likely to be influenced by the inconsistent result
for RAC655 which stands out on both of the pairs plots. The expression of
RACG655 for E3 was relatively lower than for the previous two experiments.

Controlling False Discovery Rate

The current LMA classification protocol relies on the assessment of two valid so-
called LMA results. These results were based on whether a line attained a certain
percentage of “positive” LMA values. This approach has some serious deficen-
cies, none less serious than the inability to control the problem of multiplicity.
Benjamini and Hochberg [1995] noted that

When pursuing multiple inferences, researchers tend to select the (sta-
tistically) significant ones for emphasis, discussion and support of con-
clusions. An unguarded use of single-inference procedures results in
a greatly increased false positive (significance) rate.

In our setting we have the problem of testing say m null hypotheses within an
experiment and the null hypothesis is
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Figure 3.1: Pairs plots of the E-BLUPS between experiments for those lines in com-
mon
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Figure 3.2: Pairs plots of the E-BLUPS between experiments for the check varieties
in common



3 Results

Hy: The true LMA expression of line A for experiment K is higher or equal to
than that of a nominated set of check varieties for experiment K.

Our aim would therefore be to control (the expected value of) the proportion
of the rejected null hypotheses that are erroneously rejected. This statistic is
what Benjamini and Hochberg [1995] call the false discovery rate (FDR). Ben-
jamini and Hochberg [1995] develop an approach which controls the FDR at a
nominated value (say ¢* = 0.01) and is simple to implement. Table 3.2 is taken
from Benjamini and Hochberg [1995] to illustrate this concept. That is we test
m (null hypotheses), of which mg are true. R is the number of hypotheses which
are rejected and is an unobservable random variable, as are U, V, S and T. The
FDR is simply the expected value of the ratio V/(V + 5).

Declared Declared Total
non-significant  significant
True Hy U Vv mo
Non-true Hy T S m — my
m—R R m

Table 3.2 Number of errors committed when testing m null hypotheses

The choice of the set of check varieties has been based on previous experience
and knowledge of the genetic control of LMA. The varieties Kennedy, RAC655
and Cranbrook are all known to possess at least one of the known QTL which
control LMA expression and have been used as so-called “positive” controls for
many LMA experiments.

Tables have been prepared for each of the three experiments. The number of
null hypotheses is restricted to only consider those lines which were tested in the
experiment. These tables are not presented here due to confidentiality reasons,
but a sanitized and reduced version of one of the tables is presented in in the
following.

Table 3.3 presents a summary of the e-BLUPs, the prediction standard error,
expressed as an accuracy, the number of cells tested and the probability value for
the test-statistic of Hy described above. Implementation of the FDR procedure is
as follows. Consider testing m null hypotheses for which we have m corresponding
p-values, say P1, P, ..., Pp. Let P1) < Py < ... < P, be the ordered p-values,
and denote by H ;) the null hypothesis corresponding to F;). These p-values have
been computed from a simple one-sided t-test comparing each of m lines with a
nominated check variety for each of the three LMA experiments. We consider



3 Results

the multiplicity problem within experiment and for each check variety. Define
the following Bonferroni-type multiple-testing procedure:

Let k be the largest i for which Py < pe; = %q*; then reject all
Hiy,i=1,2,... k.

The column labelled Pcrit is the value p.; = %q* and the final column denotes
which null hypotheses are rejected (ie significant).

ID eBLUP acc cells tested PKen Perit  significant
181 -1.132  0.851 8 0.00000 0.00003 YES

199 -1.033  0.853 8 0.00000 0.00006 YES
140 -1.030 0.853 8 0.00000 0.00008 YES
180 -0.922  0.851 8 0.00000 0.00011 YES
66 0.307 0.805 8 0.00446 0.00760 YES
203 0.419 0.853 8 0.00462 0.00763 YES
162 0.415 0.851 8 0.00466 0.00765 YES
279 0.446 0.855 8 0.00564 0.00768 YES
58 0.407 0.823 8 0.00750 0.00771 YES
246 0.371  0.802 8 0.00781 0.00774 NO
36 0.386 0.809 8 0.00784 0.00777 NO
243 0.373  0.802 8 0.00791 0.00779 NO
8

131 0.433 0.828 0.00809 0.00782 NO

Table 3.3: Summary of e-BLUPS, the accuracy of the e-BLUPs, the number of
wells tested, the probability of comparison with the positive check varieties and FDR
statistics as described in the text for a selected number of lines for E1

This procedure provides a clear decision as to whether the null hypothesis is
rejected. however, with all statistical tests there still remains uncertainty. There
is conjecture regarding the choice of ¢* and there will be also some null hypotheses
which are “closer” to rejection or acceptance than others. Figures 3.3, 3.4 and
3.5 present plots of the p-values for each of the my, k = 1,2,3 null hypotheses
for experiments 1, 2 and 3. We have superimposed the FDR critical value. Null
hypotheses which occur before the intersection of the two “lines” are deemed
significant. It is clear that some null hypotheses are more strongly rejected than
others. To put this into context the p-values for Hartog and Janz for each of the
three experiments is less than -12 on the log 10 scale.
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Figure 3.3: p-value plot for experiment 1. The points are the individual p-values for
each null hypothesis while the line is the FDR critical value
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Figure 3.4: p-value plot for experiment 2. The points are the individual p-values for
each null hypothesis while the line is the FDR critical value
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Figure 3.5: p-value plot for experiment 3. The points are the individual p-values for
each null hypothesis while the line is the FDR critical value



Conclusion

This report illustrates the robustness of the LMA screening protocols. There is
strong agreement between experiments in terms of ranking of lines. The anal-
ysis of od using a mixed models approach followed by a formal assessment of
LMA expression on this quantitative trait using an FDR approach offers a valid
alternative to the current classification protocol.
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