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Abstract

A standard approach to analyzing n binary matched pairs being usually repre-
sented in n 2× 2 tables is to apply a subject-specific model; for the simplest situation
it is the so-called Rasch Model. An alternative population-averaged approach is to
apply a marginal model to the single 2 × 2 table formed by n subjects. For the sit-
uation of having an additional stratification variable with K levels forming K 2 × 2
tables, standard fitting approaches, such as generalized estimating equations and max-
imum likelihood, or alternatively the standard Mantel-Haenszel (MH) estimator can
be applied. However, while all these standard approaches are consistent under a large
stratum limiting model, they are not consistent under a sparse-data limiting model.
In this paper, we propose a new MH estimator along with a variance estimator that
are both dually consistent; consistent under large stratum and under sparse data lim-
iting situations. In a simulation study the properties of the proposed estimators are
confirmed and the estimator is compared with standard marginal methods, and also
with subject-specific estimators. The simulation study also considers the case when
the homogeneity assumption of the odds ratios does not hold and the asymptotic limit
of the proposed MH estimator under this situation is derived. The results show that
the proposed MH estimator is generally better than the standard estimator, and the
same can be said about the associated Wald-type confidence intervals.

Keywords: bootstrap method, dual consistency, generalized estimating equations,
Mantel-Haenszel estimator, odds ratio.
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1 Introduction

Binary matched pairs data {Yi = (Yi1, Yi2), i = 1, . . . , n} frequently occur in medical trials
and biological or social sciences. One approach to compare the probability of success for
two binary responses Yi1, Yi2 ∈ {0, 1}, here also called items, uses subject-specific models,
and another uses marginal models. A popular subject-specific model is the Rasch model
[1]

logit (Pr(Yix = 1)) = αi + βsub · 1{x=2}, i = 1, . . . , n (1)

which assumes that Yi1 and Yi2 are independent, conditionally on αi; this is called the
local independence assumption. Here 1{cond} is the indicator function, which is one if
condition cond is true, otherwise it is zero. Let n00, n01, n10 and n11 denote the num-
ber of observations with outcomes Y = (0, 0), (0, 1), (1, 0) and (1, 1) respectively, with
n = n00 + n01 + n10 + n11. Assume {αi} are fixed effects; the conditional maximum like-
lihood (CML), which conditions on the sufficient statistics for {αi}, gives the consistent
estimator β̂subCML = log(n10/n01). Another popular estimator is the Mantel-Haenszel (MH)
[2] estimator. When applied to each of the n 2× 2 tables formed by the n matched pairs,
it also gives β̂subMH = log(n10/n01). In each of the 2 × 2 tables, the columns refer to two
items and the rows refer to the binary responses (0 and 1). Alternatively, by treating {αi}
as random effects, model (1) has the form of a generalized linear mixed model (GLMM).
Given that the sample log odds ratio log(n11n00)/(n10n01) ≥ 0, the maximum likelihood
(ML) method gives β̂subGLMM = log(n10/n01), independently of the random effects distri-
bution provided that consistency conditions are met [3]. All three estimators are equal:
β̂subMH = β̂subCML = β̂subGLMM .

Independently of {αi} being random or fixed effects, the subject-specific model implies
that marginally there is a non-negative correlation between Yi1 and Yi2 unless αi = α. In
the latter case, the Rasch model becomes

logit (Pr(Yix = 1)) = α+ βind · 1x=2 (2)

and the ML method yields β̂indML = log{(n1+n+0)/(n0+n+1)}, where the notation “+” de-
notes the sum over that index. The MH estimator also gives β̂indMH = log{(n1+n+0)/(n0+n+1)}
when applied to the single 2× 2 table formed by the n subjects. When the Rasch model
has the form of model (2) then Yi1 and Yi2 are marginally independent.

A marginal model has the same form as model (2)

logit (Pr(Yix = 1)) = α+ βpop · 1x=2, (3)

but uses two common fitting procedures: ML or generalized estimating equations (GEE)
[4] approaches, to take the dependency between Yi1 and Yi2 into account. Model (3) has
population-averaged effect βpop. Both approaches yield consistent estimates. For a good
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summary see Agresti [5, Chapters 6, 10, 11, 12, 13]. Both βind and βpop have marginal
interpretations, population-averaged effects over all n subjects.

This paper considers the case of a confounding variable with K levels using marginal
models. For example a clinical trial could be conducted in several, say K, hospitals.
To be more general, we consider multiple (c ≥ 2) binary observations per subject. The
observations for the ith subject in stratum k are Yik = (Yi1k, Yi2k, . . . , Yick), where i =
1, . . . , nk, k = 1, . . . ,K with Yixk ∈ {0, 1}. These binary observations form c dependent
binomial counts (Y1k, Y2k, . . . , Yck), where Yxk =

∑nk
i=1 Yixk for x = 1, . . . , c.

Liang [6] considered a marginal approach using the standard Mantel-Haenszel (MH)
estimator for dependent binomial responses, but for a different dependence situation. He
assumes the binary responses Y1xk, . . . , Ynkxk that form the binomial responses Yxk for item
x are dependent, but items Yixk, Yiyk for x 6= y are still assumed to be independent. For
matched pairs the opposite is true, in which items are dependent and binary observations
Yixk forming the binomial responses Yxk are assumed to be independent.

An example for c = 2 responses per subject is given in Table 1 and it shows both
patients’ self evaluation and investigators’ evaluation on the patients’ change in condition
who suffer from asthma, at the end of the study, conducted by Merck Research Labora-
tories. The data were stratified by K = 21 clinical centers with 4 treatments. Let Yi1k be
the patient’s self evaluation and Yi2k be the evaluation from an investigator with values 0
(no change) and 1 (better) for the ith patient in the kth center. The table shows n00

12|k,
n01

12|k, n
10
12|k and n11

12|k the number of patients with outcomes (Yi1k, Yi2k) = (0, 0), (0, 1),
(1, 0) and (1, 1), respectively for the kth clinical center for each treatment. One ques-
tion researchers might ask is whether or not investigators are more positive towards the
patients’ improvement than the patients are themselves, controlling on clinical centers.

For this type of data, we can use either the subject-specific or the marginal approach
[7, 8], depending on the research question and the interpretation needed. This paper
focuses on the marginal approach with a possible stratifying variable, but not stratified
on the finest level as subject. Such a marginal approach might be more appealing to
clinicians, because in a clinical trial the investigator may be more interested in a population
averaged effect, an effect averaged over the patients. The stratification could lead to a
very sparse data set in the sense that within each stratum there are very few subjects. For
instance, a clinical study might use many clinics because of the time it takes each clinic to
recruit a sufficient number of patients. After stratifying the data according to the possible
confounding variable (here clinics), the data become sparse.

Let πx|k = Pr(Yxk = 1) denote the (marginal) probability of a positive response and
π̄x|k denote the (marginal) probability of a negative response for item x = 1, . . . , c when a
subject lies in stratum k = 1, . . . ,K. Now we focus on the more general marginal model
with c binary responses

logit(πx|k) = αk + βpopx , x = 1, . . . , c, k = 1, . . . ,K. (4)
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Regardless of the constraint for {βpopx }, it follows that the log odds ratio (log Ψxy|k =
log πx|kπ̄y|k

π̄x|kπy|k
) equals βpopx − βpopy =: βpopxy for all strata k. This is independent of k and

implies a common odds ratio Ψxy = Ψxy|k for all strata. For instance, we might assume
that the effect Ψ12 describing the difference between the patients’ self evaluation and the
investigators’ evaluation on the patients’ change in condition is equal for all clinics.

The estimate of βpopxy can be obtained using the MH, ML and GEE methods. Un-
der the standard assumption (e.g. [9, 10, 11]) that the underlying joint distribution
(Yi1k, Yi2k, . . . , Yick) follows a multinomial distribution, implying that the pairwise binary
responses (Yixk, Yiyk) with x 6= y are also multinomials, we show that the standard MH
estimator is not consistent under a sparse-data limiting situation (called limiting model
II) for which K → ∞, while all nk (the total number of subjects in stratum k with
nk = n00

k + n01
k + n10

k + n11
k ) remain bounded. All of the standard methods (MH, ML and

GEE) are only consistent under the large-stratum limiting model (called limiting model
I) (K is bounded, whereas nk → ∞). This paper proposes a new MH estimator and its
variance estimator that are dually consistent, i.e. consistent under both limiting models I
and II. We expect the new MH estimator to perform well under a sparse-data situation,
e.g. as for clinical trial data comprising multiple centers, and none of the other marginal
fitting methods to perform well in this situation.

The new MH estimator and its variance estimator are introduced in Section 2. In
Section 3, we consider the ML and GEE methods for the marginal approach. Section
3 also illustrates the subject-specific approach through the CML and GLMM methods.
When the items are positively correlated, the subject-specific effect is different from the
population-averaged effect. In addition, we discuss the situation that the population-
averaged effect and the subject-specific effect take a similar value. Section 4 discusses
a meta-analysis situation not assuming a common odds ratio, where log Ψxy|k follows a
normal or uniform distribution with mean log Ψxy, the main effect. We show that the MH
estimator is not consistent for log Ψxy under the sparse-data limiting model, but its limit
converges to δ log Ψxy with some constant δ ≤ 1. A simulation study is presented in Section
5, where all methods are compared in terms of mean square errors and coverage of a 95%
confidence interval for the true parameter under various cases comprising negative and
positive correlations as well as independence. Section 6 shows the results using different
methods for the clinical trial example. The paper finishes with a general discussion, given
in Section 7, that also provides some further useful applications for the new MH estimator
when a population-averaged interpretation is sought.

2 Mantel-Haenszel (MH) Method

In this section we focus on the MH [2] estimators for the population-averaged effects
{βpopxy , x 6= y = 1, . . . , c} of model (4). The notations for the MH estimators follow closely
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the notations used by Greenland [12]. Let nx|k denote the number of positive responses for
item x = 1, . . . , c and stratum k = 1, . . . ,K, and let n̄x|k denote the number of negative
responses. The standard MH estimator has the form

Ψ̂xy = Cxy/Cyx (5)

with Cxy =
∑K

k=1 cxy|k and cxy|k = nx|kn̄y|k/nk. Define Lxy := log Ψ̂xy as the estimator
for the log odds ratio log Ψxy. The MH estimator for βpopxy is Lxy.

Since Yik = (Yi1k, Yi2k, . . . , Yick) is a binary vector of length c with i = 1, . . . , nk and
k = 1, . . . ,K, there are 2c possible outcomes per stratum k = 1, . . . ,K. Denote the cell
counts for all 2c possible outcomes by {nj , j = 1, . . . , 2c}. We assume the underlying
distribution of {nj : j = 1, . . . , 2c} is multinomial with parameters nk and {πj : j =
1, . . . , 2c}. The marginal probabilities {πx|k : x = 1, . . . , c} can be computed from the
joint probabilities {πjk : j = 1, . . . , 2c} by a linear transformation.

Table 1 shows the complete clinical trial data with all 22 = 4 (c = 2) possible outcomes
for each clinic. Similarly, let the pairwise observations (n00

xy|k, n
10
xy|k, n

01
xy|k, n

11
xy|k) follow a

multinomial distribution with parameters nk (stratum total) and (π00
xy|k, π

10
xy|k, π

01
xy|k, π

11
xy|k)

(the pairwise probabilities), where πstxy|k is the probability of observing the pairwise out-
come (s, t) for items x and y in the kth stratum, with s, t ∈ {0, 1}. The pairwise observa-
tions can be obtained from the joint observations. For the clinical trial example both the
pairwise and full joint distribution are the same because c = 2, but often multiple items
are recorded and then this distinction must be made. For the clinical trial example, π11

12|k
is the probability that both the patient himself/herself and the investigator evaluated the
change in condition as “better” in stratum k.

Greenland [12] considered two sampling models for each 2 × c table: a) two rows of
multinomial observations, and b) c independent binomials per stratum. He showed that
the MH estimator (5) is dually consistent under both sampling models and also proposed
dually consistent (co)variance estimators. The case of dependent binomial data, as in
Table 1, can be viewed as an extension of case b).

We can show that the standard MH estimator Ψ̂xy is not dually consistent under
the dependent binomial case. From Ψ̂xy − Ψxy = Ωxy/Cyx with Ωxy =

∑
k ωxy|k and

ωxy|k = cxy|k −Ψxycyx|k, we obtain

EΩxy = E(Cxy −ΨxyCyx) = (1−Ψxy)
∑
k

(πx|kπy|k − π11
xy|k)

using Enx|kny|k = nk[n′kπx|kπy|k + π11
xy|k] with n′k := nk − 1. In order for the estimator to

be consistent under limiting model II, we need EΩxy = 0. This happens only for the case
Ψxy = 1 or π11

xy|k = πx|kπy|k. The latter is true, when items x and y are (conditionally,
given k) independent as in sampling model b). Appendix A shows the argument in detail
and the inconsistency is confirmed by the simulation study that follows.
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Under limiting model I, the MH estimator Ψ̂xy is still consistent. This consistency also
holds for both Greenland’s co- and variance estimators. Since the MH estimator is not
dually consistent anymore, it is likely to perform poorly under a sparse-data situation.
The simulation study in Section 5 shows the performance of the standard MH estimator
under both limiting models.

For the dependent binomial case – an extension of case b), we propose the following
new estimator for the common odds ratio Ψxy

Ψ̃xy =
C̃xy

C̃yx

with C̃xy =
∑

k c̃xy|k and c̃xy|k = (nx|kn̄y|k − n10
xy|k)/nk; where by definition n10

xy|k = n01
yx|k.

Note, c̃xy|k differs from cxy|k only by the extra term n10
xy|k. Also, define L̃xy as the new

estimator for log Ψxy, i.e., L̃xy = log Ψ̃xy. Since EΩ̃xy = 0, where Ω̃xy =
∑

k ωxy|k with
ωxy|k = c̃xy − Ψxy c̃yx, it follows that Ψ̃xy is consistent under limiting model II. Under
limiting model I, the additional terms (compared to Ψ̂xy) converge to zero. We conclude
that the new estimator is indeed dually consistent.

Furthermore, we propose the following dually consistent variance estimator of L̃xy

Ũxyy := V̂ar(L̃xy) =

∑
k

1
n2

k
((n10

xy|k)
2 − n10

xy|k)

C̃2
xy

+

∑
k

1
n2

k
((n01

xy|k)
2 − n01

xy|k)

C̃2
yx

+

∑
k
n′′kn

′
k+2n′k−1

n2
k

(n10
xy|k + n01

xy|k) + 2
n2

k
n10
xy|kn

01
xy|k −

n′′k
n2

k
(n10
xy|k − n

01
xy|k)

2

C̃xyC̃yx
(6)

where n′k = nk − 1 and n′′k = nk − 2. Appendix A also gives the detail of the proof for the
dual consistency of Ψ̃xy and its variance estimator. The following theorem summarizes
the findings.

Theorem 1 The new MH estimator L̃xy and its new variance estimator Ũxyy are dually
consistent for log Ψxy in marginal model (4). The old MH estimators Lxy and (co)variance
estimators are consistent under limiting model I, and only consistent under model II for
Ψ = 1 or conditional independence.

Unfortunately, it does not seem feasible to provide new covariance estimators, because
of the complexity involved in computing the covariance of L̃xy and L̃xz (or L̃xy and L̃wz).
To compute these covariances, we need to calculate higher moments based on the joint
distribution with 3 (or 4) items comprising 23 = 8 (or 24 = 16) joint probabilities. This is
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far more complex than computing the higher moments for the variance of L̃xy involving
only 22 = 4 (pairwise) probabilities.

As an alternative estimate for the co- and variance of the new MH estimator, the
nonparametric bootstrap method [13] can be used, which randomly selects subjects with
replacement from the original data forming a new artificial sample from which a new
estimate Ψ̂ is computed. Repeating this say B = 1, 000 times creates a new sample of
Ψ̂1, . . . , Ψ̂B, from which the sample variance can be calculated, the so-called bootstrap
estimate of variance.

The variance estimators (MH type or Bootstrap variance) are used to construct Wald-
type confidence intervals (CI) to test for significance of the parameter Ψxy. There are other
more sophisticated bootstrap CI methods, such as the percentile method, the bootstrap
t-method (studentized pivotal) and the bias corrected accelerated (BCa) method, which
are all implemented in the function boot.ci of R-package boot [14, 15]. Carpenter and
Bithell [16] provide a good practical guide for bootstrap confidence intervals. For our
situation they recommend either the BCa method or the variance stabilizing bootstrap-t
method – an extension of the bootstrap-t method not provided by any R-package. This
extension is preferred over the bootstrap-t method when the estimator and its variance
estimator are not (approximately) independent. Figure 1 shows a typical situation for both
the standard and the new MH estimators versus their variance estimators for B = 1000
bootstrap samples. Apparently the standard MH estimator has a slight linear relationship
with its variance estimator, in contrast to the new MH estimator which seems almost
independent of its variance estimator. This suggests that bootstrap CI methods provided
by boot.ci are sufficient for our purposes. The simulation study that follows will also
investigate the coverage of the various confidence intervals.

3 Alternative Marginal and Subject-Specific Approaches

3.1 Maximum Likelihood Method for the Marginal Approach

One approach to fit model (4) maximizes the multinomial likelihood for the K stratified
2c tables while treating the model formula (4) as a set of constraint equations. Model (4)
is a generalized log-linear model (GLLM) of the form

C log Aπ = Xβ (7)

where π is a vector containing all K · 2c joint probabilities; C and A are matrices; X
is the design matrix and β is the vector of model parameters. Haber [17] and Lang and
Agresti [9] presented numerical algorithms for maximizing multinomial likelihoods subject
to constraints, i.e. model (7).

Many of the popular statistical packages do not have procedures available for ML fitting
of such marginal models. An R function (mph.Rcode.R) for the algorithm may be obtained
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from Prof J. B. Lang of the Statistics Department, University of Iowa http://www.stat.
uiowa.edu/~jblang/. This R function can fit a multinomial Poisson homogeneous model,
which is a wider class of model containing GLLM [11]. Bergsma et al. [18] proposed
another fitting algorithm directly built on the work of Lang and Agresti [9] and Lang [10].
They provided an R package called “cmm” for fitting such models. Their program is a
modification of the Lang-Agresti algorithm.

The ML estimator is not consistent for the sparse-data limiting model. The discussion
is as follows. The log-likelihood kernel ll has the following form

ll =
K∑
k=1

2c∑
j=1

nj log πjk,

where j is the index referring to one of the 2c outcomes. For simplification, we consider
the case c = 2 with items x and y. Now ll depends on the 2c = 4 joint observations n00

xy|k,
n01
xy|k, n

10
xy|k, n

11
xy|k and multinomial probabilities π00

xy|k, π
01
xy|k, π

10
xy|k, π

11
xy|k. The marginal

probabilities are computed by πx|k = π10
xy|k + π11

xy|k and πy|k = π01
xy|k + π11

xy|k and a similar
linear transformation applies to the observations. We have

ll =
K∑
k=1

{n00
xy|k log π00

xy|k + n01
xy|k log π01

xy|k + n10
xy|k log π10

xy|k + n11
xy|k log π11

xy|k}

=
K∑
k=1

n00
xy|k log(1− π01

xy|k − π
10
xy|k − π

11
xy|k) + n01

xy|k log π01
xy|k + n10

xy|k log π10
xy|k + n11

xy|k log π11
xy|k

=
K∑
k=1

n00
xy|k log

(
1− expit(αk + βpopx )− expit(αk + βpopy ) + π11

xy|k

)
+ n01

xy|k log
(

expit(αk + βpopx )− π11
xy|k

)
+ n10

xy|k log
(

expit(αk + βpopy )− π11
xy|k

)
+ n11

xy|k log π11
xy|k

using πx|k = expit(αk + βpopx ) = exp(αk+βpop
x )

1+exp(αk+βpop
x )

given by (4). Maximizing ll subject to
model (4) means that we do not only obtain estimates for {αk : k = 1, . . . ,K}, βpopx and
βpopy , but also for the additional nuisance parameters {π11

xy|k : k = 1 . . . ,K}. There are
2 ·K+2 parameters in total. For c > 2, ll depends on even more parameters. This number
grows linearly with 2c.

If the number of items c becomes too large then the fitting becomes infeasible. Another
problem arises when the number of observations per stratum nk is small. Then the number
of parameters can become larger than the number of observations. If nk is bounded
and K → ∞ (limiting model II), then the ML is not consistent, because the number of
parameters goes to infinity as the number of observations N =

∑K
k=1 nk does [19]. The

ML method yields consistent estimates only for limiting model I.
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3.2 Generalized Estimating Equations for the Marginal Approach

The generalized estimating equations (GEE) method [4] is a multivariate extension of the
quasi-likelihood method for which we do not need to specify the full joint distribution of
the c items (Yi1k, . . . , Yick). It only needs the structure for how the variance depends on
the mean and the correlation structure of the c items. For the latter, one can make a
choice for the “working correlation”, such as independence, exchangeable or unstructured.
The “robust” standard error adjusts the standard error using a “sandwich” method to
reflect what actually occurs for the data. As is the ML method, the GEE method is only
consistent under limiting model I, not under limiting model II, because in this situation
the number of parameters grows with K. GEE is a robust and relatively easy method to
apply and even yields consistent estimates if the working correlation is misspecified. It is
also widely implemented in almost all popular software packages.

3.3 Conditional Maximum Likelihood (CML) for the Subject-Specific
Approach

The analog subject-specific model to marginal model (4) is

logit
(
πx|ik

)
= αik + βsubx , where i = 1, . . . , nk, k = 1, . . . ,K, x = 1, . . . , c. (8)

The {αik} introduce a non-negative correlation marginally between items. This model
implies a common log odds ratio log Ψsub

xy = πx|ikπ̄y|ik
π̄x|ikπy|ik

= βsubx − βsuby := βsubxy , because this

expression is independent of i and k. In general, βsubxy 6= βpopxy . The CML estimator is
dually consistent under the assumption of local independence (given {αik}, Yixk and Yiyk
are independent). The estimator is also efficient for this situation. The method can be
applied to either fixed effects or random effects and does not depend on any assumption
of the random effects distribution.

3.4 Generalized Linear Mixed Model (GLMM) for the Subject-Specific
Approach

For model (8), assume αik = αi + αk. We consider two GLMMs under the common odds
ratio assumption. The first (MM1) assumes that both αi and αk are random effects, i.e.
αi ∼ N(0, σ2

sub) and αk ∼ N(0, σ2
strata), whereas the second (MM2) assumes that the

{αk, k = 1, . . . ,K} are fixed effects. MM1 is dually consistent, but MM2 is not consistent
under limiting model II, since for this situation the number of parameters grows with K.

For MM2, we have the following relationship between βsubxy and βpopxy :

βpopxy ≈ δσ2
sub
· βsubxy

9



where δσ2 := (1 + γ2σ2)−1/2 ≈ (1 + 0.35σ2)−1/2 with γ = 16
√

3/(15π) [20]. If σ2
sub ≈

0 (⇒ δσ2
sub
≈ 1), then the subject-specific effect βsubxy and the marginal effect βpopxy are

approximately equal. Otherwise, if σ2
sub > 0, then δσ2

sub
< 1.

4 Heterogeneity of Odds Ratios

The assumption of a common odds ratio is crucial for the consistency of the various
estimators. However this assumption is not always fulfilled. A marginal model that allows
the heterogeneity of odds ratios across different strata has the form

logit
(
πx|k

)
= αk + βxk + βx, k = 1, . . . ,K, x = 1, . . . , c. (9)

Regardless of the constraint, the odds ratio in the kth stratum is log Ψxy|k = βxyk +βxy =
(βxk − βyk) + (βx − βy). We can assume {βxk} as random effects, which is appropriate
under limiting model II. Possible assumptions of the distribution include βxk ∼ N(0, σ2

x)
and βxk ∼ U [−d,+d], denoted by model (N) and (U) respectively. Consider an extension
of the GLMMs discussed in Subsection 3.4, the subject-specific models analog to model
(9) are referred to as models MM3 and MM4, which correspond to MM1 and MM2 but
with additional random effects {βxk}. The log odds ratio log Ψxy = βxy = βx − βy could
be considered as the average treatment effect, as in a meta-analysis.

The MH estimator does not converge to the average treatment effect because the
average treatment effect is not a linear function of ({πx|k, x = 1, . . . , c}). A similar incon-
sistency argument on a non-linear transformation was also given by Cox [21] considering
a different situation where a random sample follows Poisson distributions with different
means. When the distribution is parameterized in terms of some non-linear function, the
transformation of the sample mean is not consistent anymore. The following theorem
shows the limit of the MH estimator under limiting model II when odds ratios vary across
strata. To be more general, the theorem is applied to the case where the correlation
between βxk and βyk equals ρxy (|ρxy| ≤ 1), for x 6= y ∈ {1, . . . , c}.

Theorem 2 For limiting model II, the standard MH estimator Lxy (under conditional
independence or Ψxy = 1) and the new MH estimator L̃xy both converge approximately to
log Ψxy under model (U) for a small d ≤ 1, and converge approximately to δσ2

xy
log Ψxy

under model (N). The term δσ2 = (1+γ2σ2)−1/2 ≈ (1+0.35·σ2)−1/2 where γ = 16
√

3/(15π)
and σ2

xy = {σ2
x + σ2

y − ρxyσxσy}/2.

There is a limitation of Theorem 2 due to the numerical approximation for the term
Eβxk

expit(αk + βxk + βx). The approximation performs well when d ≤ 1 for model (U)
and when σ2

x ≤ 4 for model (N). The detailed proof is given in Appendix B.
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The theorem implies that the limit will either differ from log Ψxy approximately by
factor δσ2

xy
≤ 1 (the value 1 occurs when σ2

xy ≈ 0) for model (N) and by factor 1 for model
(U) for a small d ≤ 1. When log Ψxy = 0, the limit goes to zero for both random effect
models. If we are only interested in testing log Ψxy = 0 against log Ψxy 6= 0, it follows that
the MH estimator can also be used for testing the same hypothesis. The same applies to
any of the other marginal methods. The simulation study that follows investigates the
performance of the various methods under this heterogeneity situation.

5 Simulation Study

We conduct a simulation study to investigate the performance of the proposed log odds
ratio estimator L̃xy and its variance estimator Ũxyy. The proposed estimator L̃xy is com-
pared with both the standard MH estimator Lxy and with those of all the other introduced
methods: GEE, ML, CML, MM1, MM2, MM3 and MM4. For the GEE method, we fit
the model using an exchangeable correlation structure, for the GLMM method we use
R-package lme4 [22] that uses Laplace approximation to obtain ML estimates.

5.1 Homogeneity Assumption

To generate data, we first compute the marginal probabilities from given parameters αk
and βx according to marginal model (4) under the common odds ratio assumption (ho-
mogeneity). Parameters αk were generated from N(0, 1). We let βx = log Ψxy/2 and
βy = − log Ψxy/2. Thus, βxy = log Ψxy.

We consider pairwise associations among c items using the odds ratio Γxy|k

Γxy|k =
π11
xy|kπ

00
xy|k

π01
xy|kπ

10
xy|k

From the marginal probabilities {πx|k, x = 1, . . . , c} and the association parameters {Γxy|k, x 6=
y = 1, . . . , c}, we can compute the pairwise probabilities {πstxy|k, x 6= y = 1, . . . , c; s, t =
0, 1} [23]. For simplicity, we let c = 2 allowing a simple sampling from the pairwise distri-
bution (for c = 2 this is equal to the joint distribution) and assume a constant association
parameter Γ = Γ12|k for all strata k = 1, . . . ,K. We use S = 1, 2, 3 to represent the
sampling method Γ = 0.01, 1.00, 10.00, respectively. The stratum sample sizes nk are set
constant with values 5, 20, 100. The odds ratio Ψ (= Ψ12) takes values 1 and 4. The
number of strata K varies from 5 to 100. In the simulation study, the scenarios range
from ones for which limiting model I seems suitable to ones for which limiting model II
seems appropriate. The number of simulations is 5000 for K = 100 and 10000 otherwise,
adjusting for the computational burden of the particular configuration.
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Table 2 summarizes the mean squared error (mse) relative to the best method, with
the first column showing the values of K, nk , Ψ and S. The lowest value is 1.00 which
indicates that the particular method has the lowest mse among the introduced methods.
For instance, a relative mse (rmse) of 1.20 indicates that the particular method’s mse
is 1.20 times larger than the mse of the best method for this configuration. There are
two additional numbers in superscript and subscript. In superscript, the percentage of
simulations for which the method did not converge is shown. If this number is “0”, then
the method converged for all generated data sets, whereas the percentage 0.0 indicates that
the method did not converge for up to 4 of the 10, 000 (4/10000 = 0.04 ≈ 0.0) simulations.
The number in subscript shows the contribution of bias2 to the mse in percentage. For
example the value 20 indicates that bias2 contributes to 20% of the method’s mse. There
is also a sign (either “+” or “−”) attached to this number, showing whether the bias is
positive or negative. The table also includes the rmse’s of the bootstrap samples mean
(from B = 1, 000 replicates) for both L and L̃, denoted by LBT and L̃BT , respectively.
The results of MM2 and MM4 are not shown, because they are generally worse than those
of MM1 and MM3.

Table 3 shows the percentage of times (coverage) that the 95% confidence interval
covers the true parameter log Ψ. The subscript shows again the percentage of simulations
for which the method did not converge. The table shows the results of the percentile
method, because the results of the other bootstrap methods are generally worse and are
not shown. The tables showing the rmse and the coverage use complex designs, but are
useful in preserving space and in summarizing multiple information in a single table.

We also want to point out a few issues when reading the tables and making interpre-
tations. Sometimes the relative mse might seem good or even be best for some method,
e.g. the ML method in Table 2 has a relative mse of 1.0 in a configuration, however the
percentage of non-convergence is 98%. For the same configuration the MH methods con-
verged for all simulated data sets. The mse’s are not comparable if their computation is
based on very different sets of simulations, but are still shown for completeness. Ideally,
we could compute the mse of all methods for which the ML method converged. However
this is also problematic, since then the results shown in the tables might only refer to a
very few simulations (sometimes to none at all) making any comparison meaningless.

When the marginal model holds, the estimator l̂og Ψ obtained from any of the subject-
specific models (CML and MM1-4) can be quite different from the true population-
averaged parameter log Ψ. In practice, the choice of models between marginal and subject-
specific is based on the nature of the research interest depending on the data. All of the
subject-specific models have a large rmse when the items are highly positively correlated
(S = 3), especially for the random effect models. This is not surprising because the dif-
ference between the population-averaged and the subject-specific log-odds ratios depends
on the variance of the subject random effects in a GLMM, see Subsection 3.4. When
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the items are highly correlated the variance is larger and consequently the difference is
bigger. Although the simulations are not based on a GLMM, intuition suggests that a
similar conclusion should hold for a GLMM that approximates the true distribution in the
Kullback-Leibler sense.

From Table 3, we can also find the impact of the negative association between responses
(S = 1) on the random effect models. When the null hypothesis is true (Ψ = 1), the
coverage of the true parameter is less than 95% based on the 95% confidence interval. It
implies that we reject the null hypothesis more often than we should using the random
effect models. When the association between items is independent or positive (S = 2 or
S = 3), the coverage of the true parameter is closer to the 95%. Therefore unsurprisingly
the random effect models do not perform well when a non-negative association between
the pair of responses is questionable. In comparison, the proposed MH method (L̃) has
coverage close to the 95% for all cases.

From the rmse results in Table 2, the new MH estimator is generally better for S = 3
than the standard MH estimator, except for independence of items (S = 2) and Ψ = 1, for
which the standard MH estimator is still dually consistent. The standard MH estimator
also seems better for S = 1: when there is a strong negative correlation between items
present. When we look at the construction of Ψ̃xy and compare it to that of Ψ̂, then
we see that the numerator and denominator of Ψ̃xy contain an extra term n10: c̃xy|k =
cxy|k − n10

k /nk. A negative correlation of items (Γ < 1), implies π11π00 < π10π01. Hence
n10
k and n01

k will be also relatively large. This implies that c̃xy|k and c̃yx|k are relatively
smaller (closer to zero) than cxy|k and cyx|k. Under Γ < 1 there will be more strata with
zero contribution to the MH estimator Ψ̃ than for Ψ̂, which leads to more inaccuracy. The
new MH estimator is better than the standard one when a positive correlation presents
between items.

Table 3 shows a different picture. The new MH estimator is to be preferred over the
standard MH estimator for all sampling situations S = 1, 2, 3. Even though the standard
MH estimator has better performance according to the rmse table under S = 1, the
percentage of times that the 95% confidence interval covers the true parameter is much
smaller than 95%. It can be explained by the fact that the standard variance estimator
has worse performance than the new one. In summary, when the common odds ratio
assumption holds, we can see from Tables 2 and 3, that the method that is often good is
the new MH method.

5.2 Heterogeneity Assumption

We also generate data under model (9), for which the common odds ratio assumption
does not hold (heterogeneity). We require additional parameters σ2

x, σ2
y and ρxy. We

assume that βk = (βxk, βyk)T follows a bivariate normal with σ2
x = σ2

y = 0.25 and ρ =
0.0, 0.8. For the choice of σ2

x = σ2
y = 0.25, the generated βxyk will be in the interval
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βxy±1.96
√

2 · 1/4 ≈ βxy±1.385 when ρ = 0.0. Consequently, 95% of the generated Ψxy|k
will lie in the interval (Ψxy/4, 4 ·Ψxy). For example, when Ψ = 4 the interval is (1, 16) and
when Ψ = 1 the interval is (1/4, 4). For ρ = 0.8 the intervals will be smaller. In practice,
we would only apply the MH estimator for small/moderate deviations from the common
odds ratio assumption. For such a choice, the simulation study covers the cases from a
small to a large deviation.

Tables 4 and 5 show the relative mse and the coverage when the data was generated
under the heterogeneity assumption for ρxy = 0.8. Since the results under ρxy = 0 are
very similar to the case of ρxy = 0.8, we only report one case. The MH method is now
relatively slightly worse compared to those in the homogeneity cases. We had shown that
under a sparse data situation the MH estimator does not converge to the true log odds
ratio Ψ for Ψ 6= 1, instead it is often underestimated. For the case of ρxy = 0.8, it
converges to 0.975 · log Ψ based on Theorem 2. Table 4 confirms this, showing negative
biases for sparse data situations. The table also shows positive biases for the generalized
linear mixed models (GLMMs) indicating that subject-specific effects are larger than the
population-averaged ones. However, under S = 2 (independent responses), the GLMMs
are close to the marginal models.

From Table 5, the models MM3 and MM4 allowing heterogeneity among the odds
ratios have better performance than the models MM1 and MM2. However, similar to
the homogeneous case, the type I error is larger than the significance level when the
non-negative association assumption does not hold (S = 1).

Table 6 shows the proportion of simulations in which the null hypothesis Ψ = 1 was
rejected when the true Ψ equals 2. Under limiting model I, the ML and GEE methods
give a higher power of the test compared to the MH methods in most of cases. When
data become sparse (K = 20, Nk = 5), even though the ML and GEE are still better,
most of the cases (from 35% to 97%) do not converge. The MH methods based on the
percentile bootstrap are not stable compared to the MH methods based on the derived
variance formulae. We do expect a bigger power for the GLMMs, because the type I error
is larger than the significance level (5%), as given by Tables 3 and 5. Similarly, since the
type I error for the standard MH estimator is also larger than the significance level when
S = 1, its power becomes larger than the proposed MH method under this case. Based on
all simulated tables, we conclude that the proposed MH method performs well in various
situations.

6 Example: Merck Research Laboratories Data

For Table 1, we compare the odds of being positive towards the improvement from the
patients’ self evaluation with these from the investigators’ evaluation for each treatment.
Because the data are very sparse, it is not sensible to use MM2 (or MM4) by treating the
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clinical centers as fixed effects. In addition, the ML method fails to converge using Lang’s
algorithm [11]. Table 7 only reports the estimates from the standard MH, the new MH,
GEE, CML, MM1, and MM3 methods.

For treatment 1 (Placebo), the proposed MH log odds ratio is L̃ = 0.621 with standard
error (s.e.) 0.323 based on formula (6). The bootstrap standard error gives a similar
result 0.346. The standard MH log odds ratio is L = 0.850 with standard error 0.444,
which are different from the proposed MH method. We expect a worse performance for
the standard MH estimator, because the standard MH estimator is not consistent under
limiting model II. We conclude that the estimated odds of being positive towards the
improvement from the patients’ self evaluation are exp(0.621)= 1.86 times higher than
those from the investigators’ evaluation in the placebo treatment. The odds ratio is
significantly different from 1 at the 10% level. Alternatively, the log odds ratio estimates
from the subject-specific methods for CML and MM1 are 1.705 (s.e. 0.768) and 2.698 (s.e.
0.897). Both of them are significant at the 5% level.

The patients’ self evaluation tends to be more optimistic when the treatments 1
(placebo) or 2 (low dose of active drug) were assigned. When the dose of active drug
is high (treatment 3 or 4), the difference between the patients’ self evaluation and the
investigators’ evaluation diminishes. For the subject-specific models, the pattern is the
same as for the MH method, but the subject-specific estimate is larger than the marginal
methods.

The last column in Table 7 presents the estimate for all treatments combined, that is,
the total number of strata equals 21 × 4 = 84. It gives an estimate of the mean effect
across all clinical centers and treatments, allowing for heterogeneity across strata. On
average, the patients’ self evaluation still tends to be more positive and the difference
between the patients’ self evaluation and the investigators’ evaluation is significant at the
5% level. In summary, the estimated odds of being positive towards the improvement
from the patients’ self evaluation are exp(0.400)= 1.49 times higher than those from the
investigators’ evaluation.

7 Discussion

In this paper we propose a new MH estimator for stratified dependent binomial data. It
has advantages over the GEE, ML, and standard MH estimators for sparse data, because
the new MH estimator is consistent under limiting model II whereas the other three are
not. When the data are not sparse, it performs as well as the GEE and ML estimators
based on our simulation study. Unlike the standard MH variance estimator, the proposed
dually consistent variance estimator also performs well, giving correct coverage of the
true parameter. Another advantage of our method is that, e.g. in a multi-center study,
the correlation between responses can be different for different centers or for treatments.
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Unlike traditional approaches, the new MH method does not assume equal correlations in
different strata.

The paper focuses on the marginal model, a population-averaged approach, but al-
ternative subject-specific estimators can be obtained using the CML or random effect
methods. In our view, both the population-averaged and subject-specific approaches have
their justification. The choice between these two depends on the nature of the study.
This paper points out the problems of using the subject-specific approach if a population-
averaged effect is indeed the main interest.

Assume that the subject nuisance parameter follows a normal distribution. The mag-
nitude of the difference between the population-averaged and the subject-specific effects
depends on the variance of the nuisance parameters. The difference increases as the vari-
ance increases (i.e., the association between responses increases). The subject-specific
effects are larger in absolute value (factor δσ2), as discussed in Subsection 3.4. When the
responses do not have positive associations, which violates the structure of the GLMM,
the type I error becomes larger than the significance level. For the marginal model, the
population-averaged effect is independent of the magnitude of the correlation between
items. The negative association does not have any effect on the population-averaged esti-
mator.

This paper also discusses the performance of the new MH estimator when the common
odds ratio assumption does not hold. If the common odds ratio assumption is slightly
violated it is still a useful tool in obtaining a summarizing effect. However, when the
log odds ratios vary across strata, as in a meta-analysis situation, we show that the MH
estimator converges to the mean log odds ratio with a factor δ (≤ 1). The factor δ is ≤ 1
under limiting model II. The value of δ depends on the variation of the log odds ratios
across strata. The larger the variation, the worse the MH estimator is. For instance, in
our simulation study the odds ratio varies from 1 to 16 when the true mean odds ratio
equals 4. The MH estimator under-estimates the true mean odds ratio when the data
are sparse, but in a small scale. For the above case, the MH estimator converges to
exp(0.96 · log 4) = 3.78 (instead of 4).

The new MH type estimator can be easily applied to any binary matched pairs data sit-
uation. For example let us focus on a multi-center cross-over study design with treatments
A and B and a stratification variable with K levels referring to the K clinical centers.
The standard approach considered by Gart [24] is based on the subject-specific approach.
Instead we can also apply the newly proposed MH estimator based on a marginal model
by first computing Ψ̃AB for the group that receives treatment A first, followed by treat-
ment B. Similarly we can compute Ψ̃BA for the other group which received treatment B
first. The treatment effect for the cross-over study is computed by 1

4(log Ψ̃AB + log Ψ̃BA)
and the order effect by 1

4(log Ψ̃AB − log Ψ̃BA). Another application is a multi-center co-
hort study comparing two groups. The change for the control group between baseline
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and follow-up is captured by the odds ratio ΨC and that of the treatment group by ΨT ,
assuming a common odds ratio for the K medical centers. The treatment effect can now
be estimated by log(Ψ̃T )− log(Ψ̃C), which accounts for the dependence between baseline
and follow-up. This situation is similar to a matched-pairs situation for continuous data,
for which usually the one-sample t-test is applied. Another application of the proposed
estimators is a longitudinal study, in which the binary responses are collected over time.

This paper gives a simple method to compare binary matched pairs when the researcher
is interested in a population-averaged interpretation and when the data were highly strat-
ified by other factors. Another reason to opt for the population-averaged approach is
that the marginal effect is independent of the magnitude of the association between items.
In contrast the subject-specific effect increases with increasing positive correlation (fac-
tor δσ2

sub
with αi ∼ N(0, σ2

sub)). Medical practitioners often compare treatment effects
of several trials. When the treatment effects are based on mixed models with different
magnitude of correlation within subjects, then differences in the treatment effects might
be solely due to the difference in correlation, i.e. the difference in δσ2 , but not due to a
different marginal effect (odds ratio referring to marginal probabilities).

Our proposed MH estimator can be generalized along the lines of Mickey and Elashoff
[25] and Greenland [12]. The log odds ratio log Ψxz cannot only be estimated by Lxz, but
also by Lxy +Lyz. This is because of the property Ψxz = ΨxyΨyz. There does not exist a
unique estimator, since generally Lxz 6= Lxy + Lyz. The generalized estimator introduced
by Greenland [12]

̂log Ψxy := L̄xy := (Lx+ − Ly+)/c.

is generally applicable to any estimator of log Ψxy and also applicable for stratified de-
pendent binomial data. The generalized MH estimator has efficiency advantages over the
standard MH estimator. Greenland [12] also proposed a dually consistent covariance es-
timator for the covariance between L̄xy and L̄wz under the sampling models a) and b).
The formulae for such a covariance estimator for the proposed MH estimators is slightly
different and is presented in Appendix C along with a proof.

Suesse [26] defined the new MH estimator Ψ̃ slightly differently. The term c̃xy|k in
this paper uses denominator nk, whereas Suesse [26] used denominator n′k. Using nk has
the advantage that Ψ̃ is also automatically defined for nk = 1, whereas using n′k has
the advantage that then Ec̃xy|k = nkπx|kπ̄y|k (holds in general) is identical to Ecxy|k =
nkπx|kπ̄y|k, i.e. standard and new MH estimator share the same property, provided the
underlying assumptions are fulfilled.

Unfortunately we cannot use the new MH estimator when we condition on each subject
i, because then nk = 1 and the contribution of each subject to the MH estimator is zero
(c̃xy|k = 0), making the new MH estimator undefined in this case. This is in contrast to
the standard MH estimator (assuming conditional independence) which is still defined in
this instance.
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The variance estimator Ũxyy can be improved in estimating the variance of L̃, even
though the coverage of the Wald-type confidence interval is good. Future research aims at
finding a more efficient variance estimator replacing Ũxyy as well as covariance estimators
that go along with the asymptotic covariances yet to be derived. Then the generalized
(co)variance estimators can also be constructed by using these more efficient estimators.
It needs to be investigated whether deriving covariance estimators is feasible or not.

Following the discussion of effects of misclassification in matched-pair case-control
studies given by Greenland [27], the proposed method along with any other considered
method here, can be sensitive to bias from misclassification. Future research also aims to
address the effect of misclassification on the newly proposed MH estimator.
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Table 1: Patients’ Self Evaluation and Investigators’ Evaluation on the Patients Change
in Condition: number of bivariate binary observations for improvement

Center 1 2 3 4 5 6 7
Treatments 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
n00 4,1,2,0 2,1,2,2 4,1,1,3 1,2,2,1 2,1,2,0 0,0,0,0 1,3,1,2
n01 0,0,1,1 1,0,0,0 0,0,0,0 0,0,0,0 0,0,0,1 0,0,0,0 0,0,0,1
n10 0,2,0,1 0,1,1,1 1,3,0,0 1,2,2,1 0,0,0,1 2,0,0,1 2,1,2,0
n11 0,1,1,1 0,0,0,0 1,0,0,2 0,2,2,0 1,1,1,3 0,2,1,1 0,0,0,2

Center 8 9 10 11 12 13 14
Treatments 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
n00 2,1,0,2 1,3,2,0 1,2,0,1 2,1,1,1 0,0,0,1 4,3,1,2 1,2,1,3
n01 0,0,1,1 0,0,0,0 0,0,0,0 0,0,0,1 0,0,0,1 0,0,0,1 0,0,0,0
n10 0,0,0,0 0,0,0,0 0,0,0,0 1,0,1,0 0,0,0,1 1,0,0,0 0,1,0,1
n11 0,1,2,0 0,0,1,1 1,2,1,1 0,1,1,0 2,1,2,0 0,1,1,0 0,2,1,1

Center 15 16 17 18 19 20 21
Treatments 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
n00 1,5,3,1 2,2,2,0 4,0,3,2 4,1,0,1 1,0,3,3 1,2,3,1 0,3,1,1
n01 0,0,0,0 0,1,0,0 0,0,0,0 1,0,0,0 0,0,0,0 0,0,0,1 0,1,0,0
n10 2,0,0,0 0,1,0,0 0,0,0,2 0,1,0,0 1,0,0,0 0,1,0,0 0,0,0,0
n11 1,0,2,1 2,1,3,4 1,1,2,0 0,2,1,1 1,3,1,2 1,0,1,0 1,0,2,2
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Table 7: Merck Data: The estimates from the standard MH L (1st row), the new MH L̃
(2nd row), GEE (3rd row), CML (4th row), MM1 (5th row), and MM3 (6th row) methods
along with their standard errors in parentheses

Treatment
Methods 1 2 3 4 Combined
standard MH L 0.850 (0.444) 0.890 (0.412) 0.296 (0.385) 0.072 (0.379) 0.419 (0.184)
New MH L̃ 0.621 (0.323) 0.856 (0.316) 0.260 (0.180) 0.000 (0.336) 0.400 (0.114)
GEE NA NA NA NA 0.428 (0.123)
CML 1.705 (0.768) 0.872 (0.760) 1.099 (0.816) 0.118 (0.486) 1.025 (0.311)
MM1 2.698 (0.897) 1.479 (0.514) 0.716 (0.610) 0.107 (0.416) 0.857 (0.251)
MM3 NA 1.500 (0.534) 0.716 (0.610) 0.108 (0.417) 0.859 (0.260)

*

A Appendix

A.1 Non-dual Consistency of Ψ̂xyy

Under the Sparse-Data Limiting Model (Limiting Model II) we can write

Ψ̂xy −Ψxy =
Cxy −ΨxyCyx

Cyx
=

∑K
k=1 cxy|k −Ψxycyx|k∑K

k=1 cyx|k

=
(
∑K

k=1 cxy|k −Ψxycyx|k)/K∑K
k=1 cyx|k/K

=
(Cxy −ΨxyCyx)/K

Cyx/K

=

∑K
k=1 ωxy|k/K∑K
k=1 cyx|k/K

=
Ωxy/K

Cyx/K

with ωxy|k = cxy|k −Ψxycyx|k and Ω =
∑

k ωk.
The term cxy|k is a bounded random variable under limiting model II, hence the vari-

ance of Cxy is o(K2) and Chebyshev’s weak law of large numbers (CWLLN) implies
1
K (Ωxy − EΩxy) →p0.

We assume nk = (n00
xy|k, n

01
xy|k, n

10
xy|k, n

11
xy|k) follows a multinomial distribution with pa-
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rameters nk and πk = (π00
xy|k, π

01
xy|k, π

10
xy|k, π

11
xy|k). It follows:

Enx|kny|k = E(n10
xy|k + n11

xy|k)(n
01
xy|k + n11

xy|k) = nk[n′kπx|kπy|k + π11
xy|k]

with n′k = nk − 1.
Therefore,

Ecxy|k =
1
nk

Enx|kn̄y|k =
1
nk

Enx|k(nk − ny|k) =
1
nk

(
nkEnx|k − Enx|kny|k

)
=

1
nk

(
n2
kπx|k − nk

[
n′kπx|kπy|k + π11

xy|k

])
= nkπx|k − nkπx|kπy|k + πx|kπy|k − π11

xy|k

= nkπx|kπ̄y|k + (πx|kπy|k − π11
xy|k)

We conclude

EΩxy = E(Cxy −ΨCyx)

=
∑
k

{
nkπx|kπ̄y|k + (πx|kπy|k − π11

xy|k)−Ψxy

(
nkπy|kπ̄x|k + (πy|kπx|k − π11

xy|k)
)}

=
∑
k

{
nkπx|kπ̄y|k − nkπx|kπ̄y|k + (πx|kπy|k − π11

xy|k)(1−Ψxy)
}

= (1−Ψxy)
∑
k

(πx|kπy|k − π11
xy|k).

Therefore 1
KΩxy converges to a non-zero constant, i.e. limK→∞

1
KEΩxy, unless items are

independent or Ψxy = 1. Since Ψ̂xy − Ψxy does not converge to 0 in probability, Ψ̂xy is
not consistent for the general case of b).

Under Large-Stratum Limiting Model (Limiting Model I), let N =
∑

k nk and nk
N →

αk > 0 as N →∞. Then,

Ψ̂xy =

∑K
k=1 nx|kn̄y|k/nk∑K
k=1 ny|kn̄x|k/nk

=

∑
k

1
nkN

nx|kn̄y|k∑
k

1
nkN

ny|kn̄x|k
=

∑
k
nk
N

nx|k
nk

n̄y|k
nk∑

k
nk
N

ny|k
nk

n̄x|k
nk

N→∞−→ p

∑
k αkπx|kπ̄y|k∑
k αkπy|kπ̄x|k

= Ψxy

∑
k αkπy|kπ̄x|k∑
k αkπy|kπ̄x|k

= Ψxy,

by πxπ̄y = Ψxyπ̄xπy, that is, the consistency holds under limiting model I. The ordinary
MH estimator is not only dually consistent under independence of items, but also when
Ψxy = 1 and even when items are dependent.
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A.2 Dual Consistency of Ψ̃xy

Sparse-Data Limiting Model (Limiting Model II):
As before, we can write

Ψ̃xy −Ψxy =
(
∑K

k=1 c̃xy|k −Ψxy c̃yx|k)/K∑K
k=1 c̃yx|k/K

=
(C̃xy −ΨxyC̃yx)/K

C̃yx/K

=
(
∑K

k=1 ω̃xy|k)/K∑K
k=1 c̃yx|k/K

=
Ω̃xy/K

C̃yx/K
(10)

with ω̃xy|k = c̃xy|k −Ψxy c̃yx|k and Ω̃ =
∑

k ω̃k. We have

Ec̃xy|k = E(nx|kn̄y|k − n10
xy|k)/nk =

1
nk

(
Enx|k(nk − ny|k)− En10

xy|k

)
=

1
nk

(
nkEnx|k − Enx|kny|k − En10

xy|k

)
=

1
nk

(
n2
kπx|k − nk(n′kπx|kπy|k + π11

xy|k)− nkπ
10
xy|k

)
=

1
nk

(
nkn

′
k(πx|k − πx|kπy|k) + nk(πx|k − π11

xy|k − π
10
xy|k)

)
= n′kπx|kπ̄y|k +

nk
nk

(πx|k − πx|k) = n′kπx|kπ̄y|k,

hence, EΩ̃xy = E(C̃xy − ΨxyC̃yx) = 0. This results holds also for the special case of
independence between items. We apply Chebyshev’s weak law of large numbers and find

C̃xy/K =
K∑
k=1

c̃xy|k/K
K→∞−→ p lim

K→∞

K∑
k=1

E(c̃xy|k)/K = lim
K→∞

EC̃xy/K. (11)

It follows from equation (10) and by applying Chebyshev’s weak law of large numbers to
the numerator together with EΩ̃xy = 0 and equation (11), that the new estimator Ψ̃xy is
consistent under limiting model II, in contrast to Ψ̂xy.

Large-Stratum Limiting Model (Limiting Model I):

C̃xy|k/N =
K∑
k=1

c̃xy|k/N =
K∑
k=1

(nx|kn̄y|k − n10
xy|k)/(nkN)

=
K∑
k=1

n2
k

nkN

nx|k

nk

n̄y|k

nk
− nk
nkN

n10
xy|k

nk

N→∞−→ p

K∑
k=1

αkπx|kπ̄y|k − 0 · π10
xy|k =

K∑
k=1

αkπx|kπ̄y|k.
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Now

lim
N→∞

Ψ̃xy =
limN EC̃xy/N
limN EC̃yx/N

= Ψxy
limN EC̃yx/N
limN EC̃yx/N

= Ψxy.

Thus, Ψ̃xy is indeed dually consistent.

A.3 Dual Consistency of Ũxyy

For the sparse-data limiting model, we obtain the following asymptotic variance:

lim
K→∞

K ·Vara(L̃xy) =
1

Ψ2
xy

lim
K→∞

K ·Vara(Ψ̃xy)

=
1

Ψ2
xy

limK→∞K ·Vara(Ω̃xy/K)

[limM→∞
∑K

k=1 Ec̃yx|k/K]2

=
limK→∞

∑
k Var(ω̃xy|k)/K

[limK→∞
∑K

k=1 Ec̃xy|k/K]2
, (12)

where

Var(ω̃xy|k) = Var(c̃xy −Ψc̃yx)

= E(c̃xy −Ψc̃yx)2 − [E(c̃xy −Ψc̃yx)]2 = E(c̃xy −Ψc̃yx)2

= Ec̃2
xy + Ψ2Ec̃2

yx − 2ΨEc̃xy c̃yx

=
1
n2
k

{E(Xx|kX̄y|k −X10
xy|k)

2 + Ψ2E(Xy|kX̄x|k −X10
yx|k)

2

− 2ΨE(Xx|kX̄y|k −X10
xy|k)(Xy|kX̄x|k −X10

yx|k)}

For convenience, we suppress subscript k and write Xst := Xst
xy|k for s, t ∈ {0, 1}.

=
1
n2
k

{(EX2
xX̄

2
y + EX2

10 − 2EXxX̄yX10) + Ψ2(EX2
y X̄

2
x + EX2

01 − 2EXyX̄xX01)

− 2Ψ(EXxXyX̄xX̄y − EXxX̄yX01 − EXyX̄xX10 + EX10X01)}

=
1
n2
k

{EX2
xX̄

2
y + EX2

10 − 2EXxX̄yX10 + Ψ2EX2
y X̄

2
x + Ψ2EX2

01 − 2Ψ2EXyX̄xX01

− 2ΨEXxXyX̄xX̄y + 2ΨEXxX̄yX01 + 2ΨEXyX̄xX10 − 2ΨEX10X01}. (13)

We define N3 := nn′n′′n′′′, N2 := nn′n′′, N1 := nn′, N0 := n with n′ = n−1, n′′ = n−2
and n′′′ = n − 3. Using the moment generating function of the multinomial distribution
(n, (p1, p2, p3, . . .)), we can derive the following higher order moments (indices i, j and k
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refer to different outcomes of the multinomial distribution):

EXi = N0pi

EX2
i = N1p

2
i + npi

EXiXj = N1pipj

EX3
i = N2p

3
i + 3N1p

2
i +N0pi

EX2
iXj = N2p

2
i pj +N1pipj

EXiXjXk = N2pipjpk

EX4
i = N3p

4
i + 6N2p

3
i + 7N1p

2
i +N0pi

EX3
iXj = N3p

3
i pj + 3N2p

2
i pj +N1pipj

EX2
iX

2
j = N3p

2
i p

2
j +N2(p2

i pj + pip
2
j ) +N1pipj

EX2
iXjXk = N3p

2
i pjpk +N2pipjpk

EXiXjXkXl = N3pipjpkpl. (14)

For convenience, define XA := X10, XB := X01, XC := X11, XD := X00 to avoid confusion
with the indices s, t ∈ {0, 1}, similarly for the πst’s. Now we write n2 and n as

n2 = n′′n′′′ + 5n′′ + 4 = n′n′′ + 3n′ + 1 = nn′ + n

n = n′′′ + 3 = n′′ + 2 = n′ + 1,

hence,

n2N1 = n2n′ = N3 + 5N2 + 4N1 nN2 = n2n′n′′ = N3 + 3N2

n2N0 = n3 = N2 + 3N1 +N0 nN1 = n2n′ = N2 + 2N1

n2 = N1 +N0 nN0 = n2 = N1 +N0. (15)

with N0 = n, N1 = nn′, N2 = nn′n′′ and N3 = nn′n′′n′′′. Let(·)|Ni denote the terms of (·)
with factor Ni, for example EX3

iXj |N3 = p3
i pj . By applying (15) with (14), we can derive
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the following higher moments as shown by Suesse [26]:

EX2
A = N1π

2
A +N0πA

EX2
B = N1π

2
B +N0πB

EXAXB = N1πAπB

EXxX̄yXA = N2πxπ̄yπA +N1{2π2
A + πA − πAπB}+N0πA

EXxX̄yXB = N2πxπ̄yπB +N1πAπB

EX̄xXyXB = N2πyπ̄xπB +N1{2π2
B + πB − πBπA}+N0πB

EX̄xXyXA = N2πyπ̄xπA +N1πBπA

EX2
xX̄

2
y |N3 = π2

xπ̄
2
y

EX2
xX̄

2
y |N2 = πxπ̄y(1− πB + 5πA)

EX2
xX̄

2
y |N1 = πxπ̄y + 4π2

A + 2πA − 2πAπB
EX2

xX̄
2
y |N0 = πA

EX2
y X̄

2
x|N3 = π2

y π̄
2
x

EX2
y X̄

2
x|N2 = πyπ̄x(1− πA + 5πB)

EX2
y X̄

2
x|N1 = πyπ̄x + 4π2

B + 2πB − 2πAπB
EX2

y X̄
2
x|N0 = πB

EXxXyX̄xX̄y|N3 = πxπyπ̄xπ̄y

2× EXxXyX̄xX̄y|N2 = (πxπ̄y + πyπ̄x)(2πA + 2πB + 1)− 2(πA − πB)2 − (πA + πB)
EXxXyX̄xX̄y|N1 = πxπ̄y − πA = πyπ̄x − πB
EXxXyX̄xX̄y|N0 = 0. (16)

Finally we are able to compute (13) by using (16).

Var(ω̃xy|k) =
N2

n2
Ψ{(πA + πB)− (πA − πB)2}

+
N1

n2
{π2

A + Ψ2π2
B + Ψ(πA + πB + 2πAπB)}.

The sparse data limiting variance is obtained by inserting Var(ω̃xy|k) into equation (12).
For the large-stratum limiting model, we obtain the following asymptotic variance:

lim
N→∞

N ·Vara(L̃xy) =
limN→∞

∑
k Vara(ω̃xy|k)/N

[limN→∞
∑K

k=1 Ec̃xy|k/N ]2
.

By the delta method, the large-stratum limiting variance is

lim
N→∞

1
N

∑
k

Vara(ω̃xy) =
∑
k

αk{πxπ̄x + πyπ̄y + 2(πxπy − πC)}.
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Now we can show that the estimator Ũxyy converges under both limiting situations to the
corresponding asymptotic variance.

B Appendix

Let βk := (βxk, βyk)T be the vector of random effects and Fk the distribution of βk with

covariance Σ =
(

σ2
x ρσxσy

ρσxσy σ2
y

)
and mean 0.

First, we re-express the model

logit(πx|k) = αk + βxk + βx

logit(πy|k) = αk + βyk + βy

for any two items as

logit(πx|k) = α̃k + β̃xk + βx

logit(πy|k) = α̃k + β̃yk + βy

with α̃k = αk − λ1βxk − λ2βyk, β̃xk = (λ1 + 1)βxk + λ2βyk and β̃yk = λ1βxk + (λ2 + 1)βyk.
The two models are identical and imply the same probabilities πx|k and πy|k, the same
βxyk = βxk−βyk = β̃xk− β̃yk and βxy = βx−βy due to unchanged βx and βy. The random
effect distribution of β̃k also has mean 0 but covariance Σ̃ 6= Σ. The elements of Σ̃ are
denoted by σ̃2

x, σ̃2
y and ρ̃xyσ̃xσ̃y. We choose λ1 and λ2 to have σ̃x = σ̃y and ρ̃xy = 0. The

solutions of this problem for λ1 are

λ1 =
−σ2

xσ
2
y(1 + ρxy)± (σ2

x − ρxyσxσy)
√
σ2
xσ

2
y(1 + ρxy)

2

and the corresponding solutions for λ2 are

λ2 =
−σ2

xσ
2
y(1 + ρxy)± (σ2

y − ρxyσxσy)
√
σ2
xσ

2
y(1 + ρxy)

2
,

which imply a variance of σ̃2
x = σ̃2

y = {σ2
x + σ2

y − 2ρxyσxσy}/2 = Var(βxk − βyk)/2.
Without the loss of generality, assume σ2

x = σ2
y and ρxy = 0.

In Section A of the Appendix, we have shown the in- and consistency of the MH
estimators L and L̃ under limiting model II. In this situation, the ordinary MH estimator
Ψ̂ converges to

Ψ∞ :=
limK→∞

∑
k Ecxy|k/K

limK→∞
∑

k Ecyx|k/K
(17)
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and the new MH estimator Ψ̃ to a similar expression Ψ̃∞ only replacing cxy|k with c̃xy|k.
The reason why Ψ̂ is inconsistent is that Ecxy|k ∝ πx|kπ̄y|k does NOT hold under

arbitrary dependence between items given k, but Ec̃xyk ∝ πx|kπ̄y|k holds, which ensures
the consistency of Ψ̃ under the common odds ratio assumption.

Since we introduced additional random effects βxk to account for heterogeneity, we
also have to compute Eβk

πx|kπ̄y|k in order to obtain an expression for Ecxy|k and Ec̃xy|k .
From π̄x|k = 1−πx|k it follows that Cov(πx|k, π̄y|k) = Cov(π̄x|k, πy|k) = Cov(πx|k, πy|k).

Therefore
Eπx|kπ̄y|k = Cov(πx|k, π̄y|k) + Eπx|kEπ̄y|k.

Under model (N), we can use the numerical approximation Eβxk
πx|k ≈ expit{δσ2

x
(αk +

βx)} with δσ2 = (1 + γ2σ2)−1/2 ≈ (1 + 0.35 · σ2)−1/2 and γ = 16
√

3/(15π) [20] The term
Covβk

(πx|k, πy|k) is zero under model (N), because ρ = 0 implies independence between
βxk and βyk.

Under model (U),

Eβxk
πx|k =

1
2d

log
(

1 + exp(αk + βx + d)
1 + exp(αk + βx − d)

)
which is approximately π0

x|k := expit(αk + βx + βxk)|βxk=0. Figure 2 shows the quality of
this approximation. We only need to be cautious if we apply the above transformation of
random effects under model (U) (if d1 6= d2 or ρ 6= 0) because the difference of two inde-
pendent uniform distributions U [−d1, d1] and U [−d2, d2] follows a triangular distribution.
However this distribution has less heavy tails than the uniform distribution. Hence we
expect that the approximation for such a random effects distribution is even better.

Now we need to compute Covβk
(πx|k, πy|k) for model (U), as ρxy = 0 does not imply

independence between βxk and βyk. We apply a first order Taylor series expansion around
βk = 0 of function g(βk) := (expit(αk + βx + βxk), expit(αk + βy + βyk))T and obtain

Cov (g(βk)) ≈ Cov {g(0) + G(0) · βk} ≈ G(0) · Cov(βk) ·G(0)
= G(0) ·Σ ·G(0)

with G := ∂g(βk)

∂βk

that yields G(0) = Diag(π0
x|kπ̄

0
x|k, π

0
y|kπ̄

0
y|k). It follows

Cov(πx|k, πy|k) ≈ ρσxσyπ0
x|kπ̄

0
x|kπ

0
y|kπ̄

0
y|k.

Hence Cov(πx|k, πy|k) ≈ 0 for ρ = 0.
Plugging this into formula (17) yields

Ψ∞ ≈
limK→∞

∑
k π

0
x|kπ̄

0
y|k/(nkK)

limK→∞
∑

k π
0
y|kπ̄

0
x|k/(nkK)

= exp{δσ2
x
(βx − βy)}
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because exp(δσ2
x
(βx − βy)) =

π0
x|kπ̄

0
y|k

π0
y|kπ̄

0
x|k

(a different common odds ratio). We conclude

log Ψ∞ = δσ2
x
(βx − βy) = δσ2

x
· log Ψ, which was stated in Theorem 2 except σ2

x has
been replaced by {σ2

x + σ2
y − 2ρxyσxσy}/2 due to the transformation.

The numerical approximation for model (N) is based on the result Eβxk
expit(αx +

βxk + βx) ≈ expit{δσ2
x
(αx + βx)} derived by Zeger et al. [20]. Under model (U) we

use the approximation Eβxk
expit(αx + βxk + βx) ≈ expit(αx + βx). The quality of this

approximation can be seen in Figure 2. For d ≤ 1 the approximation is very good, but for
d ≥ 3 it becomes inaccurate.

This is similar to Figure 2 in [20] where the normal distribution for which the approxi-
mation is inaccurate when σ2

x ≥ 4. This indicates that a similar approximation might also
apply to model (U): Eβxk

expit(αx + βxk + βx) ≈ expit{δσ2
x
(αx + βx)} but with δ(·) defined

differently.

C Appendix

The formula for the generalized covariance estimator is

Ĉov( ¯̃Lxy,
¯̃Lwz) =

1
c2
{Ũ+

xw − Ũ+
xz − Ũ+

yw + Ũ+
yz} (18)

with

Ũ+
xy =

{
Ũ+
xx = Ũx++ =

∑
h,i Ũxhi , x = y

Ũ+
xy = Ũ+xy − Ũxy+ − Ũyx+ + Ũxyy + U∗xy , x 6= y

, (19)

where U∗xy =
∑

x,h,y,i distinct Ũxhyi for x 6= y, otherwise U∗xy = 0.
A sketch of this proof is provided here. Subscript “+” denotes summation over that

subscript. First we derive

Cov( ¯̃Lxy,
¯̃Lwz) = Cov(1/c

∑
h

L̃xh − L̃yh, 1/c
∑
i

L̃wi − L̃zi)

=
1
c2

∑
i

{
Cov(L̃xi, L̃wi) + Cov(L̃yi, L̃zi)− Cov(L̃xi, L̃zi)− Cov(L̃yi, L̃wi)

}
+

1
c2

∑
i 6=h

{
Cov(L̃xh, L̃wi) + Cov(L̃yh, L̃zi)− Cov(L̃xh, L̃zi)− Cov(L̃yh, L̃wi)

}
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and express
∑

h6=i Cov(L̃xh, L̃wi) as∑
h6=i

Cov(L̃xh, L̃wi) =
∑
h

(i = x)

Cov(L̃xh, L̃wx) +
∑
i

(h = w)

Cov(L̃xw, L̃wi)

− Cov(L̃xw, L̃wx) +
∑

distinct indices x,h,w,i

Cov(L̃xh, L̃wi)

= −
∑
i

Cov(L̃xw, L̃xi)−
∑
i

Cov(L̃wx, L̃wi)

+ Cov(L̃xw, L̃xw) +
∑

distinct indices x,h,w,i

Cov(L̃xh, L̃wi)

These two formulae together provide the basis for equations (18) and (19). For more
details of the proof, refer to Suesse [26].

The formulae are identical to Greenland’s except formula (19), which contains an
additional term U∗xy, because now generally Cov(L̃xy, L̃xy) 6= 0. Greenland sampling
models a) and b) imply Cov(L̃xy, L̃xy) = 0. When comparing Greenland’s formula with
(19), we see that equation (19) has an additional term Sxy for x 6= y, because generally
Cov(L̃xy, L̃xy) 6= 0. We propose to use the bootstrap estimates of covariance Ũ∗xyz and
Ũ∗xywz Ũxyz and Ũxywz, because we are not able to give formulae for the estimators Ũxyz
for Cov(L̃xy, L̃xz) and Ũxywz for Cov(L̃xy, L̃wz).
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