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Abstract

Nelson’s ’supplementary runs’ tests are widely used to augment the standard ’out of

control’ test for an x̄ control chart, or a chart with individual values, to determine if

any special causes exist. The fourth of Nelson’s tests gives an out-of-control signal

when fourteen points in a row follow a zig-zag pattern (alternating up and down);

it is thus a signal that the process has negative autocorrelation. Using a recursive

formula, the exact probability of a zig-zag sequence of length 14 is calculated for an in

control process. This value does not appear in the SQC literature, but can be simply

determined from results of André (1879, 1881, 1883), rediscovered by Entringer,

(1966), which long precede the development of SQC. Two curious properties, relating

the probabilities of zig-zag sequences of successive lengths, are also demonstrated.

AMS Subject Classification: 60-01 and 62P30

Keywords: x̄ chart, Supplementary runs tests, Nelson’s ’zig-zag’ test, alternating

permutations.

1 Introduction

Nelson (1984) suggested a set of supplementary tests for detecting out of control

conditions in control charts. All of these tests are directed at finding unusual runs

of points which signal that the process is not behaving as expected if in control.

Nelson’s eight tests are briefly described below. In all but two of the tests, the sup-

plementary rule is based on all or some in a sequence of points being in a particular
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zone (or union of zones) in the control chart. These zones, and their associated

probabilities, are shown in Table 1.

Table 1. . Control chart zones and associated probabilities

Zone D2 P{D2} = 0.00135
LCL µ − 3σ

Zone A2 P{A2} = 0.02140
µ − 2σ

Zone B2 P{B2} = 0.13591
µ − σ

Zone C2 P{C2} = 0.34134

Zone C1 P{C1} = 0.34134

CL µ

Zone B1 P{B1} = 0.13591
µ + σ

µ + 2σ
Zone A1 P{A1} = 0.02140

Zone D1

UCL µ + 3σ
P{D1} = 0.00135

This table applies to single variable charts, in which the quality characteristic

being plotted is assumed to follow a normal distribution with mean µ and standard

deviation σ , provided the process is in control. With simple modification, the table

can be applied to an x̄ chart with mean µ and standard deviation. σ/
√

n . In such

a control chart, the location and trend of observed values of the sample statistic is

used to assess whether the process is in control.

2 Nelson’s Eight Tests

Nelson described eight tests, Test 1 being the standard test of a single point beyond

the control limits. The other seven tests supplement the standard test. His eight

tests are defined by the following signals:

Test 1. A single point beyond zones A (that is, in zone D1 or D2);

Test 2. Nine points in a row on one side of centre line;

Test 3. Six points in a row, all increasing, or all decreasing;

Test 4. Fourteen points in a row, alternating up and down;

Test 5. (At least) two out of three points in a row both in zone A1 or beyond, or

both in A2, or beyond;

Test 6. (At least) four out of five points in a row, on the same side of the centre

line and also either in zone B1 or beyond, or in B2 or beyond;
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Test 7. Fifteen points in a row, each in zone C1 or in zone C2;

Test 8. Eight points in a row, all beyond zones C, ie each in B1 or beyond or B2 or

beyond.

Unlike the other six tests, Test 3 and 4 do not relate to the zones described in

Table 1.

Nelson’s tests have gained widespread acceptance, and they have been incorpo-

rated in some commonly used statistical packages, including SAS, MINITAB and

STATISTICA. Such tests have evolved over time. For example, the Western Electric

Handbook (1956) suggests similar tests. They are now commonly incorporated in

text books, e.g. Montgomery (1996), and in the quality manuals and practices of

large manufacturing organisations, such as Ford.

When the process is in control, the probability that a sequence of the appropriate

length will signal an out-of-control process has been previously determined for some

of the tests by Walker, Philpot and Clement (1991). Champ and Woodall (1987)

also report these or related probabilities for Tests 1, 5 and 6. The probabilities are

given below. That for Test 4 has not previously appeared in the SQC literature.

With the exception of Test 4, the brief detail of the calculation of each probability

also explains its derivation.

P{T1} = P (a point falls beyond zone A1 or beyond zone A2),

= 2 × P (D1) = 0.00270.

P{T2} = 2P (C1 or B1 or A1 orD1)
9 = 2 × .59 = 0.00391.

P{T3} = (1 + 1)/6! = 0.00278,

since there are 6!=720 possible orderings of six points, in only one

of which there is a pattern of successive increases and in only one

of which there is a pattern of successive decreases.

P{T4} = 398721962/14! = 0.00457, as derived later in this paper.

P{T5} = 2 ×




3

2



 × [ P (A1 or D1)]
2 × [1 − P (A1 or D1)] + 2[P (A1 or D1)]

3

= 2 × 3 × 0.022752 × 0.97725 + 2 × 0.022753 = 0.00306.

P{T6} = 2 ×




5

4



 × [ P (D1 or A1 or B1 )]4 × [1 − P (D1 or A1 or B1)]

+2[P (D1 or A1 or B1)]
5

= 2 × 5 × 0.158654 × 0.84135 + 2 × 0.0.158655 = 0.00553.

P{T7} = [P (C1 or C2)]
15 = 0.6826815 = 0.00326.

P{T8} = [P (D1 or A1 or B1 or B2 or A2 orD2)]
8 = 0.317328 = 0.00010
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3 Nelson’s Test 4: Zig-Zag Runs

Although not spelled out by Nelson, the motivation of Test 4 was presumably not to

provide another test for a shift in the process mean (as in Tests 2, 5 and 6) nor in the

process spread (as in Tests 7 and 8), nor a trend upwards or downwards in the mean

(as in Test 3). Rather, Test 4 appears to be targeted at detecting a process with

negative autocorrelation. The purpose of this note is not to explore the properties

of this test in meeting that purpose, but simply to calculate the probability of an

out-of-control signal for a set of 14 points from an in-control process of independent

observations.

4 The probability of an out-of-control signal for

Nelson’s Test 4

The number of ways that n points in a row will alternate up and down was denoted

by 2An in André (1879, 1881, 1883), who noted that these numbers are generated

by the series for tan(x + y) as follows:

tan(π/4 + x/2) =
∑

∞

n=0 Anxn/(n!)

This may alternatively be presented with the terms for n odd and n even presented

as separate series:

secx =
∑

∞

n=0 A2nx2n/((2n)!)

tanx =
∑

∞

n=0 A2n+1x
2n+1/((2n + 1)!))

The sequence An is also related to the Euler numbers, En, and Bernoulli num-

bers Bn as follows:

A2n = |E2n|,
A2n−1 = (−1)n−1B2n22n(2n − 1)/2n

Of course, both En and Bn can also be represented in series form. See, for ex-

ample Abramowitz and Stegun (1970). Much of André’s work was rediscovered by

Entringer (1966). Here we use Entringer’s simple algorithm to demonstrate the

evaluation of An for small n, including the important value n = 14.

The method proceeds as follows. Let Tn = 2An be the number of sequences with

the zig-zag property among the n! sequences of length n involving the integers 1,

2, . . . , n. Among these Tn sequences, let Un be the number that start with an up
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step and let Dn be the number that start with a down step. Then, from symmetry

considerations, Dn = Un = An, and also Tn = Dn + Un = 2An. The required prob-

ability is pn = Tn/n!.

The key to a simple approach to finding pn is to further subdivide the Tn se-

quences according to the number with which they start. Thus, let T (n, k) be the

number of sequences of length n which have the zig-zag property and which start

with the integer k. Similarly, let U(n, k) and D(n, k) be the corresponding num-

ber of such sequences beginning respectively with an up-step or down-step. Then,

T (n, k) = U(n, k) + D(n, k).

Note that Tn =
∑n

k=0 T (n, k) , Un =
∑n

k=0 U(n, k) , and Dn =
∑n

k=0 D(n, k) . Sym-

metry conditions require that U(n, k) = D(n, n + 1 − k).

Consideration of particular values of U(n, k) and D(n.k) is useful at this stage. Note

firstly that zig-zag sequences only exist for n ≥ 3. Secondly, D(n, 1) = U(n, n) = 0,

since it is not possible to step down (up) from the lowest (highest) number. Enu-

meration of D(n, k) and U(n, k) for all k and n ≤ 6 is given in Table 2, as can be

established for each n by an examination of all n! sequences. For example, U(4, 2)

= 2, since the only two zig-zag sequences starting with a step up from 2 are (2, 3,

1, 4) and (2, 4, 1, 3), and D(5, 3) = 4, the relevant sequences being (3, 1, 5, 2, 4),

(3, 1, 4, 2, 5), (3, 2, 5, 1, 4) and (3, 2, 4, 1, 5).

Table 2. The numbers, D(n, k) and U(n, k) of zig zag sequences of different

types

D(n.k) U(n.k)

k 1 2 3 4 5 6 7 1 2 3 4 5 6 7

n

3 0 1 1 1 1 0

4 0 1 2 2 2 2 1 0

5 0 2 4 5 5 5 5 4 2 0

6 0 5 10 14 16 16 16 16 14 10 5 0

7 0 16 32 46 56 61 61 61 61 56 46 32 16 0

An analytic approach is useful to generalise the patterns which appear in Table 2.

Now, every zigzag sequence of length n starting with a down step can be generated

by adding a down step to the front of a sequence of length n − 1 starting with an

up step. Consideration of all possible sequences beginning with any j and of length

n − 1 leads to the following result for k = 2, 3, . . . , n

D(n, k) =
∑n−1

j=n−k+1 U(n − 1, j − 1).

Recall that for k=1, D(n, 1) = 0. From this relationship between the D’s and the
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U ’s, it follows that for k ≥ 2.

D(n, k) =
∑n−1

j=n−k+1 D(n − 1, j).

This formula provides a means of writing down the values in a row of a table of

values of D(n, k) as partial sums of elements in the row above, and hence generating

the values of T3, T4,. . . . In row n of Table 2, the sum of the elements (D′s and

U ′s) is Tn, which can also be found directly from the table, since 2D(n + 1, n) =

2Dn = 2An = Tn . The values of Tn, along with the probabilities, pn, of a zig-zag

sequence of length n, for n = 3(1)14 are given in Table 3. The required result is

p14 = T14/14! = 0.0046.

Table 3. Probabilities of zig-zag sequences of different lengths, and associated

quantities

n Tn pn pn−1/pn rn = pn−1/pn − π/2 −rn−1/rn

3 4 0.666666667 1.5

4 10 0.416666667 1.6 0.0292

5 32 0.266666667 1.5625 -0.0083 3.520

6 122 0.169444444 1.57377 0.00297 2.789

7 544 0.107936508 1.56985 -0.00094 3.153

8 2770 0.068700397 1.57112 0.000323 2.922

9 15872 0.043738977 1.57069 -0.000106 3.051

10 101042 0.027844466 1.57083 0.0000356 2.972

11 707584 0.017726471 1.57078 -0.0000118 3.018

12 5405530 0.011284994 1.5708003 0.00000395 2.990

13 44736512 0.007184256 1.5707950 -0.00000131 3.006

14 398721962 0.004573638 1.5707968 0.000000438 2.996

5 Convergence of ratios

As an intriguing aside, an interesting limiting relationship among the pn’s was re-

discovered while investigating this matter. Also shown in Table 3 are the ratios

pn/pn−1 ; these values demonstrate that limn→∞

pn

pn−1

= π
2

, and that convergence is

quite rapid. A formal proof of this is given by André (1883).

The differences between the ratios pn/pn−1 and the limiting value of π/2 are also

presented in Table 3; a further curiosity emerges, namely that the sequence of ratios

−rn−1/rn appears to converge to 3. Proof of this is not readily obtained using the

methods and results of André (1879, 1881, 1883) or Entringer (1966), nor, seemingly,

by other means.

6



6 Discussion

A common modification to some of Nelson’s tests has been to vary the length of

a sequence that defines a signal. For example, in the SAS procedure PROC SHE-

WHART, Test 2 is modified by the use of eight points instead of nine. The choice

of the number of points in a sequence is arbitrary; the motivation for particular

choices for the different tests might be to make the signal probabilities similar for

in control processes. It is a simple matter to alter three of the tests to give a set

of probabilities all as close as possible to 0.003. The tests are changed as follows.

In Test 4, the length of the zig-zag sequence is increased to 15, and the resulting

probability is 0.00291. If the requirement for Test 6 is changed from 4 out of 5

successive points to 5 out of 7 points, then the corresponding probability is 0.00318.

Finally, for a pattern involving not 8, but 5 points in a row, the probability for Test

8 becomes 0.00322.

In practice, a subset of Nelson’s seven supplementary tests (or various modifications

of them) is often used in process monitoring. The tests are not independent. When

considered as part of a longer sequence, a point may simultaneously signal an out-

of-control process according to two or more tests. The simultaneous application of

these tests has been addressed by Champ and Woodall (1987) and Walker et al.

(1991). Both papers explore the effect of a shift in the process mean on some of the

probabilities of an out-of control signal from Nelson’s tests. Champ and Woodall

(1987) have also investigated the overall probability of an out-of-control signal for

some limited combinations of tests.

As with the other tests proposed by Nelson, there would be some interest in finding

such quantities as average run length and false alarm probabilities for sequences of

various lengths. These are not strongly pertinent to this paper and are not pursued

here.
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