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Site-directed mutations in the C-terminal extension of human αB-
crystallin affect chaperone function and block amyloid fibril formation

Abstract
Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob disease are associated with inappropriate protein deposition
and ordered amyloid fibril assembly. Molecular chaperones, including αBcrystallin, play a role in the
prevention of protein deposition. A series of site-directed mutants of the human molecular chaperone, αB-
crystallin, were constructed which focused on the flexible C-terminal extension of the protein. We
investigated the structural role of this region as well as its role in the chaperone function of αB-crystallin under
different types of protein aggregation, i.e. disordered amorphous aggregation and ordered amyloid fibril
assembly. It was found that mutation of lysine and glutamic acid residues in the C-terminal extension of αB-
crystallin resulted in proteins that had improved chaperone activity against amyloid fibril forming target
proteins compared to the wild-type protein. Together, our results highlight the important role of the C-
terminal region of αB-crystallin in regulating its secondary, tertiary and quaternary structure and conferring
thermostability to the protein. The capacity to genetically modify αB-crystallin for improved ability to block
amyloid fibril formation provides a platform for the future use of such engineered molecules in treatment of
diseases caused by amyloid fibril formation.
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ABSTRACT 
 
Background 
Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob disease are associated with inappropriate 

protein deposition and ordered amyloid fibril assembly. Molecular chaperones, including αB-

crystallin, play a role in the prevention of protein deposition. 

 

Methodology/Principal Findings  

A series of site-directed mutants of the human molecular chaperone, αB-crystallin, were 

constructed which focused on the flexible C-terminal extension of the protein. We 

investigated the structural role of this region as well as its role in the chaperone function of 

αB-crystallin under different types of protein aggregation, i.e. disordered amorphous 

aggregation and ordered amyloid fibril assembly. It was found that mutation of lysine and 

glutamic acid residues in the C-terminal extension of αB-crystallin resulted in proteins that 

had improved chaperone activity against amyloid fibril forming target proteins compared to 

the wild-type protein.  

 

Conclusions/Significance 

Together, our results highlight the important role of the C-terminal region of αB-crystallin in 

regulating its secondary, tertiary and quaternary structure and conferring thermostability to 

the protein. The capacity to genetically modify αB-crystallin for improved ability to block 

amyloid fibril formation provides a platform for the future use of such engineered molecules 

in treatment of diseases caused by amyloid fibril formation. 

 

INTRODUCTION 
 
The classic experiments of Anfinsen [1] on the folding of ribonuclease in vitro revealed that 

all the information required for folding of a polypeptide chain into its final native conformation 

is contained within the polypeptide chain itself. This is indeed evident with small proteins 

used for in vitro folding studies (e.g. barnase, 110 residues) which are able to refold to their 

active conformation in the absence of other proteins. In the case of large, multi-domain 

proteins encoded by long sequences, however, only a limited proportion achieve their native 

state unassisted [2]. Most are prevented from reaching this state by incorrect intermolecular 

interactions that occur when the protein is in a partially folded, intermediate state, whereby 
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hydrophobic regions on their surface interact resulting in protein aggregation and 

precipitation. Thus, protein folding and unfolding are exquisitely regulated in the cell and 

involve molecular chaperone proteins that assist other proteins in adopting their correct, 

native state. The small heat shock proteins (sHsps) act in a chaperone manner by 

recognizing and stabilizing the intermediate states of target proteins, thereby preventing 

improper or incorrect folding that would otherwise result in protein misfolding, aggregation, 

precipitation and possibly disease [3,4,5,6]. αB-Crystallin is a sHsp that is capable of 

interacting with a multitude of target proteins to prevent their aggregation and precipitation 

[7]. However, unlike the classical bacterial chaperonin GroEL, sHsps (including αB-

crystallin) do not directly participate in refolding of the denatured proteins, except in the 

presence of another chaperone protein, e.g. Hsp70 [8]. sHsps act specifically with target 

proteins that are on their off-folding pathway [9]. αB-Crystallin is primarily found in the eye 

lens, where it associates with the closely related αA-crystallin, which has 57% sequence 

homology with αB-crystallin and shares the conserved ‘α-crystallin domain’ (reviewed in 

[10]), to form large hetero-oligomeric species. However, it is also constitutively expressed in 

many non-lenticular tissues, including the brain, lung and cardiac and skeletal muscle where 

it forms complexes with other sHsps [11].  As with other members of the sHsp family, the 

expression of αB-crystallin is dramatically up-regulated in response to stress and 

pathological conditions such as Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob diseases 

[4,12,13,14].  

 

The sHsps form a structurally divergent protein family with members present in archaea, 

bacteria and eukarya [10]. Monomeric molecular masses of the sHsps range between 12 

and 40 kDa, however, most form large oligomeric assemblies of 150-800 kDa. All members 

are characterized by the presence of a homologous sequence of 80-100 residues, referred 

to as the ‘α-crystallin’ domain [15]. This domain is preceded by an N-terminal domain, which 

is highly variable in size and sequence, and is followed by a C-terminal extension. Whilst the 

C-terminal extensions of family members share little sequence similarity, they have the 

common characteristics of being polar and having conformational flexibility similar to 

peptides of the same length [16]. In previous studies, we have identified by 1H Nuclear 

Magnetic Resonance (NMR) spectroscopy that Hsp25 and α-crystallin have short, flexible 

and solvent exposed C-terminal extensions, which protrude from the domain core of the 

molecule [16,17,18].  
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The primary role of the flexible C-terminal extension of α-crystallin is thought to be to act as 

a solubilizing agent for the relatively hydrophobic protein and the sHsp-protein complex 

formed by its chaperone action [19,20]. It may also play a role in subunit interaction since 

the resolved crystal structures of plant [21] and archaeal [22] sHsps indicate that their C-

terminal extensions wrap around the outer surface of the sHsp complex. A similar role for 

the C-terminal extension of yeast Hsp26 has also recently been reported [23]. During 

ageing, αB-crystallin undergoes truncation of four C-terminal residues which correlates with 

a reduction in the protective ability of the protein and an increase in cataract formation [24]. 

Enzymatic truncation of the C-terminus in vitro with calpain II or trypsin [25,26] or 

immobilization of its flexibility through mutagenesis [27], results in a reduction in its 

chaperone ability against amorphously aggregating target proteins. Other site-directed 

modifications within the C-terminal domain have also been shown to decrease the 

chaperone activity of α-crystallin and other vertebrate sHsps against amorphously 

aggregating target species [27,28,29,30].  Together these studies show that the C-terminal 

extension plays an important role in the chaperone function of sHsps. However, to date the 

role of individual amino acids in the C-terminal domain of the protein has not been explored.  

 

The interaction of sHsps with fibril-forming proteins has been investigated (e.g. [31,32]) and 

it has been shown that α-crystallin inhibits fibril formation by apolipoprotein C-II [33]. 

Moreover, wild-type αB-crystallin is able to suppress fibril formation by β-amyloid [34] and α-

synuclein [35]. There is emerging evidence that conformational changes in αB-crystallin give 

rise to a more effective form of the chaperone. Phosphomimics of αB-crystallin with altered 

structure [36] and a chimeric form of α-crystallin (comprising αA- and αB-crystallin) have 

been shown to have enhanced chaperone activity against amyloid fibril formation compared 

to the wild-type protein [37].  

 

In this study we have generated several mutants of αB-crystallin in which the mutation sites 

are located in the C-terminal region of the protein, in particular the flexible C-terminal 

extension. In order to examine the role of specific C-terminal residues in regulating the 

oligomeric structure and chaperone function of αB-crystallin we have used a variety of 

biophysical techniques. As well, the chaperone function of these mutants was compared 

with that of the wild-type protein under different types of protein aggregation, i.e. disordered 

amorphous aggregation and ordered amyloid fibril assembly. The latter is of particular 
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importance due to its association with protein deposits found in diseases such as 

Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob disease.  

 

METHODS 
 

All reagents used were of analytical grade unless otherwise specified. DEAE-Sephacel 

anion-exchange resin was obtained from Sigma Chemical Co. (St. Louis, U. S. A.). 

Sephacryl S-300HR size exclusion resin was obtained from GE Biosciences (Uppsala, 

Sweden). Phenylmethylsulphonylfluoride (PMSF), polyethylinimine (PEI), kanamycin 

sulphate, thioflavin T (ThT), bovine κ-casein and bovine pancreas insulin were obtained 

from Sigma. Prior to use, the κ-casein was reduced and carboxymethylated as described 

previously [38]. Bovine βL-crystallin was purified via size exclusion chromatography (SEC) 

using methods described elsewhere [39,40] and subunit values involving βL-crystallin were 

calculated based on the mass of the most abundant component of bovine βL-crystallin, βB2, 

i.e. 26 kDa. The 18mer coiled-coil α-helical peptide described previously [41], with additional 

C-terminal tryptophan residue (ccβ-Trp) was synthesized by CS Bio Co. (San Carlos, CA, U. 

S. A.).  Isopropanyl-β-D-thiogalactopyranoside (IPTG), 5-bromo-4-chloro-3-indolyl-β-

galactopyranoside (X-Gal), biotechnology grade agarose and Wizard® SV DNA purification 

kits were all obtained from Promega (Madison, U. S. A). Tris base, D-(+) glucose, glycine, 

lysozyme, ampicillin sulphate and dithiothreitol (DTT) were purchased from Astral Scientific 

(Carringbah, Australia). Tryptone, agar and yeast extract were obtained from Oxoid 

(Heidelberg West, Australia). Snakeskin dialysis tubing was obtained from Pierce (Rockford, 

U. S. A). Restriction enzymes were obtained from Roche Biochemicals (Indianapolis, U. S. 

A), QuikChange® Site-Directed Mutagenesis kit was obtained from Stratagene® (La Jolla, 

U. S. A.), Big-Dye® Terminator ready reaction mix was obtained from Applied Biosystems 

(Foster City, U. S. A). Uranyl acetate was obtained from Agar Scientific (Essex, U. K.). The 

expression vector pET24d(+) (Novagen, Madison, U. S. A.) containing the gene for 

expression of human αB-crystallin was a gift from Prof. W. de Jong (University of Nijmegen, 

Netherlands). 

 

Site-directed mutagenesis of pET24d(+)-αB-crystallin - Site-directed mutagenesis was 

performed with the QuikChange® system (Stratagene®, La Jolla, U. S. A.) on a Corbett 

Research Cooled Palm 96 PCR machine (Corbett Research, Australia) as per the 
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manufacturer’s instructions with minor changes. All primers were synthesized by Sigma 

Genosys (Castle Hill, Australia) and 3% (v/v) Dimethylsulfoxide (DMSO) was added to 

mutagenic reactions in which strong secondary interactions were likely. Site-directed 

mutagenesis primers were as follows:  

I159A/I161A, 5’- GAGCGCACCGCTCCCGCCACCCGTGAAG - 3’; R163STOP, 5’-

ACCATTCCCATCACCTGAGAAGAGAAGCCTGCT - 3’; E164A/E165A, 5’- 

AATCCCATCACCCGTGCAGCGAAGCCTGCTGTCACC - 3’; K174A/K175A, 5’- 

GTCACCGCAGCCCCCGCGAAGTAGATGCCCTTTCTT - 3’; K175L, 5’- 

ACCGCAGCCCCCAAGTTATAGATGCCCTTTCTT - 3’.  

 

Mutated codon/s are underlined. Site-directed mutagenesis was confirmed using DNA 

sequence analysis with the following primers:  

pET24d(+)-αB-crystallin forward 5’- GTCAACCTGGATGTGAAGCA - 3’ and pET24d(+)-αB-

crystallin reverse 5’- CATTCACTGGTGGGGAAACT – 3’.  

 

Plasmid DNA was routinely digested with Nco I and Hind III confirm the presence of αB-

crystallin gene insert prior to DNA sequence analysis which was performed with Big-Dye 

Terminator Ready Reaction Mix (PE Biosystems, U. S. A.) on an ABI-PRISM 377 DNA 

sequencer (Applied Biosystems, U. S. A). 

 

Expression and purification of wild-type and mutant αB-crystallins - Wild-type αB-crystallin 

and its C-terminal mutants were expressed and purified as described previously [40] except 

that, following ion-exchange chromatography, the I159A/I161A αB-crystallin mutant was 

immediately dialyzed against 50 mM phosphate buffer (pH 8.0) to avoid its aggregation and 

both I159A/I161A and R163STOP αB-crystallin were also exhaustively dialyzed against 50 

mM sodium phosphate buffer (pH 7.4) following size-exclusion chromatography in order to 

avoid the precipitation that occurred when they were dialyzed against milliQ-water. Protein 

concentrations were determined by spectrophotometric methods using a Cary 500 Scan UV-

Vis-NIR spectrophotometer (Varian, Melbourne, Australia) using the extinction coefficient for 

αB-crystallin (E=19,000) [40] and molecular masses of the various mutants from mass 

spectrometric analysis (Table 1).   

 

Electrospray Ionisation Mass Spectrometry (ESI-MS) and Nanoscale Electrospray Ionisation 

Mass Spectrometry (NanoESI-MS) - Samples for ESI-MS were lyophilized after dialysis 
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against milliQ-water to remove any salts present (with the exception of the I159A/I161A and 

R163STOP αB-crystallin mutants, which were dialyzed against 100 mM ammonium 

acetate). These samples had a final protein concentration of 1 μM. Nano-ESI-MS and ESI-

MS were performed on a Q-Tof™2 quadrupole orthogonal acceleration time-of-flight mass 

spectrometer (Micromass U. K., Manchester, U. K.) with a Nanoflow-Z™ interface. Resulting 

spectra were processed with MassLynx™ software. 

 

Intrinsic tryptophan fluorescence - All fluorescence studies were performed on a Hitachi F-

4500 fluorescence spectrophotometer with a 3 mL quartz fluorescence cuvette. Wild-type 

and mutant αB-crystallins (10 μM) were prepared in 50 mM sodium phosphate buffer, pH 

7.2 and tryptophan residues were excited at 295 nm and emission spectra recorded from 

300 to 400 nm. Slit widths for excitation and emission were 5.0 and 2.5 nm, respectively.  

 

Circular Dichroism (CD) spectroscopy - CD spectra were acquired with a Jasco J-810 

spectropolarimeter (Jasco, Victoria, Canada) with a Jasco circulating water bath at 25°C. 

Samples were prepared in pre-filtered 10 mM sodium phosphate buffer, pH 7.5. αB-

Crystallin samples for both near-UV and far-UV spectra were approximately 1 mg/mL and 

were filtered before analysis using 0.22 μm syringe filters. Near-UV spectra were recorded 

from 240 to 320 nm in a 1 cm pathlength cell and far-UV spectra recorded from 195 to 240 

nm in a 0.01 cm pathlength cell. In the near-UV and far-UV regions, spectra represent the 

average of 16 and 32 scans, respectively. Mean residue ellipticity was calculated from the 

protein samples absorbance at 280 nm, residue number and the molecular weight of each 

mutant and wild-type protein as determined by ESI-MS (Table 1). 

 

Size-exclusion HPLC (High Performance Liquid Chromatography) - Aggregate sizes of wild-

type and mutant proteins were analyzed by size-exclusion chromatography on a 

Phenomenex® BioSep™ SEC S4000 column with an exclusion limit of 2,000,000 Daltons 

(Phenomenex®, Torrance, U. S. A). A GBC/ICI HPLC system was used (ICI, London, U. K.) 

with a mobile phase of 50 mM sodium phosphate buffer, pH 7.2, an LC 1150 pump and LC 

1440 systems organizer. Samples and standards were prepared at 10 mg/mL in 50 mM 

sodium phosphate, pH 7.2, with 0.02% (w/v) NaN3, 2.5 mM EDTA and 0.1 M NaCl. A 

sample (10 µL) was injected onto the column and eluted at 0.5 mL/min. The column was 

calibrated under the same conditions using the following standards; blue dextran (2.0 MDa), 
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bovine thyroglobulin (670 kDa), catalase (250 kDa), ovotransferrin (78 kDa), and bovine 

serum albumin (BSA) (67 kDa). Approximate mass ranges of the proteins were calculated 

from elution times at half-peak height. 

 

Thermostability studies - Wild-type and mutant αB-crystallins were prepared in 50 mM 

sodium phosphate buffer, pH 7.4. Protein (0.2 mg/mL) was heated in a 1 mL quartz cuvette 

from 35°C to 85°C in a Cary 500 Scan UV-Vis-NIR spectrophotometer equipped with a Cary 

temperature controller. Thermal ramping of 1°C/min was performed and protein precipitation 

in response to thermal stress was monitored by measuring light scattering at 360 nm. 

 

Chaperone activity assays - To test the relative activity of the chaperones, the aggregation 

and precipitation of the target proteins under stress conditions was monitored by either 

Thioflavin T (ThT) fluorescence or turbidity assay (see below). Assays were conducted in 

96-microwell plates by incubating the target protein in the absence or presence of the wild-

type and mutant αB-crystallins following initial shaking for 5 – 10 s. Light scattering at 340 

nm was measured and recorded using a Fluostar Optima plate reader (BMG 

Labtechnologies, Melbourne, Australia). The relative change in light scattering at 340 nm for 

each sample is presented in the graphs. The change in light scattering in the buffer control 

was negligible for each assay. Bovine βL-crystallin (500 μg/mL) was incubated at 60°C in 50 

mM phosphate buffer, pH 7.2. Bovine pancreas insulin (250 μg/mL) was incubated at 37°C 

in 50 mM phosphate buffer, pH 7.2 and the aggregation and precipitation of the insulin B-

chain initiated by addition of dithiothreitol (DTT) to a final concentration of 10 mM.  

 

The formation of amyloid fibrils by target proteins was monitored by an in situ ThT binding 

assay described previously [42,43]. Briefly, reduced and carboxymethylated κ-casein; 

RCMκ-casein (500 μg/mL) and ccβ-Trp peptide (150 μg/mL) were incubated at 37°C in 50 

mM phosphate buffer, pH 7.4 with 10 μM ThT, in the absence or presence of the αB-

crystallin proteins. Microtitre plates were sealed to prevent evaporation and the fluorescence 

levels measured with a Fluostar Optima plate reader (BMG Labtechnologies) with a 440/490 

nm excitation/emission filter set. The change in ThT fluorescence measured for each 

sample is presented. The change in ThT fluorescence in the absence of the target protein 

was negligible for each assay. Also, neither Bovine Serum Albumin (BSA) nor lysozyme had 
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any effect on the increase in ThT fluorescence when used in these assays in place of αB-

crystallin. 

 

The relative chaperone ability of the αB-crystallin proteins was assessed at the end of each 

assay by calculating the percentage protection afforded by the chaperone using the formula: 

 

% Protection = 100 * ( I - Ichaperone) 

                                       I 

 

where I and Ichaperone represents the change in absorbance or ThT fluorescence for the 

target protein in the absence and presence of the chaperone respectively.  

 

All experiments were replicated at least three times and the statistical significance of any 

differences observed between group means was determined by analysis of variance.  

Subsequent post-hoc testing of differences between group means was accomplished using 

the Tukey’s test with P < 0.05 considered significantly different. 

 

RESULTS 
 

Molecular masses and purities of human recombinant αB-crystallin proteins were assessed 

by ESI-MS (Table 1). The calculated masses of the wild-type (αB-WT) and mutant αB-

crystallins were in excellent agreement with their predicted masses (max. 1.2 Da difference). 

Peaks in the mass spectra arising from contaminating proteins were minor (~10% or less). 

Intrinsic tryptophan fluorescence of wild-type αB-crystallin produced a peak of fluorescence 

at 338.2 nm that arises from Trp9 and Trp60 (Table 2). The K174A/K175A, K175L and 

I159A/I161A mutants had red shifts in their wavelength maxima (λmax) compared to the wild-

type protein (338.8, 340.0 and 341.0 nm, respectively). These data indicate that the 

tryptophan residues of these mutant proteins are more exposed than in the wild-type protein 

[36,44,45,46,47]. The E164A/E165A αB-crystallin mutant displayed the most significant 

change in tryptophan polarity with a blue shift in λmax to 336.0 nm implying a conformational 

change in this mutant in which the tryptophan residues are buried in the hydrophobic core to 

a greater extent than in wild-type αB-crystallin. Similarly, the C-terminal truncation mutant 
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(R163STOP) displayed a λmax at a shorter wavelength (337.0 nm) than wild-type αB-

crystallin (Table 2).  

 

The near-UV CD spectra of wild-type αB-crystallin exhibited a distinct minima at ~267 nm 

and 292 nm  and maxima at around 258, 264 and ~273 nm (Fig. 1A) and was consistent 

with CD spectra presented previously [40,48,49]. The K175L, E164A/E165A and 

I159A/I161A mutants had very similar near-UV CD spectra to wild-type αB-crystallin 

indicating that their tertiary structures were not significantly altered by the mutation(s) (Fig. 

1A). However, the spectra of K174A/K175A and R163STOP αB-crystallin showed a 

reduction in tertiary structure with a marked decrease in the maximum ellipticity at 273 nm. 

As summarized by Kelly [50] changes in this region of the spectrum are representative of 

the environment of the protein’s tryptophan residues. Likewise, there is a reduction in the 

ellipticity of the bands corresponding to the phenylalanine residues (~ 270 nm – 250 nm). 

Alteration in the tryptophan environment of R163STOP and K174A/K175A is also reflected 

in the region of the spectrum from 280 – 292 nm. Taken together, these data are indicative 

of major tertiary structural changes induced by these mutations.  

 

The far-UV CD spectrum of wild-type αB-crystallin (Fig. 1B) is characteristic of a 

predominantly β-sheet protein, with a minimum ellipticity at 213 nm. The majority of mutants 

had far-UV CD spectra almost identical to the wild-type protein with slight variations in 

ellipticity only (Fig. 1B). The R163STOP mutant showed significantly altered secondary 

structure compared to the wild-type and other mutant αB-crystallins. The change in overall 

shape of the spectrum, increased negative ellipticity (particularly in the region of ~225 nm) 

and appearance of the strong positive band at ~ 195 nm are all indicative of increased α-

helical content. This would be consistent with the loss of the entire C-terminal extension, 

decreasing the relative amount of β-sheet content compared to α-helix. In the case of the 

K174A/K175A mutant, the loss of tertiary structure observed in the near-UV region with 

concurrent retention of secondary structure as seen in the far-UV region of the CD spectrum 

is indicative of a molten-globule like state similar to that observed for α-crystallin in the 

presence of a denaturant [51]. 

 

Most of the αB-crystallins eluted from the size exclusion column as relatively broad 

symmetrical peaks at early elution times indicating they exist as polydisperse high molecular 
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mass oligomers (Fig. 1C). Wild-type αB-crystallin eluted in a single peak corresponding to 

an average molecular mass of 740 kDa and mass range of 420 - 980 kDa, consistent with 

previous studies [40,52]. All of the mutants form oligomers that are more polydisperse than 

wild-type αB-crystallin (Fig. 1C). Both the E164A/E165A and K175L mutants form oligomers 

that have a slightly reduced average molecular mass (720 kDa and 670 kDa respectively) 

compared to the wild-type protein. In contrast, the average molecular mass of the 

K174A/K175A and I159A/I161A oligomers is higher than wild-type αB-crystallin (780 kDa 

and 880 kDa respectively). The average molecular masses of oligomers formed by the 

I159A/I161A mutant (up to 1.9 MDa) were found to be significantly larger than the wild-type 

when tested using an ANOVA with post-hoc analysis by Tukey’s test (P<0.019). Upon visual 

inspection in can be seen that the ability of the R163STOP mutant to form large and 

consistently sized aggregates was profoundly impaired (Fig. 1C). Specifically, this mutant 

eluted in the form of a high molecular mass species in the void of the column (> 2 MDa), at 

least two large molecular mass oligomers of 630 kDa and 310 kDa and a predominate peak 

corresponding to a species of less than 100 kDa.  

 

When its thermostability was assessed, wild-type αB-crystallin began to precipitate from 

solution at 68°C and underwent a second phase of precipitation at 78°C (Fig. 1D). The 

E164A/E165A αB-crystallin mutant was much less thermostable than wild-type αB-crystallin 

and the other mutants used in this study as evidenced by its rapid, large-scale precipitation 

from solution at 60°C (Fig. 1D). The change in light scattering due to precipitation for the 

E164A/E165A mutant was more than 7-fold greater than for the other αB-crystallin proteins. 

The K175L mutant showed very similar thermostability to wild-type αB-crystallin with 

precipitation occurring in two phases at 68°C and 78°C. The R163STOP and I159A/I161A 

mutants were slightly less thermostable than wild-type αB-crystallin with onset of 

precipitation observed at 63°C and 65°C respectively. The K174A/K175A αB-crystallin 

showed enhanced thermostability compared to wild-type αB-crystallin, with only minimal 

precipitation evident at 85°C (Fig. 1D).  

 

The chaperone ability of the mutant αB-crystallin proteins was compared to wild-type αB-

crystallin under a variety of conditions of induced target protein aggregation. The heat-

induced amorphous aggregation of bovine βL-crystallin (a natural target of αB-crystallin in 

the lens), incubated in the absence of the chaperone, commenced after 20 min and the 
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increase in light scattering due to protein precipitation reached a maximum after 80 min (Fig. 

2A). Wild-type αB-crystallin was able to suppress the increase in light scattering in a 

concentration dependent manner, such that, at a 1.0:0.5 molar ratio of βL-crystallin: αB-

crystallin, there was complete inhibition of protein precipitation (data not shown). At a 1.0:0.2 

molar ratio of βL-crystallin:αB-crystallin the change in light scattering after 90 min was 

reduced by 90 ± 2% (mean ± SEM) (Fig. 2A). When the mutant αB-crystallin proteins were 

used at the same molar ratio (Fig. 2B), the E164A/E165A mutant was a significantly worse 

chaperone than the wild-type protein (p<0.01) and increased the amount of light scattering 

due to its own precipitation from solution at this temperature (see Fig. 2A). Whilst the 

I159A/I161A mutant delayed the onset of βL-crystallin’s aggregation to 40 min, by the end of 

the assay the amount of light scattering in the presence of this mutant was similar to when 

βL-crystallin was incubated alone. The K174A/K175A and K175L proteins were effective 

chaperones at this sub-stoichiometric molar ratio to the target protein having activity similar 

to the wild-type protein.  

 

Reduction of insulin with DTT induced amorphous aggregation of the B-chain after 10 min 

and the amount of light scattering due to protein precipitation reached a plateau after 45 min 

(Fig. 2C). Increasing the concentration of wild-type αB-crystallin prolonged the lag phase of 

aggregation and decreased the change in light scattering due to protein precipitation such 

that it was completely suppressed at a 1.0:0.4 molar ratio of insulin: αB-crystallin (data not 

shown). At a 1.0:0.14 molar ratio of insulin: αB-crystallin the lag phase of aggregation was 

the same as when insulin was incubated alone (10 min), but the rate of aggregation was 

decreased such that the amount of protein precipitation after 90 min was reduced by 40 ± 

3% (Fig. 2C). Comparing the chaperone activity of the αB-crystallin mutants to the wild-type 

protein at the same molar ratio showed that, whilst the E164A/E165A delayed the onset of 

aggregation to 15 min, by the end of the assay it was found to be a significantly worse 

chaperone (p<0.05) (Fig. 2D). In contrast, the I159A/I161A mutant was a significantly better 

chaperone (p<0.01), decreasing the amount of light scattering due to protein precipitation by 

68 ± 3% (Fig. 2D). Both the K174A/K175A and K175L mutants had similar chaperone ability 

as the wild-type protein in preventing the DTT-induced aggregation of the insulin B-chain. 

  

We also used the R163STOP protein in both these amorphous aggregation assays to 

assess its relative chaperone ability compared to the wild-type protein, but due to its 
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destabilized structure only a limited number of assays could be performed. The results of 

these assays suggested that the R163STOP protein is a much less efficient chaperone than 

wild-type αB-crystallin against both the heat-induced precipitation of βL-crystallin and DTT-

induced precipitation of the insulin B-chain (data not shown).  

 

We employed two different models to examine the effect of C-terminal mutation on the 

ability of αB-crystallin to prevent amyloid fibril formation; reduced and carboxymethylated κ-

casein (RCMκ-CN), an unstructured or “natively unfolded” protein [53]; and ccβ-Trp, a 

modified form of the ccβ peptide that exists in a helical coiled-coil configuration in its native 

state (Meehan, Ecroyd and Carver, unpublished data). We employed these two model 

systems since both form fibrils at physiological pH and temperature [36]. Fibril formation by 

RCMκ-CN, as monitored by an increase in ThT fluorescence, showed a gradual increase 

over the time course of the assay (Fig. 3A). The addition of αB-crystallin to the sample 

slowed the rate of fibril formation such that, at a 1.0:0.3 molar ratio of RCMκ-CN: αB-

crystallin, the increase in ThT fluorescence was reduced by 26 ± 3% (Fig. 3B). When the 

αB-crystallin mutants were used at the same concentration, the E164A/E165A, 

K174A/K175A and K175L mutants were more effective chaperones (p<0.01). The 

I159A/I161A mutant was found to have a similar level of chaperone ability against amyloid 

forming RCMκ-CN as the wild-type protein (Fig. 3B). 

 

At 37°C, the increase in ThT fluorescence associated with fibril formation by ccβ-Trp was 

sigmoidal and included a short lag phase of 30 min followed by an increase in fluorescence 

which reached a plateau after 300 min (Fig. 3C). A 1.0:0.05 molar ratio of ccβ-Trp:αB-

crystallin slowed the increase in ThT fluorescence and therefore, by inference, amyloid fibril 

formation. Whilst the overall trends in the relative chaperone ability of the wild-type and 

mutant proteins were consistent with this assay, the absolute percentage protection afforded 

by the chaperones was found to vary between assays. The E164A/E165A αB-crystallin 

mutant was more effective (p<0.01) at inhibiting the increase in ThT fluorescence compared 

to the wild-type protein. The I159A/I161A αB-crystallin mutant was found to be a very 

effective chaperone for the first 600 min of the assay, but the increase in ThT fluorescence 

increased significantly at this point such that, by 900 min, it afforded similar levels of 

protection against amyloid fibril formation as wild-type αB-crystallin (Fig. 3D). The K175L 

and K174A/K175A mutants had similar levels of chaperone ability as the wild-type protein.   
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DISCUSSION 
 

We have successfully produced and expressed a number of mutants in the C-terminal 

region of αB-crystallin in order to investigate the role of this region, and individual residues 

within it, on the structure and chaperone function of this sHsp. In particular, we have 

targeted key residues within the C-terminal extension of the protein since it is thought to play 

an important role in the chaperone action of other sHsps [19,20,29,54]. Overall, our studies 

are consistent with previous work showing that a highly flexible C-terminal extension in 

sHsps is important in the overall structure of the chaperone protein. Significantly, we found 

that certain residues in αB-crystallin play a key role in regulating its chaperone activity 

towards particular types of protein aggregation (i.e. ordered or disordered) and, therefore, 

these results may provide a foundation for future studies aimed at preventing diseases 

associated with protein aggregation. 

 

Our results have also shown that the C-terminal extension plays a significant role in the 

oligomerization of αB-crystallin. Altered oligomerization properties and increased 

polydispersity have been shown to correlate with altered chaperone action of the α-

crystallins [52,55]. Each of the αB-crystallin mutants in this study exhibited perturbed 

oligomeric association such that they had broader molecular mass ranges than the wild-type 

protein. The most dramatic changes were for the I159A/I161A and R163STOP mutants. The 

I159A/I161A mutant eluted earlier and formed aggregates that were much more 

polydisperse than the wild-type protein, i.e. approximately 1.8 MDa to 490 kDa in mass (with 

an average mass of 880 kDa). The I-X-I/V motif is well conserved among sHsps, and in 

wheat Hsp 16.9 [21] and archael Hsp16.5 [22], plays a critical role in oligomeric assembly. 

Indeed, elimination of this motif from bacterial HspH leads to the complete abrogation of the 

ability of the protein to oligomerise and chaperone amorphously aggregating citrate 

synthase [56]. Our data support a role for this motif in regulating the oligomerization of αB-

crystallin (see Fig. 1). The altered fluorescence spectra of the various αB-crystallin mutants 

compared to the wild-type protein are particularly interesting since the tryptophan residues 

in αB-crystallin are located in the N-terminal domain (Trp9 and Trp60). Our results indicate 

that in the case of K175L, K174A/K175A and I159A/I161A αB-crystallin, the mutations 

introduced resulted in conformational changes which led to the N-terminal tryptophan 

residues becoming more exposed to solvent. In contrast, the tryptophan fluorescence data 
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of the E164A/E165A mutant show that the conformational changes induced by the loss of 

the two charged glutamic acid residues resulted in the N-terminal region becoming buried to 

a greater extent. A similar change was observed with the truncation of the C-terminal 

extension in R163STOP αB-crystallin. As shown by size-exclusion chromatography, the 

ability of this mutant to form regular multimeric complexes was also profoundly impaired. 

The removal of the highly flexible C-terminal extension led to the formation of 

heterodisperse αB-crystallin multimers ranging from more than 100 subunits to less than 5 

in size. These results are consistent with studies of αA-crystallin showing that removal of 

residues from the C-terminal extension of the protein alters its oligomeric distribution and 

decreases its subunit exchange rate [55,57]. Together, the results show that the C-terminal 

extensions of both αA- and αB-crystallin are not only important in maintaining the solubility 

of α-crystallin and its complex with target proteins but also in regulating the oligomerization 

of α-crystallin subunits into multimeric complexes. The C-terminal extension was one region 

identified as being a subunit-subunit interaction site in human αB-crystallin [58]. It has been 

proposed that the flexibility and polarity of the C-terminal extension of Hsps plays an 

important role in maintaining the spacing between adjacent complexes, which would 

otherwise be prone to aggregation via hydrophobic interactions [27]. Our results are 

consistent with this since disruption of this spacing mechanism would be expected to give 

rise to greater polydispersity, as is observed by size exclusion HPLC (see Fig. 1C).  

 

Truncation of the entire C-terminal extension (R163STOP) of αB-crystallin also significantly 

altered the protein’s secondary and tertiary structure (Fig. 1A and B). Together with the 

tryptophan fluorescence data, these results indicate that the C-terminal extension, although 

unstructured, plays a significant role in stabilizing the structure of the entire protein. A similar 

effect was observed in a C-terminally truncated mutant of Hsp25 (Hsp25ΔC18) where a loss 

of secondary and tertiary structure, compared to the wild-type protein, was evidenced by far-

UV CD spectroscopy and 2D NMR spectroscopy [20]. The poor chaperone activity of 

R163STOP αB-crystallin against amorphously aggregating target proteins is in keeping with 

previous findings on deletion mutants of Hsps, i.e. Hsp25 [20], Hsp16.2 from C. elegans [54] 

and αA-crystallin [29].  

 

Compared to the wild-type protein, the I159A/I161A αB-crystallin mutant was a significantly 

worse chaperone against heat-induced amorphously aggregating βL-crystallin, but was a 
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significantly better chaperone against the reduction-induced amorphous aggregation of 

insulin (Fig. 2). These results are consistent with previous studies on an I159/161G mutant 

of αB-crystallin which exhibited enhanced chaperone ability under reduction stress [59]. In 

the present study, this mutant had similar chaperone ability against amyloid fibril forming 

targets to the wild-type protein highlighting the role of particular residues within the protein in 

regulating chaperone action of αB-crystallin during different stress conditions. For example, 

the increase in chaperone activity of I159A/I161A compared to wild-type αB-crystallin in the 

reduction-induced amorphous aggregation assay conducted at physiological temperatures 

may be due to the substitution of the two bulky, hydrophobic isoleucine residues in the I-X-I 

motif with more compact alanine residues. This in turn is likely to provide the C-terminal 

extension with greater flexibility and hence, increase the capacity of αB-crystallin to bind to 

some target proteins. Another possibility is that the substitution of these residues gives rise 

to a conformational change which further exposes putative chaperone binding site(s) [21]. 

Interestingly, however, these residues were not found to play a significant role in the 

chaperone action of αB-crystallin against amyloid fibril forming target proteins as there was 

no significant difference in the chaperone action of this mutant and the wild-type protein. 

Together, these data imply that the highly conserved I-X-I motif in sHsps regulates exposure 

of the hydrophobic groove of the α-crystallin domain of the protein, thereby controlling 

chaperone action with amorphously aggregating target proteins. 

 

The increased thermostability of the K174A/K175A is consistent with the results of Liao et al. 

who showed that removal of the C-terminal lysine residue in porcine αB-crystallin led to a 

mutant with a higher thermostability than the wild-type protein [60]. In contrast, replacement 

of the ultimate lysine residue of the C-terminal extension with a leucine residue did not affect 

the protein’s thermostability to any significant extent [60]. Significantly, our results show that 

the removal of these lysine residues does not compromise the chaperone activity of the 

protein against amorphously aggregating target proteins and increased its chaperone ability 

against aggregating RCMκ-CN. Thus, these data suggest that αB-crystallin does not require 

the two electropositive C-terminal lysine residues in order to interact with aggregating target 

proteins.  

 

The double glutamic acid αB-crystallin mutant (E164A/E165A) showed greatly decreased 

thermostability and as a result was ineffective as a chaperone in the heat stress assay. 
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Whilst the E164A/E165A mutant was able to delay the onset of aggregation of reduced 

insulin, by the end of the assay it was found to be a significantly worse chaperone than wild-

type αB-crystallin. This probably reflects the relative instability of the complex formed 

between the insulin B-chain and E164A/E165A mutant protein. Interestingly, E164A/E165A 

αB-crystallin was a significantly better chaperone against the two amyloid fibril forming 

target proteins used in this study. Thus, E164 and E165, which are conserved between αA-

and αB-crystallin, may play a role in regulating chaperone interaction during different types 

of target protein aggregation. The thermal instability of E164A/E165A αB-crystallin may be 

attributable to the removal of hydrophilicity that normally facilitates hydrophobic interactions 

within the protein, since hydrophobic interactions increase with increasing temperature. By 

analogy with hyperthermophilic proteins, non-covalent intermolecular interactions e.g. 

electrostatic and hydrogen bonding [61,62] are facilitated by a high proportion of charged 

amino acids that act to stabilise the protein at high temperatures, via the formation of 

hydrogen bonds and salt bridges [62,63,64]. This solubilising role is likely to be important 

both for the αB-crystallin aggregate and the complex it forms with target proteins. 

Furthermore, due to electrostatic repulsion, these two glutamic acid residues may also 

function to separate protein subunits by blocking hydrophobic interactions and thereby 

regulating aggregate formation under heat stress. 

 

Our results therefore highlight the important role of the C-terminal region, and in particular 

the flexible C-terminal extension, in the structure and chaperone function of αB-crystallin. Of 

particular interest, specific amino acid residues within the C-terminal region regulate its 

chaperone action against different types of protein aggregation (i.e. ordered and 

disordered). The mechanism by which αB-crystallin inhibits fibril growth is not known but it 

may do so by interacting with and binding pre-fibrillar aggregates in a soluble complex as it 

does with amorphously aggregating proteins [36]. In the case of α-synuclein, a component 

of Lewy bodies in Parkinson’s disease, αB-crystallin is thought to interact with the fibril-

forming species at an early stage of its aggregation pathway to reduce the nucleation rate 

thereby inhibiting fibril formation at the nucleation phase [35]. α-Crystallin also interacts with 

early amyloidogenic precursors of apolipoprotein C-II to inhibit nucleation [33]. Studies on 

the Alzheimer’s disease protein, Aβ peptide, showed that αB-crystallin affected the 

elongation phase of fibril formation resulting in shorter, non-regular fibrils [32]. More recent 
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studies on the same protein have shown that the chaperone preferentially binds to the fibril 

nucleus preventing propagation of fibrillar species [37].  

 

It has been suggested that αB-crystallin operates more effectively as a chaperone against 

some target proteins than others as a result of the differing affinities of the chaperone for the 

various intermediately folded forms of its target [65,66]. These observations are also 

consistent with αB-crystallin possessing more than one chaperone binding site, e.g. for 

amorphously aggregating and/or amyloid forming proteins. The occurrence of numerous 

binding sites on proteins which perform diverse functions has been well documented. Hsp90 

has been shown to possess two independent binding sites with differential specificity [67] 

and the E. coli chaperone SecB has multiple binding sites which are both hydrophobic and 

hydrophilic in nature [68]. As discussed by Haslbeck et al., the lack of conservation of 

residues amongst sHsps makes it difficult to locate potential target protein binding sites [69]. 

It is possible, therefore, that variable regions of sequence are involved in binding which 

would help to explain why sHsps such as αB-crystallin have such different target proteins 

affinities [69]. It may also support the hypothesis that multiple target-protein binding sites 

exist in the αB-crystallin sequence, which are affected to a greater or lesser degree by 

conformational change.  

 

Studies have shown that contacts between the I-X-I motif in the C-terminal region and a 

hydrophobic grove in the αB-crystallin domain on an adjacent monomer are critical for 

proper oligomeric assembly in a plant sHsp [21]. It is possible; therefore, that irregular 

oligomeric assembly of mutants such as E164A/E165A and I159A/I161A αB-crystallin which 

form oligomers that are smaller and larger, respectively, than wild-type αB-crystallin also 

alters target protein binding at various sites.  In the case of the E164A/E165A mutant, for 

example, removal of the pair of charged residues induced a conformational change which 

decreased the protein’s stability under heat stress, altered oligomerization and unfavorably 

affected the binding of amorphously aggregating proteins. It is unclear at this stage whether 

the reduced binding of such disordered aggregating species occurs via obstruction or 

destabilization of such sites. In doing so, however, it is feasible that the same 

conformational changes may have exposed or stabilized another binding site on the 

molecule for fibril forming proteins. 
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The observation that genetically modified αB-crystallin, in comparison to the wild-type 

protein, demonstrates superior chaperone ability to suppress the formation of amyloid fibrils 

is a step in the potential development of treatments for diseases associated with amyloid 

formation and deposition. Future studies using in vivo models of amyloid fibril formation will 

elucidate the potential of modified αB-crystallin (i.e. E164A/E165A) to serve as therapeutic 

agents. 
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FIGURE LEGENDS 

Fig. 1. Biophysical characterization of wild-type and mutant αB-crystallin proteins. A, 

Near- and B, Far-UV CD spectra of wild-type and mutant αB-crystallin proteins. Spectra 

were acquired on a Jasco J-810 spectropolarimeter with 1 cm and 0.01 cm pathlength cells 



 

 

 

25

for the near- and far-UV regions, respectively.  Protein concentrations were ~ 1 mg/mL 

prepared in 10 mM sodium phosphate buffer, pH 7.4. C, Size-exclusion HPLC traces for 

wild-type and mutant αB-crystallin proteins in 50 mM sodium phosphate buffer, pH 7.2. 

Samples (10 µL of a 10 mg/mL solution) were injected onto the column and eluted at 0.5 

mL/min. D, Thermostability profiles of αB-crystallin mutants. Protein samples were 0.2 

mg/mL in 50 mM sodium phosphate buffer, pH 7.4. Thermal ramping was 1°C/min and light 

scattering at 360 nm was monitored as an indicator of protein precipitation.  

 

Fig. 2. The chaperone ability of wild-type and C-terminal mutants of αB-crystallin to 

prevent amorphous aggregation. A, Heat-induced precipitation of βL-crystallin at 60°C and 

C, DTT-induced precipitation of insulin B-chain at 37°C, in the absence or presence of wild-

type and mutant αB-crystallins at a 1.0:0.2 molar ratio of βL-crystallin: αB-crystallin and a 

1.0:0.14 molar ratio of insulin: αB-crystallin. The change in light scattering at 340 nm for 

each sample is shown. Each assay was repeated four times and the data shown are 

representative. B and D show the percentage protection for each protein in the βL-crystallin 

and insulin B-chain aggregation assays respectively. The data in B and D represent the 

mean ± standard error of the mean (SEM) of the 4 different experiments, * denotes a 

significant (p<0.05) difference in the mean compared to wild-type αB-crystallin.  

 

Fig. 3. Inhibition of amyloid fibril formation by wild-type and C-terminal mutants of αB-

crystallin. Thioflavin T (ThT) binding curves of A, RCMκ-casein and C ccβ-Trp incubated at 

37°C in 50 mM phosphate buffer, pH 7.4 in the absence or presence of wild-type and mutant 

αB-crystallins. The chaperones were used at a 1.0:0.3 molar ratio of RCMκ-casein:αB-

crystallin and a 1.0:0.05 molar ratio of ccβ-Trp:αB-crystallin respectively. The ThT 

fluorescence was monitored by in situ assay for 15 h and the change in ThT fluorescence of 

each sample is shown. Each assay was repeated four times and the data shown are 

representative. The data in B and D show the percentage protection for each protein in the 

RCMκ-casein and ccβ-Trp assay systems respectively.  These data represent the mean ± 

SEM of 4 different experiments, * denotes a significant (p<0.05) difference in the mean 

compared to wild-type αB-crystallin.  
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Table 1. Molecular masses of recombinant proteins as determined by ESI-MS. 
 

Protein Predicted Mass (Da) Actual Mass from ESI-MS (Da) 

Wild-type αB-crystallin 20159.01 20160.13 

E164A/E165A αB-

crystallin 
20043.02 20043.0 

I159A/I161A αB-

crystallin 
20074.92 20074.4 

K174A/K175A αB-

crystallin 
20044.92 20044.8 

K175L αB-crystallin 20144.02 20143.9 

R163STOP αB-crystallin 18753.22 18752.0 
1As given by SwissProt protein database, accession number P02511; 2Predicted masses 

were all calculated from average isotopic masses; 3Nanospray ESI-MS was used for this 

sample.  

 

Table 2. Maximum tryptophan emission wavelengths for wild-type and mutant αB-

crystallins. 
 

Protein λmax (nm) 

Wild-type αB-crystallin 338.2 

E164A/E165A αB-crystallin 336.0 

I159A/I161A αB-crystallin 341.0 

K174A/K175A αB-crystallin 338.8 

K175L αB-crystallin 340.0 

R163STOP αB-crystallin 337.0 
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