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and S.S.J. Wang †
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9th November, 2010

We derive the precise asymptotic distributional behavior of Gaus-
sian variational approximate estimators of the parameters in a single-
predictor Poisson mixed model. These results are the deepest yet
obtained concerning the statistical properties of a variational ap-
proximation method. Moreover, they give rise to asymptotically valid
statistical inference. A simulation study demonstrates that Gaussian
variational approximate confidence intervals possess good to excel-
lent coverage properties, and with precision similar to their exact
likelihood counterparts.

1. Introduction. Variational approximation methods are enjoying an increasing amount
of development and use in statistical problems. This raises questions regarding their statistical
properties, such as consistency of point estimators and validity of statistical inference. We make
significant inroads into answering such questions via thorough theoretical treatment of one of
the simplest non-trivial settings for which variational approximation is beneficial: the Poisson
mixed model with a single predictor variable and random intercept. We call this the model
simple Poisson mixed model.

The model treated here is also treated in [5], but there attention is confined to bounds and
rates of convergence. We improve upon their results by obtaining the asymptotic distributions of
the estimators. The results reveal that the estimators are asymptotically normal, have negligible
bias, and that their variances decay at least as fast as m−1, where m is the number of groups.
For the slope parameter, the faster (mn)−1 rate is obtained, where n is the number of repeated
measures.

An important practical ramification of our theory is asymptotically valid statistical inference
for the model parameters. In particular, a form of studentization leads to theoretically justifi-
able confidence intervals for all model parameters. Unlike those based on the exact likelihood,
all Gaussian variational approximate point estimates and confidence intervals can be computed
without the need for numerical integration. Simulation results reveal that the confidence inter-
vals have good to excellent coverage and have about the same length as exact likelihood-based
intervals.

Variational approximation methodology is now a major research area with Computer Science;
see, for example, Chapter 10 of [2]. It is beginning to have a presence in Statistics as well (e.g.
[8], [11]) A summary of the topic from a statistical perspective is given in [10]. Late 2010
saw the first non-beta release of a software library, Infer.NET [9], for facilitation of variational
approximate inference. A high proportion of variational approximation methodology is framed
within Bayesian hierarchical structures and offers itself as a faster alternative to Markov chain
Monte Carlo methods. The chief driving force is applications where speed is at a premium and
some accuracy can be sacrificed. Examples of such applications are cluster analysis of gene-
expression data [13], fitting spatial models to neuroimage data [4], image segmentation [3] and
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Keywords and phrases: Generalized linear mixed models, Longitudinal data analysis, Maximum likelihood es-

timation, Poisson mixed models

1



2 P. HALL, T. PHAM, M.P. WAND AND S.S.J. WANG

genome-wide association analysis [6].
As explained in [2] and [10], there are many types of variational approximations. The most

popular is variational Bayes (also known as mean field approximation), which relies on product
restrictions applied to the joint posterior densities of a Bayesian model. The present article is
concerned with Gaussian variational approximation in frequentist models containing random
effects. There are numerous models of this general type. One of their hallmarks is the difficulty
of exact likelihood-based inference for the model parameters due to presence of non-analytic
integrals. Generalized linear mixed models (e.g. Chapter 7 of [7]) form a large class of models
for handling within-group correlation when the response variable is non-Gaussian. The simple
Poisson mixed model lies within this class. From a theoretical standpoint, the simple Poisson
mixed model is attractive because it possesses the computational challenges that motivate Gaus-
sian variational approximation — exact likelihood-based inference requires quadrature — but
its simplicity makes it amenable to deep theoretical treatment. We take advantage of this sim-
plicity to derive the asymptotic distribution of the Gaussian variational approximate estimators,
although the derivations are still quite intricate and involved. These results represent the deepest
statistical theory yet obtained for a variational approximation method.

Moreover, for the first time, asymptotically valid inference for a variational approximation
method is manifest. Our theorem reveals that each estimator is asymptotically normal, centered
on the true parameter value and with a studentizable variance. Replacement of the unknown
quantities by consistent estimators results in asymptotically valid confidence intervals and Wald
hypothesis tests. A simulation study shows that Gaussian variational approximate confidence
intervals possess good to excellent coverage properties — especially in the case of the slope
parameter.

Section 2 describes the simple Poisson mixed model and Gaussian variational approximation.
An asymptotic normality theorem is presented in Section 3. In Section 4 we discuss the implica-
tions for valid inference and perform some numerical evaluations. Section 5 contains the proof
of the theorem.

2. Gaussian variational approximation for the simple Poisson mixed model. The
simple Poisson mixed model that we study here is identical to that treated in [5]. Section 2 of
that paper provides a detailed description of the model and the genesis of Gaussian variational
approximation for estimation of the model parameters. Here we give just a rudimentary account
of the model and estimation strategy.

The simple Poisson mixed model is

Yij |Xij , Ui independent Poisson with mean exp(β0
0 + β0

1Xij + Ui),(2.1)
Ui independent N(0, σ2

0).(2.2)

The Xij and Ui, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, are totally independent random variables, with
the Xijs distributed as X. We observe values of (Xij , Yij), 1 ≤ i ≤ m, 1 ≤ j ≤ n, whilst the Ui

are unobserved latent variables. See, for example, Chapter 7 and Section 14.3 of [7] for further
details on this model and its use in longitudinal data analysis. In applications it is typically the
case that m� n.

Let β ≡ (β0, β1) be the vector of fixed effects parameters. The conditional log-likelihood of
(β, σ2) is the logarithm of the joint probability mass function of the Yij ’s, given the Xij ’s, as a
function of the parameters:

�(β, σ2) =
m�

i=1

n�

j=1

{Yij(β0 + β1 Xij)− log(Yij !)} − m
2 log(2πσ2)(2.3)

+
m�

i=1

log
� ∞

−∞
exp




n�

j=1

Yiju− eβ0+β1 Xij+u − u2

2σ2



 du.
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Maximum likelihood estimation is hindered by the presence of m intractable integrals in (2.3).
One of several ways around this is Gaussian variational approximation, in which (2.3) is replaced
by:

�(β, σ2,µ,λ) =
m�

i=1

n�

j=1

{Yij(β0 + β1Xij + µi)− eβ0+β1Xij+µi+
1
2λi(2.4)

− log(Yij !)} −
m

2
log(σ2)− 1

2σ2

m�

i=1

(µ2
i + λi) + 1

2

m�

i=1

log(λi)

and the vectors µ = (µ1, . . . , µm) and λ = (λ1, . . . , λm) contain introduced variational param-
eters. The Gaussian variational approximate maximum likelihood estimators are:

(�β, �σ2) = (β, σ2) component of argmax
β,σ2,µ,λ

�(β, σ2,µ,λ).

3. Asymptotic normality results. Consider random variables (Xij , Yij , Ui) satisfying
(2.1) and (2.2). Put

Yi • =
n�

i=1

Yij and Bi =
n�

j=1

exp(β0 + β1 Xij)

and consider the following decompositions of the exact log-likelihood and its Gaussian variational
approximation:

�(β, σ2) = �0(β, σ2) + �1(β, σ2) + DATA ,

�(β, σ2,µ,λ) = �0(β, σ2) + �2(β, σ2,µ,λ) + DATA ,

where

�0(β, σ2) =
m�

i=1

n�

j=1

Yij (β0 + β1 Xij)− 1
2 m log σ2 ,(3.1)

�1(β, σ2) =
m�

i=1

log
� � ∞

−∞
exp

�
Yi • u−Bi e

u − 1
2 σ−2 u2� du

�
,

�2(β, σ2,µ,λ) =
m�

i=1

�
µi Yi • −Bi exp

�
µi + 1

2 λi
��

−1
2 σ−2

m�

i=1

�
µ2

i + λi
�
+ 1

2

m�

i=1

log λi .(3.2)

and DATA denotes a quantity depending on the Yij alone, and not on β or σ2. Note that

�(β, σ2) = max
µ,λ

�(β, σ2,µ,λ) = �0(β, σ2) + max
µ,λ

�2(β, σ2,µ,λ).

Our upcoming theorem relies on the following assumptions:

(A1) the moment generating function of X, φ(t) = E{exp(tX)}, is well-defined on the whole
real line;

(A2) the mapping that takes β to φ�(β)/φ(β) is invertible;
(A3) in some neighbourhood of β0

1 (the true value of β1), (d2/dβ2) log φ(β) does not vanish;
(A4) m = m(n) diverges to infinity with n, such that n/m→ 0 as n→∞;
(A5) and, for a constant C > 0, m = O(nC) as m and n diverge.
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Define

(3.3) τ2 =
exp

�
− 1

2 σ2
0 − β0

0

�
φ(β0

1)
φ��(β0

1)φ(β0
1)− φ�(β0

1)2
.

The precise asymptotic behavior of �β
0
, �β

1
and �σ2 is conveyed by:

Theorem 3.1. Assume that conditions (A1)–(A5) hold. Then:

(3.4) �β
0
− β0

0 = m−1/2 N0 + op
�
n−1 + m−1/2),

where the random variable N0 is normal N(0, σ2
0);

(3.5) �β
1
− β0

1 = (mn)−1/2 N1 + op{n−2 + (mn)−1/2},

where the random variable N1 is normal N(0, τ2); and

(3.6) �σ2 − σ2
0 = m−1/2 N2 + op(n−1 + m−1/2),

where the random variable N2 is normal N(0, 2{σ2
0}2).

Remark. All three Gaussian variational approximate estimators have asymptotically normal
distibutions with asymptotically negligible bias. The estimators �β

0
and �σ2 have variances of

size m−1, as m and n diverge in such a manner that n/m → 0. The estimator �β
1

has variance
of size (mn)−1. Hence, the estimator �β

1
is distinctly more accurate than either �β

0
or �σ2, since

it converges to the respective true parameter value at a strictly faster rate. For the estimator
�β

1
, increasing both m and n reduces variance. However, in the cases of the estimators �β

0
or �σ2

only an increase in m reduces variance.

4. Asymptotically valid inference. Theorem 3.1 reveals that �β
0
, �β

1
and �σ2 are each

asymptotically normal with means corresponding to the true parameter values. The variances
depend on known functions of the parameters and φ(β0

1), φ�(β0
1) and φ��(β0

1). Since the latter
three quantities can be estimated unbiasedly via

�φ(β0
1) = 1

mn

�m
i=1

�n
j=1 exp(Xij

�β
1
),

�φ�(β0
1) = 1

mn

�m
i=1

�n
j=1 Xij exp(Xij

�β
1
)

and �φ��(β0
1) = 1

mn

�m
i=1

�n
j=1 X2

ij exp(Xij
�β

1
)

we can consistently estimate the asymptotic variances for inferential procedures such as confi-
dence intervals and Wald-type hypothesis tests. For example, the quantity τ2 appearing in the
expression for the asymptotic variance of �β

1
can be consistently estimated by

�τ2 =
exp

�
− 1

2 �σ2 − �β
0

� �φ(β0
1)

�φ��(β0
1) �φ(β0

1)− �φ�(β0
1)

2 .

Approximate 100(1− α)% confidence intervals for β0
0 , β0

1 and σ2
0 are

(4.1) �β
0
± Φ(1− 1

2α)

�
�σ2

m
, �β

0
± Φ(1− 1

2α)

�
�τ2

mn
and �σ2 ± Φ(1− 1

2α) �σ2

�
2
m

.

where Φ denotes the N(0, 1) distribution function. These confidence intervals are asymptotically
valid since they involve studentization based on consistent estimators of all unknown quantities.
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We ran a simulation study to evaluate the coverage properties of the Gaussian variational ap-
proximate confidence intervals (4.1). The true parameter vector (β0

0 , β0
1 , σ2

0) was allowed to vary
over {(−0.3, 0.2, 0.5), (2.2,−0.1, 0.16), (1.2, 0.4, 0.1), (0.02, 1.3, 1), (−0.3, 0.2, 0.1)} and the distri-
bution of the Xij was taken to be either N(0, 1) or Uniform(−1, 1), the uniform distribution
over the interval (−1, 1). The number groups m varied over 100, 200, . . . , 1000 with n fixed at
m/10 throughout the study. For each of the ten possible combinations of true parameter vec-
tor and Xij distribution, and sample size pairs, we generated 1000 samples and computed 95%
confidence intervals based on (4.1).

Figure 4 shows the actual coverage percentages for the nominally 95% confidence intervals. In
the case of β0

1 , the actual and nominal percentages are seen to have very good agreement — even
for (m,n) = (100, 10). This is also the case for β0

0 for the first four true parameter vectors. For
the fifth one, which has a relatively low amount of within-subject correlation, the asymptotics
take a bit longer to become apparent and we see that m ≥ 400 is required to get the actual
coverage above 90%, i.e. within 5% of the nominal level. For σ2

0, a similar comment applies, but
with m ≥ 800. The superior coverage of the β0

1 confidence intervals is in keeping with the faster
convergence rate apparent from Theorem 3.1.

Lastly, we ran a smaller simulation study to check whether or not the lengths of the Gaussian
variational approximate confidence intervals are compromised in achieving the good coverage
apparent in Figure 4. For each of the same settings used to produce that figure we generated
100 samples and computed the exact likelihood-based confidence intervals using adaptive Gauss-
Hermite quadrature (via the R language [12] package lme4 [1]). In almost every case, the Gaussian
variational approximate confidence intervals were slightly shorter than their exact counterparts.
This reassuring result indicates that the good coverage performance is not accompanied by a
decrease in precision.
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Table 1
Definitions of the O(k) notation used in the proofs.

notation meaning

O(1) Op(m
−1/2 + n

−1)
O(2) Op(m

−1 + n
−2)

O(3) O(nε−(1/2)), uniformly in 1 ≤ i ≤ m, for each ε > 0
O(4) O(nε−1), uniformly in 1 ≤ i ≤ m, for each ε > 0
O(5) O(nε−(3/2)), uniformly in 1 ≤ i ≤ m, for each ε > 0
O(6) Op(m

−1 + n
ε−(3/2)), uniformly in 1 ≤ i ≤ m, for each ε > 0

O(7) Op{(m−1 + n
−2) n

ε−(1/2)}, uniformly in 1 ≤ i ≤ m, for each ε > 0
O(8) Op{(m−1/2 + n

−1)3 n
ε}, uniformly in 1 ≤ i ≤ m, for each ε > 0

O(9) Op{(mn)−1/2 + n
ε−(3/2)}, uniformly in 1 ≤ i ≤ m, for each ε > 0

O(10) Op{(m−1/2 + n
−5/2) n

ε}, uniformly in 1 ≤ i ≤ m, for each ε > 0
O(11) Op{(m−1/2

n
−1 + n

−2) n
ε}, uniformly in 1 ≤ i ≤ m, for each ε > 0

5. Proof of Theorem 3.1. The proof Theorem 3.1 requires some additional notation, as
well as several stages of asymptotic approximation. This section provides full details, beginning
with definitions of the necessary notation.

5.1. Notation. Recall that β0
0 , β0

1 and σ2
0 denote the true values of parameters and that �β

0
,

�β
1

and �σ2 denote their respective Gaussian variational approximate estimators.
The proofs use “O(k)” notation, for k = 1, . . . , 11, as defined in Table 1.

5.2. Formulae for estimators. First we give, in (5.1)–(5.5) below, the results of equating to
zero the derivatives of �0(β, σ2)+�2(β, σ2, λ, µ) with respect to β0, β1, σ2, λi and µi, respectively:

m�

i=1

�
Yi • −Bi exp

�
�µ

i
+ 1

2
�λ i

��
= 0 ,(5.1)

m�

i=1

n�

j=1

Xij

�
Yij − exp

� �β
0
+ �µ

i
+ 1

2
�λ i + �β

1
Xij

� �
= 0 ,(5.2)

1
m

m�

i=1

��λ i + �µ2
i

�
= �σ2 ,(5.3)

�λ
−1
i −Bi exp

�
�µ

i
+ 1

2
�λ i

�
− (�σ2)−1 = 0 , 1 ≤ i ≤ m,(5.4)

Yi • −Bi exp
�
�µ

i
+ 1

2
�λ i

�
− (�σ2)−1 �µ

i
= 0 , 1 ≤ i ≤ m.(5.5)

These are the analogues of the likelihood equations in the conventional approach to inference.
The next step is to put (5.1), (5.2) and (5.5) into more accessible form, in (5.6), (5.11) and

(5.12), respectively. Adding (5.5) over 1 ≤ i ≤ m and subtracting the result from (5.1) we deduce
that

(5.6)
m�

i=1

�µ
i
= 0 .

Defining

∆ =
1

mn

m�

i=1

n�

j=1

Xij
�
Yij − exp

�
β0

0 + β0
1 Xij + Ui

��

we deduce that (5.2) is equivalent to:

∆ + exp
�
β0

0

� 1
mn

m�

i=1

n�

j=1

Xij exp
�
Ui + β0

1 Xij
�

− exp(β0)
1

mn

m�

i=1

n�

j=1

Xij exp
�
�µ

i
+ 1

2
�λ i + β1 Xij

�
= 0 .(5.7)
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Define ξi, ηi and ζi by, respectively,

1
n

n�

j=1

Xij exp
�
β0

1 Xij
�

= φ�
�
β0

1

�
exp(ξi) ,(5.8)

1
n

n�

j=1

Xij exp
� �β

1
Xij

�
= φ�(�β

1
) exp

�
ηi

�
,(5.9)

exp
� �β

0
+ �µ

i
+ 1

2
�λ i

� 1
n

n�

j=1

{exp(�β
1
Xij)− φ(�β

1
)} = exp

�
β0

0 + Ui
�

×
�
φ
�
β0

1

�
{1− exp(ζi)} +

1
n

n�

j=1

�
Yij exp

�
− β0

0 − Ui
�
− φ

�
β0

1

���
− (�σ2n)−1 �µ

i
.(5.10)

With probability converging to 1 as n → ∞ the definitions at (5.8)–(5.10) are valid simul-
taneously for all 1 ≤ i ≤ m, because the variables ξi, ηi and ζi so defined converge to zero,
uniformly in 1 ≤ i ≤ m, in probability. See (5.30), (5.31) and (5.25) below for approximations
to ξi, ηi and ζi; indeed, those formulae quickly imply that each of ξi, ηi and ζi equals O(3).

Without loss of generality, φ�(t) is bounded away from zero in a neighbourhood of β0
1 . Indeed,

if the latter property does not hold, simply add a constant to the random variable X to ensure
that φ�(β0

1) �= 0. We assume that β0
1 is in the just-mentioned neighbourhood, and we consider

only realizations for which β1 is also in the neighbourhood. (The latter property holds true with
probability converging to 1 as n →∞.) The definition of ζi at (5.10) can be justified using the
fact that �µ

i
< Yi •, as shown in Theorem 2 of [5].

In this notation we can write (5.7) as:

(5.11) ∆ + φ�
�
β0

1

� 1
m

m�

i=1

exp(β0
0 + Ui + ξi) = φ�(�β

1
)

1
m

m�

i=1

exp
� �β

0
+ �µ

i
+ 1

2
�λ i + ηi

�
,

and write (5.5) as:

(5.12) exp
� �β

0
+ �µ

i
+ 1

2
�λ i

�
φ(β1) = exp

�
β0

0 + Ui + ζi
�
φ
�
β0

1

�
.

Substituting (5.12) into (5.11) we obtain:

∆ exp
�
− β0

0

�
φ
�
β0

1

�−1 + φ�
�
β0

1

�
φ
�
β0

1

�−1 1
m

m�

i=1

exp(Ui + ξi)

= φ�(�β
1
) φ(�β

1
)−1 1

m

m�

i=1

exp(Ui + ηi + ζi) .(5.13)

5.3. Approximate formulae for Ui and �λ i. The formulae are given at (5.16) and (5.18),
respectively. To derive them, note that (5.5) implies that

(1 + O(3)) φ
�
β0

1

�
exp

�
β0

0 + Ui
�
− (1 + O(3)) φ

�
β0

1

�
exp

�
β0

0 + �µ
i
+ 1

2
�λ i

�
− (n�σ2)−1 �µ

i
= 0 .

Here we have used the fact that, by [5],

(5.14) �β
0
− β0

0 = O(1) , �β
1
− β0

1 = O(1) ,

and that by (1.3), max1≤i≤m |Xi| = Op(nε) for all ε > 0. Therefore,

(5.15) (1 + O(3)) exp(Ui) = (1 + O(3)) exp
�
�µ

i
+ 1

2
�λ i

�
+ (cn�σ2)−1 �µ

i
,
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where c = φ(β0
1) exp(β0

0). The result max1≤i≤m |Ui| = Op{(log n)1/2} follows from properties of
extrema of Gaussian variables and the fact that m = O(nC) for a constant C > 0. Moreover, by
Theorem 2 of [5], 0 < �λ i < �σ2. Therefore (5.15) implies that max1≤i≤n |�µ

i
| = Op{(log n)1/2}.

(Note that, for any constant C > 0, exp{−C (log n)1/2} = n−C (log n)−1/2 , which is of larger order
than n−ε for each ε > 0.) Hence, by (5.15),

(1 + O(3)) exp(Ui) = (1 + O(3)) exp
�
�µ

i
+ 1

2
�λ i

�
,

and so, taking logarithms,

(5.16) Ui = �µ
i
+ 1

2
�λ i + O(3) .

Formula (5.4) and property (5.14) entail:

(5.17) (n�λ i)−1 − (1 + O(3)) φ
�
β0

1

�
exp

�
�µ

i
+ 1

2
�λ i + β0

0

�
− (n�σ2)−1 = 0 .

Using (5.16) to substitute Ui + O(3) for �µ
i
+ 1

2
�λ i in (5.17) we deduce from that result that

(n�λ i)−1 = (1 + O(3)) φ
�
β0

1

�
exp

�
Ui + β0

0

�
+ (n�σ2)−1

= (1 + O(3)) φ
�
β0

1

�
exp

�
Ui + β0

0

�
,

where to obtain the second identity we again used the fact that

max
1≤i≤m

|Ui| = Op{(log n)1/2}.

Therefore,

�λ i = (1 + O(3))
�
n φ

�
β0

1

�
exp

�
Ui + β0

0

��−1

=
�
n φ

�
β0

1

�
exp

�
Ui + β0

0

��−1 + O(5) ,(5.18)

where O(5) is as defined in Table 1. To obtain the second identity in (5.18) we used the fact that
max1≤i≤m exp(−Ui) = O(nε) for all ε > 0.

5.4. Initial approximations to �β
0
− β0

0 and �β
1
− β0

1 . These approximations are given at
(5.19), (5.21) and (5.29), and lead to central limit theorems for �β

1
− β0

1 , �β
0
− β0

0 and �σ2 − σ2
0,

respectively. To derive the approximations, write γ(β1) = φ�(β1) φ(β1)−1 and note that, defining
O(2) as in Table 1, we have:

γ(�β
1
) = γ(β0

1) +
� �β

1
− β0

1

�
γ�

�
β0

1

�
+ Op

��� �β
1
− β0

1

��2�

= γ
�
β0

1

�
+

�
1 + Op

�
m−1/2 + n−1�� ��β

1
− β0

1

�
γ�(β0

1) .

(Here we have used (5.14).) Therefore, by (5.13) and for each ε > 0,

∆ exp
�
− β0

0

�
φ
�
β0

1

�−1 + γ
�
β0

1

� 1
m

m�

i=1

exp(Ui + ξi)

=
�
γ
�
β0

1

�
+

�
1 + Op

�
m−1/2 + n−1�� ��β

1
− β0

1

�
γ�

�
β0

1

��
× 1

m

m�

i=1

exp(Ui + ηi + ζi) .

That is,

� �β
1
− β0

1

�
γ�

�
β0

1

� 1
m

m�

i=1

exp(Ui + ηi + ζi)

= γ
�
β0

1

� 1
m

m�

i=1

exp(Ui)
�

exp(ξi)− exp
�
ηi + ζi

��
+ ∆ exp

�
− β0

0

�
φ
�
β0

1

�−1 + O(2).(5.19)
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Taking logarithms of both sides of (5.12) we obtain:

(5.20) log
�
φ(�β

1
)
�
φ
�
β0

1

��
= β0

0 − �β
0
+ Ui + ζi − �µ

i
− 1

2
�λ i ,

which, on adding over i and dividing by m, implies that

log
�
φ(�β

1
)
�
φ
�
β0

1

��
= β0

0 − �β
0
+

1
m

m�

i=1

�
Ui + ζi − �µ

i
− 1

2
�λ i

�
,

which in turn gives

�β
0
− β0

0 = −
� �β

1
− β0

1

�
γ
�
β0

1

�
+

1
m

m�

i=1

�
Ui + ζi − �µ

i
− 1

2
�λ i

�
+ O(2)

= −
� �β

1
− β0

1

�
γ
�
β0

1

�
+

1
m

m�

i=1

(Ui + ζi)

−
�
2n φ

�
β0

1

�
exp

�
β0

0 − 1
2 σ2

0

��−1 + O(6) ,(5.21)

where we used (5.18) to substitute for �λ i and (5.6) to eliminate �µ
i
from the right-hand side, and

employed (5.14) to bound (�β
1
−β0

1)2. Note too that E{exp(−Ui)} = exp(1
2 σ2

0); a term involving
E{exp(−Ui)} arises from

�
i

�λ i via (5.18).

5.5. Approximation to ζi. The approximation is given at (5.25). First we derive an expansion,
at (5.22) below, of �µ

i
. Reflecting (5.16), define the random variable δi by �µ

i
= Ui − 1

2
�λ i + δi.

Then, by (5.16), δi = O(3). Define too B0
ik =

�
j Xk

ij exp(β0
0 + β0

1 Xij) for k = 0, 1, 2, and
∆i = Yi • − B0

i0 exp(Ui); and let Fi denote the sigma-field generated by Ui and Xi1, . . . , Xin.
Then E(∆i | Fi) = 0 and

Bi =
�
1 + �β

0
− β0

0 + 1
2 (�β

0
− β0

0)2
�

B0
i0 +

��β
1
− β0

1 +
� �β

0
− β0

0

� � �β
1
− β0

1

��
B0

i1

+1
2

� �β
1
− β0

1

�2
Bi2 + O(8) ,

uniformly in 1 ≤ i ≤ m for each ε > 0, where O(8) is as in Table 1. Therefore,

Yi • −Bi exp(Ui + δi) = Yi • −
��

1 + �β
0
− β0

0 + 1
2 (�β

0
− β0

0)2
�

B0
i0

+
��β

1
− β0

1 +
� �β

0
− β0

0

� � �β
1
− β0

1

��
B0

i1 + 1
2

� �β
1
− β0

1

�2
B0

i2

�

× exp(Ui)
�
1 + δi + 1

2 δ2
i + O(5)

�
+ n O(8) ,

where O(5) is as in Table 1. Therefore, defining

χi =
��β

0
− β0

0 + 1
2 (�β

0
− β0

0)2
�

B0
i0 +

��β
1
− β0

1 +
� �β

0
− β0

0

� � �β
1
− β0

1

��
B0

i1

+1
2

� �β
1
− β0

1

�2
B0

i2 ,

we see that the left-hand side of (5.5) equals:

Yi • −Bi exp(Ui + δi)− (�σ2)−1 �µ
i

= ∆i −B0
i0 exp(Ui)

�
δi + 1

2 δ2
i + O(5)

�
− χi exp(Ui)

�
1 + δi + 1

2 δ2
i + O(5)

�

−(�σ2)−1 �
Ui − 1

2
�λ i + δi

�
+ n O(8)

= ∆i −
�
χi exp(Ui) + (�σ2)−1 �

Ui − 1
2

�λ i

��
− δi

��
B0

i0 + χi
�

exp(Ui) + (�σ2)−1�

1
2 δ2

i

�
B0

i0 + χi
�

exp(Ui) + n O(5) + n O(8) .
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Hence, (5.5) implies that:

δi + 1
2 δ2

i
(B0

i0 + χi) exp(Ui)
(B0

i0 + χi) exp(Ui) + (�σ2)−1
=

∆i − χi exp(Ui)− (�σ2)−1 (Ui − 1
2

�λ i)
(B0

i0 + χi) exp(Ui) + (�σ2)−1
+ O(5) + O(8) ,

which implies that:

δi =
∆i − χi exp(Ui)

(B0
i0 + χi) exp(Ui)

+ O(4) =
�
n exp

�
β0

0

�
φ
�
β0

1

��−1 {∆i exp(−Ui)− χi} + O(4)

=
�
n exp

�
β0

0

�
φ
�
β0

1

��−1 ∆i exp(−Ui)−
� �β

0
− β0

0

�
−

� �β
1
− β0

1

�
γ
�
β0

1

�
+ O(4) .

Here we have defined O(4) is as in Table 1 and have used the fact that n−1 B0
i0 = exp(β0

0) φ(β0
1)+

O(3) and
n−1 B0

i1 = exp
�
β0

0

�
φ�

�
β0

1

�
+ O(3) = exp

�
β0

0

�
φ
�
β0

1

�
γ
�
β0

1

�
+ O(3) .

Therefore,

�µ
i

= Ui − 1
2

�λ i + δi

= Ui +
�
n exp

�
β0

0

�
φ
�
β0

1

��−1 ∆i exp(−Ui)−
� �β

0
− β0

0

�
−

� �β
1
− β0

1

�
γ
�
β0

1

�
+ O(4)

= Ui − Ū +
�
n exp

�
β0

0

�
φ
�
β0

1

��−1 ∆i exp(−Ui) + O(4) ,(5.22)

where to obtain the second identity we used (5.18) to place �λ i into the remainder, and to obtain
the third identity we used (5.21) to show that �β

0
− β0

0 + (�β
1
− β0

1) γ�(β0
1) = Ū + O(4). Here we

have used the property, deducible from (5.10), (5.16) and (5.18), that ζi = O(3) and ζ̄ = O(4).
The next step is to substitute the right-hand side of (5.22) for �µ

i
, and the right-hand side of

(5.18) for �λ i, in (5.10), and derive an expansion, at (5.25) below, of ζi. We obtain:

�
1 +

�
n exp

�
β0

0

�
φ
�
β0

1

��−1 ∆i exp(−Ui)− Ū
� 1

n

n�

j=1

{exp(�β
1
Xij)− φ(�β

1
)}

= −φ
�
β0

1

� �
ζi + 1

2 ζ2
i

�
+

1
n

n�

j=1

�
Yij exp

�
− β0

0 − Ui
�
− φ

�
β0

1

��

− exp
�
− β0

0 − Ui
�
(�σ2n)−1 Ui + O(5) ,

whence

φ
�
β0

1

� �
ζi + 1

2 ζ2
i

�

=
1
n

n�

j=1

�
Yij exp

�
− β0

0 − Ui
�
− φ

�
β0

1

��
− 1

n

n�

j=1

{exp(�β
1
Xij)− φ(�β

1
)}

−
��

n exp
�
β0

0

�
φ
�
β0

1

��−1 ∆i exp(−Ui)− Ū
� 1

n

n�

j=1

�
exp

� �β
1
Xij

�
− φ

� �β
1

�
}

− exp
�
− β0

0 − Ui
�
(�σ2n)−1 Ui + O(5) .(5.23)

However, defining

(5.24) Dik(b) =
1
n

n�

j=1

�
Xk

ij exp(b Xij)− φ(k)(b)
�

= O(3)
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for k = 0, 1, 2, and ∆i = Yi • −B0
i0 exp(Ui), we see that

n�

j=1

�
Yij exp

�
− β0

0 − Ui
�
− φ

�
β0

1

��
−

n�

j=1

{exp(�β
1
Xij)− φ(�β

1
)}

=
n�

j=1

�
Yij exp

�
− β0

0 − Ui
�
− φ

�
β0

1

��

−n
�
Di0

�
β0

1

�
+

� �β
1
− β0

1

�
Di1

�
β0

1

��
+ O(3)

= ∆i exp
�
− β0

0 − Ui
�
− n

� �β
1
− β0

1

�
Di1

�
β0

1

�
+ O(3) ,

and so, by (5.23),

φ
�
β0

1

� �
ζi + 1

2 ζ2
i

�
= n−1 exp

�
− β0

0 − Ui
� �

∆i
�
1− φ

�
β0

1

�−1
Di0

�
β0

1

��
− (�σ2)−1 Ui

�

−
� �β

1
− β0

1

�
Di1

�
β0

1

�
+ Ū Di0

�
β0

1

�
+ O(5) .

Therefore,

φ
�
β0

1

�
ζi = n−1 exp

�
− β0

0 − Ui
� �

∆i
�
1− φ

�
β0

1

�−1
Di0

�
β0

1

��
− (�σ2)−1 Ui

�

−
� �β

1
− β0

1

�
Di1

�
β0

1

�
+ Ū Di0

�
β0

1

�

−1
2 φ

�
β0

1

�−1 �
n−1 exp

�
− β0

0 − Ui
�
∆i

�2 + O(5)(5.25)

Result (5.25), and the fact that n/m→ 0 as n→∞, imply that

φ(β0
1)

1
m

m�

i=1

Uiζi = − 1
mn

exp(−β0
0)

(σ2)0
m�

i=1

U2
i exp(−Ui)

− 1
2m

φ(β0
1)−1

m�

i=1

Ui

�
n−1 exp(−β0

0 − Ui)∆i

�2
+ op(n−1)

= − 1
n

exp
�1

2(σ2)0 − β0
0

��
1 + 1

2(σ2)0
�
+ op(n−1)(5.26)

Here we have used the fact that E{U2
i exp(−Ui)} = exp(1

2 σ2
0) σ2

0 (1 + σ2
0).

5.6. Initial approximation to σ2 − σ2
0. Starting from (5.20); using (5.21) to substitute for

�β
0
− β0

0 ; using (5.18) to substitute for �λ i; and defining Ū = m−1 �
i Ui and ζ̄ = m−1 �

i ζi; we
obtain:

�µ
i

= Ui + ζi − 1
2

�λ i − log
�
φ(�β

1
)
�
φ
�
β0

1

��
−

� �β
0
− β0

0

�

= Ui + ζi − 1
2

�λ i −
� �β

1
− β0

1

�
γ
�
β0

1

�
−

� �β
0
− β0

0

�
+ O(2)

= Ui + ζi −
�
2n φ

�
β0

1

�
exp

�
Ui + β0

0

��−1 − (Ū + ζ̄)

+
�
2n φ

�
β0

1

�
exp

�
β0

0 − 1
2 σ2

0

��−1 + O(6) .(5.27)

Hence, squaring both sides of (5.27) and adding,

1
m

m�

i=1

�µ2
i

=
1
m

m�

i=1

(Ui + ζi − Ū − ζ̄)2

−{mnφ(β0
1) exp(β0

0)}−1
m�

i=1

exp(−Ui)(Ui + ζi − Ū − ζ̄) + O(6) .(5.28)

Combining (5.3), (5.18), (5.25) and (5.28) we deduce that:

�σ2 =
1
m

m�

i=1

��λ i + �µ2
i

�
= σ2

0 +
1
m

m�

i=1

�
(Ui + ζi − Ū − ζ̄)2 − σ2

0

�

+
�
n φ

�
β0

1

�
exp

�
β0

0 − 1
2 σ2

0

��−1 �
1 + σ2

0

�
+ O(6) .(5.29)
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5.7. Approximations to ξi and ηi. The approximations are given at (5.30) and (5.31), re-
spectively, and are derived as follows. Note the definition of Dik(b) at (5.24). In that notation,
observing that n/m → 0 and recalling (5.14), it can be deduced from (5.8) and (5.9) that,
uniformly in 1 ≤ i ≤ m,

(5.30) ξi = φ�
�
β0

1

�−1
Di1

�
β0

1

�
− 1

2

�
φ�

�
β0

1

�−1
Di1

�
β0

1

��2 + O(5) ,

ηi = φ�
�
β0

1

�−1
�
Di1

�
β0

1

�
+

� �β
1
− β0

1

� �
Di2

�
β0

1

�
− φ�

�
β0

1

�−1
φ��

�
β0

1

�
Di1

�
β0

1

���

−1
2

�
φ�

�
β0

1

�−1
Di1

�
β0

1

��2 + O(5) .(5.31)

Result (5.30) is derived by writing (5.8) as:

(5.32) φ�
�
β0

1

�−1
Di1

�
β0

1

�
= exp(ξi)− 1 = ξi + 1

2 ξ2
i + Op

�
|ξi|3

�
,

and then inverting the expansion. (The result max1≤i≤m |ξi| = op(1), in fact O(3), used in this
argument, is readily derived.) To obtain (5.31), note that the analogue of (5.32) in that case is:

(5.33) φ�(�β
1
)−1 Di1(�β

1
) = exp(ηi)− 1 = ηi + 1

2 η2
i + Op

�
|ηi|3

�
,

and that, uniformly in 1 ≤ i ≤ m,

φ�(�β
1
)−1 Di1(�β

1
) =

�
φ�

�
β0

1

�
+

� �β
1
− β0

1

�
φ��

�
β0

1

�
+ O(2)

�−1

×
�
Di1

�
β0

1

�
+

� �β
1
− β0

1

�
Di2

�
β0

1

�
+ O(7)

�

= φ�
�
β0

1

�−1
�
1−

� �β
1
− β0

1

�
φ�

�
β0

1

�−1
φ��

�
β0

1

��

×
�
Di1

�
β0

1

�
+

� �β
1
− β0

1

�
Di2

�
β0

1

��
+ O(7)

= φ�
�
β0

1

�−1
�
Di1

�
β0

1

�
+

� �β
1
− β0

1

� �
Di2

�
β0

1

�

−φ�
�
β0

1

�−1
φ��

�
β0

1

�
Di1

�
β0

1

���
+ O(7) .(5.34)

Result (5.31) follows from (5.33) and (5.34) on inverting the expansion at (5.33).

5.8. Another approximation to �β
1
− β0

1 , and final approximations to �β
0
− β0

0 and σ2 − σ2
0.

Next we use the expansions (5.30), (5.31) and (5.25) of ξi, ηi and ζi to refine the approximations
derived in section 2.3. The results are given in (5.40), (5.41) and (5.45) in the cases of �β

0
− β0

0 ,
�β

1
− β0

1 and σ2 − σ2
0, respectively.

It can be deduced from (5.31) and (5.25) that

(5.35)
1
m

m�

i=1

exp(Ui + ηi + ζi) = exp
�1

2 σ2
0

�
+ O(3) .

By (5.30), (5.31) and (5.25),

1
m

m�

i=1

exp(Ui)
�

exp(ξi)− exp
�
ηi + ζi

��

=
1
m

m�

i=1

exp(Ui)
�
ξi − ηi − ζi + 1

2

�
ξ2
i − (ηi + ζi)2

��
+ O(5)

= − 1
m

m�

i=1

exp(Ui)
�
ζi + 1

2

�
2 ηi ζi + ζ2

i

��
+ O(5) + Op

��� �β
1
− β0

1

�� nε−(1/2)�.(5.36)
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Defining O(9) as at Table 1 we deduce from (5.25) that

1
m

m�

i=1

exp(Ui) ζi = −1
2 φ

�
β0

1

�−2 1
mn2

m�

i=1

exp
�
− 2 β0

0 − Ui
�
∆2

i

+Op
�
(mn)−1/2� + O(5)

= −(2n)−1 φ
�
β0

1

�−1 exp
�
− β0

0

�
+ O(9) ,(5.37)

where we have used the fact that n/m → 0 and, since Yi •, conditional on Fi, has a Poisson
distribution with mean B0

i0 exp(Ui), then

E
�

exp(−Ui) ∆2
i

�
= E

�
exp(−Ui) {Yi • − E(Yi • | Fi)}2� = E{exp(−Ui) var(Yi • | Fi)}

= E
�

exp(−Ui) B0
i0 exp(Ui)

�
= E

�
B0

i0

�
= n exp

�
β0

0

�
φ
�
β0

1

�
.

1
m

m�

i=1

exp(Ui) ζ2
i = φ

�
β0

1

�−2 1
mn2

m�

i=1

exp
�
− 2 β0

0 − Ui
�
∆2

i + O(9)

= n−1 φ
�
β0

1

�−1 exp
�
− β0

0

�
+ O(9) .

Moreover, since by (5.31) and (5.25),

ηi = φ�
�
β0

1

�−1
Di1

�
β0

1

�
+ O(4) , ζi = φ

�
β0

1

�−1
n−1 exp

�
− β0

0 − Ui
�
∆i + O(4) ,

and for k ≥ 0,

E
�

exp(Ui) Dik
�
β0

1

�
exp

�
− Ui

�
∆i

�
= E

�
Dik

�
β0

1

�
E(∆i | Fi)

�
= 0 ,

then

(5.38)
1
m

m�

i=1

exp(Ui) ηi ζi = O(5) .

Together, (5.36), (5.37), (5.38) and (5.38) imply that

1
m

m�

i=1

exp(Ui)
�

exp(ξi)− exp
�
ηi + ζi

��

= (2n)−1 φ
�
β0

1

�−1 exp
�
− β0

0

�
− (2n)−1 φ

�
β0

1

�−1 exp
�
− β0

0

�

+O(9) + Op
��� �β

1
− β0

1

�� nε−(1/2)�

= O(9) + Op
��� �β

1
− β0

1

�� nε−(1/2)� .(5.39)

Combining (5.19), (5.35) and (5.39), and noting that ∆ = Op{(mn)−1/2} and n/m → 0, we
deduce that:

(5.40) �β
1
− β0

1 = O(9) .

Together, (5.21) and (5.40) imply that

(5.41) �β
0
− β0

0 = Ū + ζ̄ − c0 n−1 + op
�
m−1/2 + n−1� ,

where
c0 =

�
2 φ

�
β0

1

�
exp

�
β0

0 − 1
2 σ2

0

��−1
.
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Result (3.4) Theorem 3.1 is a direct consequence of (5.41) and the property:

ζ̄ = − 1
m

m�

i=1

Ui
�
n(σ2)0 exp(Ui + β0

0)φ(β0
1)

�−1

−1
2φ(β0

1)−2E
�
n−1 exp(−β0

0 − Ui)∆i
�2 + op(n−1)

= c0n
−1 + op(n−1).(5.42)

Results (5.25) and (5.40), and the property

E
�

exp(−2 Ui) ∆2
i

�
= E

�
B0

i0 exp(−Ui)
�

= n exp
�
β0

0 + 1
2 σ2

0

�
φ
�
β0

1

�
,

imply that

1
m

m�

i=1

ζ2
i = φ

�
β0

1

�−2 1
mn2

m�

i=1

exp
�
− 2 β0

0 − 2 Ui
�
∆2

i + op(1)

= n−1 φ
�
β0

1

�−1 exp
�1

2 σ2
0 − β0

0

�
+ op

�
n−1� = 2 c0 n−1 + op

�
n−1� .(5.43)

By (5.26),

(5.44)
1
m

m�

i=1

Ui ζi = − 1
n

φ
�
β0

1

�−1 exp
�1

2 σ2
0 − β0

0

� �
1 + 1

2σ2
0

�
+ op

�
n−1� .

Together, (5.42)–(5.44) give:

1
m

m�

i=1

�
(Ui + ζi − Ū − ζ̄)2 − (σ2)0

�

=
1
m

m�

i=1

(U2
i − (σ2)0) +

1
m

m�

i=1

ζ2
i − ζ̄2 +

2
m

m�

i=1

Uiζi − 2Ū ζ̄ + Op(m−1)

=
1
m

m�

i=1

(U2
i − (σ2)0) + 2n−1c0 − 2n−1c0(2 + (σ2)0) + op(m−1/2 + n−1)

=
1
m

m�

i=1

(U2
i − (σ2)0)− 2n−1c0(1 + σ2

0) + op(m−1/2 + n−1)

Hence, by (5.29),

(5.45) �σ2 − σ2
0 =

1
m

m�

i=1

�
U2

i − σ2
0

�
+ op

�
m−1/2 + n−1� .

Result (3.6) of Theorem 3.1 is a direct consequence of (5.45).

5.9. Final approximation to �β
1
− β0

1 . Our first step is to sharpen the expansion of (5.5)
at (5.15); see (5.49), which leads to (5.54), the principal analogue of (5.15).

Recall that

(5.46) ∆i = Yi • − exp
�
β0

0 + Ui
� n�

j=1

exp(β0
1 Xij) = Yi • − exp(Ui) B0

i0 .
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Also, in view of (5.40) and (5.41),

Bi = exp
� �β

0

� n�

j=1

exp(�β
1
Xij)

= exp
�
β0

0

� �
1 +

� �β
0
− β0

0

�
+ 1

2 (�β
0
− β0

0)2 + 1
6

� �β
0
− β0

0

�3
�

×
n�

j=1

�
1 +

� �β
1
− β0

1

�
Xij + 1

2

� �β
1
− β0

1

�2
X2

ij

�

× exp
�
β0

1 Xij
�
+ Op

�
m−2 n + m−3/2 n−1/2 + m−1 + nε−3�

= exp
�
β0

0

� n�

j=1

�
1 +

� �β
0
− β0

0

�
+ 1

2

� �β
0
− β0

0

�2 + 1
6

� �β
0
− β0

0

�3

+
� �β

1
− β0

1

�
Xij + 1

2

� �β
1
− β0

1

�2
X2

ij +
� �β

0
− β0

0

� � �β
1
− β0

1

�
Xij

�
exp

�
β0

1 Xij
�

+Op
�
m−1/2 nε + nε−(5/2)�

=
�
1 +

� �β
0
− β0

0

�
+ 1

2

� �β
0
− β0

0

�2 + 1
6

� �β
0
− β0

0

�3
�

B0
i0

+
�
1 +

� �β
0
− β0

0

�� ��β
1
− β0

1

�
B0

i1 + 1
2

� �β
1
− β0

1

�2
B0

i2 + O(10) ,

where O(10) is defined in Table 1. Hence, recalling that δi = �µ
i
+ 1

2
�λ i−Ui, we see that, for each

ε > 0, we have, uniformly in 1 ≤ i ≤ n,

Yi • −Bi exp(δi + Ui) = Yi • −B0
i0 exp(δi + Ui)

−
����β

0
− β0

0

�
+ 1

2

� �β
0
− β0

0

�2 + 1
6

� �β
0
− β0

0

�3
�

B0
i0

+
�
1 +

� �β
0
− β0

0

�� ��β
1
− β0

1

�
B0

i1 + 1
2

� �β
1
− β0

1

�2
B0

i2

�
exp(δi + Ui) + O(10) .(5.47)

Combining (5.46) and (5.47) we obtain:

Yi • −Bi exp(δi + Ui) = ∆i − exp(Ui)
�
{exp(δi)− 1}B0

i0

+
����β

0
− β0

0

�
+ 1

2

� �β
0
− β0

0

�2 + 1
6

� �β
0
− β0

0

�3
�

B0
i0

+
�
1 +

� �β
0
− β0

0

�� ��β
1
− β0

1

�
B0

i1 + 1
2

� �β
1
− β0

1

�2
B0

i2

�
exp(δi)

�
+ O(10) .

Therefore, (5.5) implies that:

(�σ2)−1 �µ
i

= ∆i − exp(Ui)
�
{exp(δi)− 1}B0

i0

+
����β

0
− β0

0

�
+ 1

2

� �β
0
− β0

0

�2 + 1
6

� �β
0
− β0

0

�3
�

B0
i0

+
�
1 +

� �β
0
− β0

0

�� ��β
1
− β0

1

�
B0

i1 + 1
2

� �β
1
− β0

1

�2
B0

i2

�
exp(δi)

�
+ O(10) ,

or equivalently,

exp(Ui)
�
{exp(δi)− 1}B0

i0

+exp(δi)
����β

0
− β0

0

�
+ 1

2

� �β
0
− β0

0

�2 + 1
6

� �β
0
− β0

0

�3
�

B0
i0

+
�
1 +

� �β
0
− β0

0

�� ��β
1
− β0

1

�
B0

i1 + 1
2

� �β
1
− β0

1

�2
B0

i2

��
+ (�σ2)−1 �

δi + Ui − 1
2

�λ i

�

= ∆i + O(10) .(5.48)
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Substituting the far right-hand side of (5.18) for �λ i in (5.48) we deduce that:

exp(δi)− 1 + exp(δi)
���β

0
− β0

0

�
+ 1

2

� �β
0
− β0

0

�2 +
� �β

1
− β0

1

� �
B0

i1

�
B0

i0

��

+
�
�σ2 B0

i0 exp(Ui)
�−1 �

δi + Ui)

=
�
B0

i0 exp(Ui)
�−1 ∆i + O(11) ,(5.49)

where O(11) is as defined in Table 1. Result (5.49) implies that

(5.50) δi + 1
2 δ2

i Gi2 + 1
6 δ3

i Gi3 = Gi + O(11) ,

where, putting

(5.51) Gi1 = 1 +
� �β

0
− β0

0

�
+ 1

2

� �β
0
− β0

0

�2 +
� �β

1
− β0

1

� �
Bi1

�
B0

i0

�
+

�
�σ2 B0

i0 exp(Ui)
�−1

,

we define Gi, Gi2 and Gi3 by Gi3 Gi1 = 1,

(5.52) Gi2 Gi1 = 1 +
� �β

0
− β0

0

�
+

� �β
1
− β0

1

� �
Bi1

�
B0

i0

�
,

Gi Gi1 =
�
B0

i0 exp(Ui)
�−1 ∆i −

�
�σ2 B0

i0 exp(Ui)
�−1

Ui

−
���β

0
− β0

0

�
+ 1

2

� �β
0
− β0

0

�2 +
� �β

1
− β0

1

� �
B0

i1

�
B0

i0

��
.(5.53)

Solving (5.50) for δi we deduce that, for each ε > 0,

(5.54) δi = Gi − 1
2 Gi2 G2

i −
�1

6 Gi3 − 1
2 G2

i2

�
G3

i + O(11) ,

uniformly in 1 ≤ i ≤ n. Now, Gi1, Gi2 and Gi3 each equal 1 + Op(m−1/2 + nε−1). Therefore,
1
6 Gi3 − 1

2 G2
i2 = −1

3 + Op(m−1/2 + nε−1). Using (5.51), (5.52) and (5.53) we deduce that

Gi2 = 1−
�
�σ2 B0

i0 exp(Ui)
�−1 + Op

�
m−1 + nε−2� , Gi = Hi + O(11) ,

where

Hi =
��

B0
i0 exp(Ui)

�−1 ∆i −
�
�σ2 B0

i0 exp(Ui)
�−1

Ui

−
���β

0
− β0

0

�
+ 1

2

� �β
0
− β0

0

�2 +
� �β

1
− β0

1

� �
B0

i1

�
B0

i0

���

×
�
1−

� �β
0
− β0

0

�
−

� �β
1
− β0

1

� �
Bi1

�
B0

i0

�
−

�
�σ2 B0

i0 exp(Ui)
�−1

�
.

Note too that Gi2 H2
i = H2

i + Op(m−1/2 nε−1 + nε−2). Combining the results from (5.54) down
we see that

(5.55) δi = Hi − 1
2 H2

i + 1
3 H3

i + O(11) .

Note that, as a → 0, exp(a− 1
2 a2 + 1

3 a3)− 1 = a + O(a4) as a → 0. This property, (5.55) and
the fact that H4

i = Op(nε−2) imply that

(5.56) exp(δi)− 1 = Hi + O(11) .

The formula immediately preceding (5.19) is equivalent to:

�
1 + Op

�
m−1/2 + n−1�� γ�

�
β0

1

� � �β
1
− β0

1

� 1
m

m�

i=1

exp(Ui + ηi + ζi)

= ∆ exp
�
− β0

0

�
φ
�
β0

1

�−1 + γ
�
β0

1

� 1
m

m�

i=1

{exp(ξi)− exp(ηi + ζi)} exp(Ui) .(5.57)
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Since ηi and ζi both equal O(3) (see (5.25) and (5.31)), and m−1 �m
i=1 exp(Ui) = E{exp(U1)}+

op(1) = exp{σ2
0/2} + op(1), then (5.57) implies that

{1 + op(1)} γ�
�
β0

1

� � �β
1
− β0

1

�
exp{σ2

0/2}

= ∆ exp
�
− β0

0

�
φ
�
β0

1

�−1 + γ
�
β0

1

� 1
m

m�

i=1

{exp(ξi)− exp(ηi + ζi)} exp(Ui) .(5.58)

Formulae (5.8) and (5.9) are together equivalent to:

φ�
�
β0

1

�
{exp(ξi)− 1} =

1
n

n�

j=1

{Xij exp
�
β0

1 Xij
�
− φ�

�
β0

1

��
,(5.59)

φ�(�β
1
) {exp(ηi)− 1} =

1
n

n�

j=1

�
Xij exp(�β

1
Xij)− φ�(�β

1
)
�

.(5.60)

Result (5.60) implies that, for each ε > 0,
�
φ�

�
β0

1

�
+ Op

��� �β
1
− β0

1

���� {exp(ηi)− 1}

=
1
n

n�

j=1

�
Xij exp

�
β0

1 Xij
�
− φ�

�
β0

1

��
+ Op

��� �β
1
− β0

1

�� nε−(1/2)� ,

uniformly in 1 ≤ i ≤ n. Therefore, since ηi = O(3) (see (5.31)), then

φ�
�
β0

1

�
{exp(ηi)− 1} =

1
n

n�

j=1

�
Xij exp

�
β0

1 Xij
�
− φ�

�
β0

1

��
+ Op

��� �β
1
− β0

1

�� nε−(1/2)�,

which in company with (5.60) implies that

φ�
�
β0

1

�
{exp(ηi)− exp(ξi)} = Op

��� �β
1
− β0

1

�� nε−(1/2)� ,

uniformly in 1 ≤ i ≤ n. Hence, since ηi = O(3) and ζi = O(3) (see (5.25) and (5.31)),

exp(ξi)− exp(ηi + ζi) = {exp(ξi)− exp(ηi)} exp(ζi) + exp(ξi) {1− exp(ζi)}
= exp(ξi) {1− exp(ζi)} + Op

��� �β
1
− β0

1

�� nε−(1/2)� ,(5.61)

uniformly in i. Combining (5.58) and (5.61) we deduce that

{1 + op(1)} γ�
�
β0

1

� � �β
1
− β0

1

�
exp{1

2σ2
0}

= ∆ exp
�
− β0

0

�
φ
�
β0

1

�−1 + γ
�
β0

1

� 1
m

m�

i=1

exp(ξi + Ui) {1− exp(ζi)} .(5.62)

Next we return to (5.10), which we write equivalently as

φ
�
β0

1

�
{1− exp(ζi)} = exp

� �β
0
− β0

0 + δi
� 1

n

n�

j=1

{exp(�β
1
Xij)− φ(�β

1
)}

− 1
n

n�

j=1

�
Yij exp

�
− β0

0 − Ui
�
− φ

�
β0

1

��
+ (�σ2n)−1 �µ

i
exp

�
− β0

0 − Ui
�
.(5.63)

So that we might replace �β
1

by β0
1 on the right-hand side of (5.63) we observe that
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1
n

n�

j=1

{exp(�β
1
Xij)− φ(�β

1
)}

=
1
n

n�

j=1

�
exp

�
β0

1 Xij
�
− φ

�
β0

1

��
+ Op

��� �β
1
− β0

1

�� nε−(1/2)� .(5.64)

Combining (5.62)–(5.64) we obtain:

{1 + op(1)} γ�
�
β0

1

� � �β
1
− β0

1

�
exp{1

2σ2
0}

= ∆ exp
�
− β0

0

�
φ
�
β0

1

�−1

+
φ�

�
β0

1

�

φ
�
β0

1

�2

1
m

m�

i=1

exp(ξi + Ui)
�
exp

� �β
0
− β0

0 + δi
� 1

n

n�

j=1

�
exp

�
β0

1 Xij
�
− φ

�
β0

1

��

− 1
n

n�

j=1

�
Yij exp

�
− β0

0 − Ui
�
− φ

�
β0

1

��
+ (�σ2n)−1 �µ

i
exp

�
− β0

0 − Ui
��

.(5.65)

(Recall that γ = φ�φ−1, and so γ/φ = φ�φ−2.)
Since exp(ξi)− 1 = Di1(β0

1) φ�(β0
1)−1 (see (5.8)) and �β

0
− β0

0 = Op(m−1/2 + n−1) (see (5.41))
then

1
m

m�

i=1

exp(ξi + Ui) exp
� �β

0
− β0

0 + δi
� 1

n

n�

j=1

�
exp

�
β0

1 Xij
�
− φ

�
β0

1

��

=
�
1 +

� �β
0
− β0

0

�
+ 1

2

� �β
0
− β0

0

�2
� 1

m

m�

i=1

exp(ξi + δi + Ui) Di0
�
β0

1

�

+Op
�
m−3/2 + n−3�

=
�
1 +

� �β
0
− β0

0

�
+ 1

2

� �β
0
− β0

0

�2
�

× 1
m

m�

i=1

exp(δi + Ui)
�
1 + Di1

�
β0

1

�
φ�

�
β0

1

�−1
�

Di0
�
β0

1

�

+Op
�
m−3/2 + n−3�.(5.66)

Likewise,

1
m

m�

i=1

exp(ξi + Ui)
1
n

n�

j=1

�
Yij exp

�
− β0

0 − Ui
�
− φ

�
β0

1

��

=
1
m

m�

i=1

exp(Ui)
�
1 + Di1

�
β0

1

�
φ�

�
β0

1

�−1
��

n−1 ∆i exp
�
− β0

0 − Ui
�
+ Di0

�
β0

1

��
,(5.67)

and, since
�

i �µ
i
= 0 (see (5.6)),

1
m

m�

i=1

exp(ξi + Ui) (�σ2n)−1 �µ
i
exp

�
− β0

0 − Ui
�

=
1

�σ2 mn

m�

i=1

exp
�
ξi − β0

0

�
�µ

i

= exp
�
− β0

0

� 1
�σ2 mn

m�

i=1

�
1 + Di1

�
β0

1

�
φ�

�
β0

1

�−1
�

�µ
i

= exp
�
− β0

0

�
φ�

�
β0

1

�−1 1
�σ2 mn

m�

i=1

Di1
�
β0

1

�
�µ

i
= Op

�
m−1/2 n−3/2� .(5.68)
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Combining (5.65)–(5.68) we see that

{1 + op(1)} γ�
�
β0

1

� � �β
1
− β0

1

�
exp{1

2σ2
0}

= ∆ exp
�
− β0

0

�
φ
�
β0

1

�−1 +
φ�

�
β0

1

�

φ
�
β0

1

�2

��
1 +

� �β
0
− β0

0

�
+ 1

2

� �β
0
− β0

0

�2
�

× 1
m

m�

i=1

exp(δi + Ui)
�
1 + Di1

�
β0

1

�
φ�

�
β0

1

�−1
�

Di0
�
β0

1

�

− exp
�
− β0

0

� 1
m

m�

i=1

�
1 + Di1

�
β0

1

�
φ�

�
β0

1

�−1
�

×
�
n−1 ∆i + exp

�
β0

0 + Ui
�
Di0

�
β0

1

���

+Op
�
m−1/2 n−1 + n−3� .(5.69)

Using the fact that E(∆i | Fi) = 0 and Di1(β0
1) = O(3) it can be proved that, for all ε > 0,

1
mn

m�

i=1

exp
�
− β0

0

� �
1 + Di1

�
β0

1

�
φ�

�
β0

1

�−1
�

∆i

= exp
�
− β0

0

� 1
mn

m�

i=1

∆i + Op
�
m−1/2 n−1� .(5.70)

Also,

∆� ≡ ∆ exp
�
− β0

0

�
φ
�
β0

1

�−1 −
exp

�
− β0

0

�
φ�(β0

1)
φ(β0

1)2
1

mn

m�

i=1

∆i

= φ
�
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1

�−1 exp
�
− β0

0

� 1
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m�

i=1

n�

j=1

�
Xij −

φ�
�
β0

1

�

φ
�
β0

1

�
� �

Yij − exp
�
β0

0 + β0
1 Xij + Ui

��
.(5.71)

Moreover, using (5.41) and the fact that Di0(β0
1) = O(3) and E{Di0(β0

1) |Ui} = 0, it can be
shown that

� �β
0
− β0

0

� 1
m

m�

i=1

exp(Ui)
�
1 + Di1

�
β0

1

�
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�
β0

1

�−1
�

Di0
�
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1

�

= Op

��
m−1/2 + n−1� ·

�
m−1/2 nε−(1/2)��

= Op
�
m−1/2 nε−1� .(5.72)

Combining (5.69)–(5.72) we deduce that

{1 + op(1)} γ�
�
β0

1

� � �β
1
− β0

1

�
exp{1

2σ2
0}
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�
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�
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1

�−1
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�
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1

�

+Op
�
m−1/2 nε−1 + n−3� .(5.73)

Using (5.56) to substitute for exp(δi)−1 in (5.73), and noting that Dik(β0
1) = O(3) for k = 0, 1,

we deduce from (5.73) that

{1 + op(1)} γ�
�
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1
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− β0

1

�
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φ
�
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1

�2 ψ(H) + Op
�
m−1/2 nε−1 + nε−(5/2)� ,(5.74)
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where H = (H1, . . . ,Hm), Hi is as defined at (5.55), and, given a sequence of random variables
K = (K1, . . . ,Km), we put

ψ(K) =
1
m

m�

i=1

exp(Ui) Ki

�
1 + Di1

�
β0

1

�
φ�

�
β0

1

�−1
�

Di0
�
β0

1

�
.

Note again that |Di0(β0
1)| = O(3), and the dominant term on the right-hand side of formula (5.55)

for Hi is {B0
i0 exp(Ui)}−1 ∆i. Moreover, |�β

0
− β0

0 | = Op(m−1/2 + n−1) (see (5.41)), |�β
1
− β0

1 | =
Op{(mn)−1/2 + nε−(3/2)} (see (5.41)),

�
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�
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1

�
φ
�
β0

1

�−1 + O(3) .

Combining these properties we deduce that

(5.75)
(5.74) continues to hold if, on the right-hand side, ψ(H) is replaced
by ψ(H �) where H � = (H �

1, . . . ,H
�
m) and H �

i = H(1)
i −H(2)

i −H(3)
i ,

with

H(1)
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.

(Note that H(3)
i does not depend on i.) It can be proved from the properties E(∆i | Fi) = 0 and

|Di0(β0
1)| = O(3) that, with H(j) denoting (H(j)

1 , . . . ,H(j)
m ), we have:

(5.76) ψ
�
H(1)� = Op

�
m−1/2 n−1� .

More simply, since E(Ui |Xi1, . . . , Xin) = 0 then
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Furthermore, writing 1 = (1, . . . , 1), an n-vector; and noting that the properties E{Dik(β0
1) |Ui} =

0, var{Dik(β0
1) |Ui} = O(n−1) and E{exp(Ui)} = exp

�1
2 σ2

0

�
imply that
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we obtain:
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To obtain the last line here we used (3.4) of Theorem 3.1, already proved in Section 5.8 above.
Combining (5.74)–(5.77), and noting that the function ψ is linear, so that

ψ(H) = ψ(H(1))− ψ(H(2))− ψ(H(3)),

we deduce that

{1 + op(1)} γ�
�
β0

1
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1
− β0

1

�
exp(1

2σ2
0) = ∆� + op

�
(mn)−1/2 + n−2� .

Furthermore, the random variable ∆�, defined at (5.71), is asymptotically normally distributed
with zero mean and variance

1
mn

exp(−2 β0
0

�
E
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mn
exp
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φ�(β0
1)
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�2
exp

�
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1 X11
��

= (mn)−1 γ�
�
β0

1

�2 exp{σ2
0}τ2 ,

where τ2 is as at (3.3). Result (3.5) of the Theorem 3.1 is implied by this property and (5.9).
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