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1 Aims and description of data

Here we describe the analysis of a glasshouse experiment designed to inves-
tigate quantitative trait loci (QTL) controlling photoperiod sensitivity in a
doubled haploid (DH) population of Brassica napus.

A total of 142 DH lines derived from two genetically diverse parents (an
Australian spring line, MONTY, and a European spring line, LYNX) was
grown in a glasshouse experiment. Note that it was later discovered that
some of these DH lines were genetically identical (see section 1.1). Also
grown were the parents (M-28DH and L-37DH), direct and reciprocal hybrids
(LM F1 and ML F1) and control varieties (CB TRIBUNE, CB TELFER,
TOPAS, CAMPINO and WESTAR-10DH) making a total of 151 lines in
the experiment. Two treatments were investigated in the glasshouse, namely
long daylength (LD) with 16hr photoperiod (enabled with lamps) and 8hr
dark period and short daylength (SD) where the plants received sunlight
alone (without any additional lighting).

In the glasshouse there were 4 adjacent benches with 200 pots on each
arranged in a rectangular array of 20 rows by 10 ranges. The daylength
treatments were allocated to benches (2 benches per treatment) with the
LD treatment being allocated to the middle two benches to facilitate the
additional lighting. This allocation provides one possible realisation of a
randomised complete block design for daylength treatments so we regard
it as such in the analysis. Within each bench 49 lines were replicated (ie.
were grown in 2 pots) and 102 were unreplicated (single pot only). The
randomisation was carried out as for a partially replicated design (see Cullis
et al., 2006) with blocks aligned with ranges (block 1 corresponding to ranges
1-5; block 2 to ranges 6-10). The replication of lines was balanced as far as
possible to ensure a fairly even distribution of total number of pots per line
across the full design. This distribution is given in Table 1 for each treatment
separately and overall.

Table 1: Number of lines with specified number of pots for each treatment
and overall.

Treatment 2 pots 3 pots 4 pots 5 pots 6 pots 8 pots
LD 57 90 4
SD 82 40 29
overall 42 50 65 4

2



The trait of interest in this study is days to first flowering (DFL). We
commence with an analysis of this trait to examine sources of variation (see
Section 2) then expand the analysis to encompass the detection of QTL (see
Section 3). For the latter we had 327 DArT markers classified into 19 linkage
groups. For reasons of confidentiality the map is not presented here.

1.1 Final make-up of data-set

As previously stated the experiment as planned contained 151 lines with 142
DH lines. However after the conduct of the experiment it was found that 9 of
the DH lines were duplicates of others and so for the purposes of the analysis
have been re-named accordingly. Additionally there was no phenotypic data
for two DH lines so the final set of lines evaluated consisted of 140 lines
with 9 controls and 131 DH lines. Thus in the data-set there are two factors
indexing the lines, namely a factor ’Id’ that indexes the original 151 lines
and a factor ’Id2’ that indexes the final 140 lines.

Genotypic data was available for 126 DH lines and was unavailable for the
DH lines LM30-013, LM30-014, LM30-052, ML31-029 and ML31-084. This
is important for the subsequent analyses. Also note that marker information
was fairly complete (89%) for the 126 lines that were genotyped. Missing
marker information was imputed using Broman’s qtl package in R. This en-
sures that all marker values are either 1 (corresponding to a LYNX allele) or
-1 (corresponding to a MONTY allele).

2 Base-line analysis of DFL data

The aim of this analysis was to provide a suitable base-line linear mixed model
for use in the QTL detection analysis. Thus it was important to investigate
non-genetic sources of variation in the data. The initial linear mixed model
fitted to the DFL data included terms that reflected the randomisation em-
ployed in the design. This included random effects for daylength treatment
replicate blocks (fitted as the factor ’Rep’ with 2 levels); random effects for
benches within replicate blocks (fitted as the factor ’Bench’ with 4 levels la-
belled as LD1, LD2, SD1 and SD2); random effects for blocks within benches
(fitted as the compound term ’Bench:Block’ where Block is a factor with 2
levels indexing blocks within benches). In terms of the residual effects we
commenced with a separate spatial covariance model for each bench (thus
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there is a separate variance, range and row correlation for each bench).
In terms of the genetic effects we regard the two daylength treatments

as two separate “traits” so fit a linear mixed model that allows for a sepa-
rate genetic variance for each treatment and a genetic correlation between
treatments. Given the aim of this experiment we must ensure that these
parameters relate only to the DH lines (and only those with genotypic data)
rather than the full set of lines tested. This requires a factor called ’Idtype’,
say, that has 15 levels (9 levels to index the control lines, 5 levels to index the
DH lines with no genetic data and a single level for all remaining DH lines).
The effects for this factor for each treatment are then fitted as fixed effects
in the model. All subsequent references to “genetic variance” and “genetic
correlation” relate to the genotyped DH lines only.

The linear mixed model can be written as

y = Xτ + Zgug + Z1u1 + Z2u2 + Z3u3 + e (1)

where y is the n × 1 vector of days to flowering data where n = 800 (the
number of data records); τ is the vector of fixed effects (Idtype effects for
each treatment); ug is the 280 × 1 vector of line effects for each treatment
(ordered as lines within treatments); u1 is the 2×1 vector of replicate effects;
u2 is the 4×1 vector of bench within replicate effects; u3 is the 8×1 vector of
block effects for each bench and e is the n×1 vector of residual effects. Note
that the vector of data (and vector of residuals) is ordered as rows within
ranges within replicates within treatments.

The matrices X, Zg, Z1, Z2 and Z3 are the associated design matrices.
In terms of the genetic variance assumptions we have

var (ug) =

[

σgLL
σgLS

σgLS
σgSS

]

⊗ I140 (2)

where σgLL
and σgSS

are the genetic variances for the long and short daylength
treatments respectively and σgLS

is the genetic covariance (so that the genetic
correlation is given by σgLS

/
√

σgLL
× σgSS

).
In terms of the other random effects we assume simple variance com-

ponent structures so there is a single variance associated with each of the
vectors u1, u2 and u3. For the residuals we have

var (e) = diag (Ri) = diag
(

σ2

i Σci ⊗ Σri

)

(3)

where i indexes the 4 benches (ordered as LD1, LD2, SD1, SD2); Σci and
Σri are the 10 × 10 and 20 × 20 spatial correlation matrices for the range
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and row dimensions for bench i and σ2

i is the variance of the spatial process
for the ith bench. We assume auto-regressive processes of order one for each
correlation matrix.

This model was fitted within ASReml-R using the following statement:

asreml(fixed = dfl ~ Trt * Idtype, random = ~corh(Trt):Id2 +

Rep + Bench + Bench:Block, rcov = ~at(Bench):ar1(Range):ar1(Row),

data = flg.df)

Recall that ’Id2’ is the factor with 140 levels corresponding to the final set
of lines phenotyped in the experiment. Once the fixed Idtype effects are
fitted the effects for ’Id2’ corresponding to the controls and non-genotyped
DH lines are zero (effectively eliminated).

The fit of the described model resulted in the identification of 5 outliers
that were subsequently removed from the analysis (ie. the DFL values were
replaced by the missing value indicator) and the model re-fitted. The cor-
responding residual maximum likelihood (REML) estimates of the variance
parameters are given in Table 2. In terms of the genetic effects we note that
the genetic variances for each treatment (836.4 and 850.4 for LD and SD
respectively) are very similar and large relative to residual variances. Also
there is a very strong genetic correlation (0.89) between the two treatments.
In terms of non-genetic effects the design effects are relatively small. The
residual variances for the LD benches are similar and larger than those for
the SD benches. The spatial trend within each bench are not strong and are
similar for all benches.

Formal tests of siginificance were conducted for the hypotheses regarding
residual parameters as discussed. This was done by fitted reduced models
and using likelihood ratio tests. The final model therefore comprised a sep-
arate residual variance for each daylength treatment and common spatial
correlation parameters for all benches.

Thus the model is as given in equation (1) but with the residual variance
now of the form

var (e) =

[

σ2

L 0
0 σ2

S

]

⊗ I2 ⊗ Σc ⊗ Σr (4)

instead of as in equation (3). Here σ2

L and σ2

S are the residual variances for
long and short daylength treatments respectively.

This model was fitted within ASReml-R using the following statement:
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Table 2: REML estimates of variance parameters from initial model fitted
to DFL data. Parameter estimates are listed for each treatment (LD, SD)
as appropriate. The column labelled ’common’ relates either to parameters
that are common across treatments or parameters that represent correlations
between treatments.

Source LD common SD
Genetic 836.4 0.89 850.4
Rep 16.9
Bench 0
Bench:Block 0
Residual LD1 LD2 SD1 SD2
spatial variance 293.4 393.3 162.2 210.8
spatial correlation (range) 0.22 0.20 0.24 0.16
spatial correlation (row) 0.36 0.26 0.17 0.19

asreml(fixed = dfl ~ Trt * Idtype, random = ~corh(Trt):Id2 +

Rep + Bench + Bench:Block, rcov = ~diag(Trt):id(Rep):ar1(Range):ar1(Row),

G.param = flg.asr3$G.param, R.param = flg.asr3$R.param, data = flg.df)

The resultant REML estimates of variance parameters are given in Table
3. It is interesting to note the very high estimated genetic correlation (0.89)
between the two treatments indicating strong agreement between the genetic
effects for LD and SD. This suggests that any QTL that are detected are
likely to occur in similar regions for both treatments.

3 QTL detection in DFL data

We now turn to the detection of QTL for the DFL data. We use a one-stage
approach in which the final model fitted (to individual pot data) in Section 2
is expanded to include marker covariate information. The marker covariates
are added as random effects to the (final) base-line mixed model. In the case
of a univariate problem this is similar to the first step in the Verbyla et al.
(2007) approach for QTL detection except that the latter uses covariates for
marker intervals rather than the markers themselves. In the Verbyla et al.
(2007) approach the interval effects (across all chromosomes) are assumed
to be independent with common variance. Our approach differs in that we
assume the marker effects to be correlated, with the correlation between
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Table 3: REML estimates of variance parameters from final model fitted
to DFL data. Parameter estimates are listed for each treatment (LD, SD)
as appropriate. The column labelled ’common’ relates either to parameters
that are common across treatments or parameters that represent correlations
between treatments.

Source LD common SD
Genetic 825.9 0.89 849.7
Rep 15.9
Bench 0
Bench:Block 0.7
Residual LD1&LD2 SD1&SD2
spatial variance 336.9 190.7
spatial correlation (range) 0.20
spatial correlation (row) 0.24

two markers being a function of the genetic distance (in cM) between them.
Similar ideas were proposed by Gianola et al. (2003) who suggested the use of
spatial associations between markers in their pursuit of models for predicting
genetic merit. In this report we extend some of the propositions in Gianola
et al. (2003) to facilitate QTL detection within a linear mixed model that
accommodates sources of non-genetic variation and also accommodates the
bivariate aspect of the data.

The correlation model we have chosen for the marker effects is from the
Matern class of models. The correlation model involves two parameters,
namely a range parameter (φ) that affects the rate of decay of correlation
and a smoothness parameter (ν). We choose to fix ν at the value of 1.5, a
choice recently supported by Kammann and Wand (2003). The correlation
between two marker effects for markers that are separated by d cM is then
given by

ρ = exp(−d/φ)(1 + d/φ) (5)

and the covariance by σ2

mρ where σ2

m is the variance of the process.
In our application we have two traits (LD and SD). We assume that

the marker correlation model is the same for both traits (ie. a common φ
parameter and ν = 1.5 for both) but allow different marker variances for
each trait and a covariance between the marker effects for each trait.
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The linear mixed model can be written as

y = Xτ + Zm (um + un) + Zgug + Z1u1 + Z2u2 + Z3u3 + e (6)

where um is the 654 × 1 vector of (correlated) marker effects for each treat-
ment (ordered as markers within treatments) with associated design matrix
Zm; the vector un is also of length 654 × 1 and represents independent or
nugget marker effects (ie. additional noise about the correlated effects) and
all other terms are as defined for equation (1). With the inclusion of marker
effects the effects ug now represent residual genetic effects (ie. not explained
by the markers). The variance structures for the marker effects are given by

var (um) =

[

σmLL
σmLS

σmLS
σmSS

]

⊗ Σm

var (un) =

[

σnLL
σnLS

σnLS
σnSS

]

⊗ I327

where the matrix Σm is a 327 × 327 matrix of correlations derived from the
formula in equation (5) and is a function of the two parameters φ (to be esti-
mated) and ν (fixed at 1.5). The parameters σmLL

and σmSS
are the variances

associated with this process (for the long and short daylength treatments re-
spectively) and σmLS

is the covariance. The parameters σnLL
, σnSS

and σnLS

are the nugget variances and covariance.
In order to conduct this analysis in ASReml-R we first create a data-frame

’flg.dfm’ that comprises the original data-frame with 327 additional columns
corresponding to the marker information. The columns of the data-frame are
ordered so that the first 327 columns correspond to the marker covariates (in
map order).

The full model was fitted within ASReml-R using the following statement:

asreml(fixed = dfl ~ Trt * Idtype, random = ~corh(Trt):mtrn(grp("marker"),

0, phi = 1, nu = "1.5F", delta = "1F", alpha = "0F", lambda = "2F") +

diag(Trt):grp("resmarker") + corh(Trt):Id2 + Rep + Bench +

Bench:Block, rcov = ~diag(Trt):id(Rep):ar1(Range):ar1(Row),

G.param = dflqtl.asr2$G.param, R.param = dflqtl.asr2$R.param,

data = flg.dfm, na.method.X = "include", group = list(marker = 1:327,

resmarker = 1:327), pwrpoints = list(marker = mdist),

maxit = 10, stepsize = 1e-04)
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The ’pwrpoints’ argument is required to supply the marker distances (in
a vector called ’mdist’). Note that ’mdist’ was formed from the marker
distances (in cM) within each linkage group but with a 100cM gap placed
between linkage groups in order to ensure zero correlation between groups.
The term ’diag(Trt):grp(“resmarker”)’ represents the nugget effects. Note
that we have not fitted a covariance between traits since the nugget variances
were estimated as zero.

The resultant REML estimates of variance parameters are given in Table
4. The first point to note is the large impact of including the marker infor-
mation. The (total) genetic variance prior to inclusion of the marker data
was 825.9 and 849.7 for LD and SD respectively (see Table 3) whereas the
residual genetic variance (after modelling the marker effects) was only 34.6
and 152.9 (see Table 4).

Table 4: REML estimates of variance parameters from the QTL model fitted
to DFL data. Parameter estimates are listed for each treatment (LD, SD)
as appropriate. The column labelled ’common’ relates either to parameters
that are common across treatments or parameters that represent correlations
between treatments.

Source LD common SD
Marker
Matern variance 0.963 0.93 0.841
Matern range 1.558
nugget variance 0 0
Residual genetic 34.6 0.72 152.9
Rep 13.6
Bench 0
Bench:Block 2.9
Residual LD1&LD2 SD1&SD2
spatial variance 336.4 191.8
spatial correlation (range) 0.22
spatial correlation (row) 0.23

The key output from the analysis are the best linear unbiassed predictions
(BLUPs) of the marker effects from the Matern correlation model (ie. BLUP
of um). An individual effect represents the slope for the regression of the
genetic effects on the marker covariate concerned. The covariates may only
take two possible values, namely 1 (LYNX) and -1 (MONTY) so that the
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difference in genetic effects between the two types of allele (ie. LYNX minus
MONTY) is given by twice the value of the slope. We will refer to this as
the “size” of the marker effect. Marker size can be graphed against genetic
distance for each linkage group in order to examine the marker profile. This
has been done separately for each treatment in Figures 1 and 2. Also shown
on these graphs are coverage intervals that were obtained by adding and
substracting twice the prediction standard error for each size estimate.
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Figure 1: Marker size for LD treatment plotted against genetic distance for
each linkage group. Sizes are shown as blue points that have been joined by
(blue) lines. Coverage intervals are shown as red lines.
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Figure 2: Marker size for SD treatment plotted against genetic distance for
each linkage group. Sizes are shown as blue points that have been joined by
(blue) lines. Coverage intervals are shown as red lines.
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