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Abstract

If unit-level data are available, Small Area Estimation (SAE) is usually based on

models formulated at the unit level, but they are ultimately used to produce estimates

at the area level and thus involve area-level inferences. This paper investigates the

circumstances when using an area-level model may be more effective. Linear mixed

models fitted using different levels of data are applied in SAE to calculate synthetic

estimators and Empirical Best Linear Unbiased Predictors (EBLUPs). The perfor-

mance of area-level models is compared with unit-level models when both individual

and aggregate data are available. A key factor is whether there are substantial con-

textual effects. Ignoring these effects in unit-level working models can cause biased

estimates of regression parameters which is referred to as the ecological fallacy. The

contextual effects can be automatically accounted for in the area-level models. Using

synthetic and EBLUP techniques, small area estimates based on different levels of

linear mixed models are studied in a simulation study.

Keywords: Contextual Effect; EBLUP; Ecological Fallacy; Small Area Estimation;

Synthetic Estimator.
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1 Introduction

There are increasing demands for comprehensive statistical information not only at na-

tional levels but also for sub-national domains in many countries. Statistical Bureaus and

survey organizations are using sample surveys to produce estimates for the total popula-

tion and possibly large regions. However, there are often difficulties in producing useful

and reliable estimates for various local areas and other small domains using standard

estimation methods due to small sample sizes. Some areas may have no sample at all.

Small area estimation (SAE) involves techniques based on statistical models to pro-

duce estimates for relatively small geographic sub-populations such as cities, provinces or

states, for which the available survey data does not allow the calculation of reliable direct

estimates. Usually auxiliary variables related to the target variable are used in statistical

models to calculate the required estimates in different SAE techniques (Rao, 2003). A key

feature of this approach is that the statistical model used does not involve area-specific

parameters and estimation of the parameters can use data from the entire sample. These

parameter estimates are then used with population information about auxiliary variables

for each area to produce small area estimates.

A wide variety of estimation methods have been developed to handle SAE problems.

Initially, demographic and design-based methods were used, but more sophisticated model-

based methods have been increasingly employed over the last two decades (Khoshgooyan-

fard and Taheri Monazah, 2006). See Rao (2003) and Longford (2005) for comprehensive

discussions on different SAE methods.

Statistical models for small area estimation purposes can be formulated at the indi-

vidual or aggregated levels. When sufficient information about the geographic indicators

for target areas are available for all individuals in the sample, the usual approach is to es-

timate regression coefficients and variance components based on a unit-level linear model.

However, it is also possible to aggregate the data to area level and estimate these param-

eters based on a linear model for the area means. When the unit-level model is properly

specified, the parameter estimates from the individual and aggregated level analysis will

have the same expectation but we would expect that parameter estimates obtained using

unit-level data to have less variance. However, in practice the parameter estimates from
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different levels of data analysis often differ due to some model misspecifications. Given

that the targets of inference are at the area-level, the question arises as to whether it is

sometimes preferable to use an area-level analysis and under what conditions an area-level

analysis may be better. In practice, if the correct population model includes the contextual

effect of the area-level means, the area-level analysis should produce less biased estimates

of the regression coefficients.

The main purpose of this paper is to evaluate unit-level and area-level modeling ap-

proaches when both individual-level and aggregate data are available. Using a Mont-Carlo

simulation, parameter estimates based on different levels of statistical modeling are stud-

ied when area-level means are involved in the unit-level population model as contextual

effects. In this study, the estimators will be calculated based on synthetic and Empirical

Best Linear Unbiased Predictor (EBLUP) methods. The effects of these methods on the

efficiency of small area estimates are also evaluated.

2 Linear Mixed Models in Small Area Estimation

Indirect techniques for SAE purposes mostly rely on statistical models which borrow

strengths with an explanation of possible relations to other auxiliary data recourses. Effi-

cient models to this extent usually include random effects to explain the variations between

target areas within the population as well as several covariates for available auxiliary vari-

ables (Chambers and Tzavidis, 2006). As mentioned before, statistical models utilized for

SAE purposes can be unit-level or area-level.

2.1 Unit- and Area-level Population Models

Consider a population of size N divided into K small areas with Nk individuals in the

kth small area (N =
∑K

k=1 Nk). A unit-level mixed linear model which relates the unit

population values of the study variable to unit-specific auxiliary variables including both

fixed and random effects is:

Yik = X′
ikβ + uk + eik ; i = 1, . . . , Nk & k = 1, . . . , K

uk
iid∼ N(0, σ2

u) ; eik
iid∼ N(0, σ2

e)
(1)
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where X′
ik = [1 Xik1 . . . XikP ] is a vector of P auxiliary variables for ith unit within the

kth area and β′ = [β0 β1 . . . βP ] denotes the vector of unknown regression parameters.

The random effect for the kth area is denoted by uk and eik is the random error for the ith

individual within the kth area. The random effects and random errors are independently

distributed in the model.

Area-level models can be derived from the unit-level model by aggregating or averaging

the data to area levels. A standard area-level linear mixed model obtained from (1) for

the population area means is given as:

Ȳk = X̄′
kβ + uk + ēk ; k = 1, . . . , K

uk
iid∼ N(0, σ2

u) ; ēk =
1

Nk

Nk∑

i=1

eik ∼ N(0,
σ2

e

Nk
)

(2)

where X̄′
k = [1 X̄k1 . . . X̄kP ] is the vector of population mean values for the P auxiliary

variables within the kth area.

The linear mixed models used in SAE relate the unit (or area) values of the study

variable to P unit-specific (or area-specific) auxiliary variables within the target population

can also be presented in matrix forms as follows:

Unit-Level Population Model : Y = Xβ + Zu + e

u ∼ N(0, σ2
u IK) ; e ∼ N(0, σ2

e IN )
(3)

Area-Level Population Model : Ȳ = X̄β + u + ē

u ∼ N(0, σ2
u IK) ; ē ∼ N

(
0, diag( σ2

e
N1

, . . . , σ2
e

NK
)
)
.

(4)

Here, Y and e are column vectors with N elements, Ȳ and ē are column vectors with K

elements, X and X̄ are respectively N × (P +1) dimensional and K× (P +1) dimensional

matrices. β and u are two column vectors with (P + 1) and K elements, respectively.

Finally, Z is a N ×K dimensional matrix that includes 1s and 0s which assigns the same

value of uk to all the rows referring to the units within the kth area. Note that, matrices

are shown by bold print in this paper.

A basic area-level model seems appropriate when the data are available just at the

area level and the estimation process is possible only based on aggregate data. We will
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consider the issue of whether there are advantages in using an area-level model when the

individual-level data is available, given that the final small area estimates are produced at

the area level.

2.2 Parameter Estimation using Unit-level Data

Sample surveys allow estimation and inference about a large population when the resources

available do not permit collecting relevant information from every member of the target

population. In this paper, sample s of size n is assumed to be selected from the target

population U. The part of the whole sample s which falls into the kth area is sk = s
⋂

Uk

and is of size nk.

It is often the case that reliable direct estimates can not be obtained based on the

available sample data due to small sample sizes in all or some of the areas. In order to

calculate model-based estimators, a model should be developed to specify the relationship

between the auxiliary information and variable of interest based on the available sample

data. In this paper, the term working model is used for the statistical model to be fitted on

the sample data and population model for the correct model assumed for the population

data. The working model may not be correct in practice.

A simple unit-level working model which can be fitted on individual-level sample data

is given as:

y = xβ + Zu + e

u ∼ N(0, σ2
u IK) ; e ∼ N(0, σ2

e In)
(5)

It will be noted that, lowercase letters refer to sample statistics and uppercase to popula-

tion statistics. Hence, y is a vector which contains sample values for the target variable

and x denotes the matrix of auxiliary data values for the individuals falling into the sam-

ple. The corresponding data for sk are yk and xk (k = 1 , 2 , . . . , K). We assume that the

sampling scheme used is uninformative. Therefore, the same model can be used for the

sample and population at the individual level.

Usually the model parameter estimates are calculated using the information obtained

from the sample surveys. In order to define the Maximum Likelihood (ML) technique for

a simple random sample design, L(y ; β, σ2
u, σ2

e) is assumed to be the twice differentiable
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probability density function for variable y,

L(y ; β, σ2
u, σ2

e) = c |Σ|− 1
2 exp

[− 1
2

(y− xβ)′ Σ−1(y− xβ)
]

(6)

where c is a constant value and Σ is the block-diagonal variance-covariance matrix as

follows:

Σ = diag(Σk) (7)

where:
Σk = σ2

uJnk
+ σ2

eInk

Jnk
= 1nk

1′nk
; k = 1 , 2 , . . . , K.

(8)

Let l(β, σ2
u, σ2

e ; y) to be the log-likelihood function shown as:

l(β, σ2
u, σ2

e ; y) = ln
[
L(y ; β, σ2

u, σ2
e)

]

= ln(c)− 1
2

ln|Σ| − 1
2
(y− xβ)′ Σ−1(y− xβ)

= ln(c)− 1
2

K∑

k=1

ln|Σk| − 1
2

K∑

k=1

ς ′k Σ−1
k ςk

(9)

where:

Σ−1
k = σ−2

e (Ink
− γk

nk
1nk

1′nk
) (10)

in which:

γk =
σ2

u

σ2
u + σ2

e
nk

& ςk = y− xβ . (11)

The ML estimates are then calculated by maximizing the right-hand side of the log-

likelihood equations (Ruppert et. al., 2003). Assuming σu and σe to be known, the ML

estimator for β is:

β̂U = (x′Σ−1x)−1x′Σ−1y (12)

where β̂U denotes the ML estimated value for the parameter vector β using the unit-level

sample data.

Calculating parameter estimates is more challenging when we drop the unrealistic
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assumption that variance components are already known. On substitution of β̂U into the

log-likelihood expression, the profile log-likelihood function for (σ2
e , σ2

u) can be obtained

as follows:

lP (σ2
u, σ2

e) = ln(c)− 1
2

ln|Σ| − 1
2

y′Σ−1
[
I − x(xΣ−1x)−1x′Σ−1

]
y . (13)

As there is no closed form solution for maximizing profile-likelihood over (σ2
e , σ2

u), numer-

ical methods are developed. The Fisher scoring algorithm is a form of Newton’s method

commonly used to find ML parameter estimates in mixed models (Osborne, 1992). The pa-

rameters β, σ2
e and σ2

u can be estimated by Fisher scoring algorithm. Alternatively, mixed

model packages use Restricted Maximum Likelihood (REML) estimation techniques in

order to maximize the restricted log-likelihood expression and estimate the variance pa-

rameters. The restricted log-likelihood is:

lR(σ2
u, σ2

e) = lP (σ2
u, σ2

e)−
1
2
log|xΣ−1x| . (14)

The additional term in the equation for the restricted log-likelihood (lR) is based on con-

trast arguments that account for estimation of the β (McCulloch et. al., 2008). Detailed

discussions about different methods of estimating model parameters can be found in Rup-

pert et al. (2003). ML and REML techniques are the most common strategies being used

for calculating model parameter estimates. Here, an estimation technique is presented

using Fisher scoring algorithm for ML estimation.

Longford (1993) defined the Fisher scoring algorithm for estimating a value for param-

eter θ as follows:

θ(t+1) = θ(t) + I−1(θ(t)) S(θ(t)) (15)

where:

I(θ∗) = −E
(

∂2l

∂θ∗∂θ∗′
)

& S(θ∗) =
∂l

∂θ

∣∣∣∣
θ=θ∗

(16)

The notations (t) and (t+1) denote the previous and new estimated values for these

parameters, respectively. In order to use the Fisher’s scoring algorithm for σ2
u and σ2

e , λ is

defined to be the variance ratio (λ = σ2
u/σ2

e). Then, the estimated value for this parameter
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can be calculated numerically, as below: [Longford, 1993; p.108]

∂l(θ∗; y)
∂λ

= −1
2

K∑

k=1

1′nk
W−1

k 1nk
+

1
2σ2

e

K∑

k=1

(
ς ′kW

−1
k 1nk

)2
(17)

and,

−E
(∂2l(θ∗; y)

∂2λ

)
=

1
2

K∑

k=1

(
1′nk

W−1
k 1nk

)2 =
1
2

K∑

k=1

(
f−1

k 1′nk
1nk

)2

−E
(∂2l(θ∗; y)

∂β ∂λ

)
= x′

∂W−1

∂λ
E(eik) = 0

(18)

where θ∗ = (β, σ2
u, σ2

e), fk = 1 + nkλ and

W = σ−2
e Σ ; Wk = σ−2

e

(
σ2

u 1nk
1′nk

+ σ2
e Ink

)
= λ 1nk

1′nk
+ Ink

W−1 = σ2
e Σ−1 ; W−1

k =
−σ2

u

σ2
e + nkσ2

u

1nk
1′nk

+ InK .

(19)

Then, given estimates β̂U
(t) and σ2

e(t) of β and σ2
e , respectively, the new estimated value for

the parameter λ can be calculated as follows:

λ̂(t+1) = λ̂(t) +
[
1
2

K∑

k=1

(f−1
k(t)1

′
nk

1nk
)2

]−1[
− 1

2

K∑

k=1

(f−1
k(t)1

′
nk

1nk
) +

1
2σ̂2

e(t)

K∑

k=1

(f−1
k(t)ς̂

′
k(t)1nk

)2
]

= λ̂(t) +
[
1
2

K∑

k=1

n2
k

f2
k(t)

]−1[
− 1

2

K∑

k=1

(
nk

fk(t)
) +

1
2σ̂2

e(t)

K∑

k=1

(f−1
k(t) ς̂ ′k(t) 1nk

)2
]

(20)

where fk(t) = 1 + nkλ(t) , and ς̂k(t) = yk − x′kβ̂
U
(t).

Given the estimates of β and σ2
e , the sample data only affect the calculation in equation

(20) through ς̂ ′k(t)1nk
= nk(ȳk − x̄′kβ̂

U
(t)), which are the area-level residuals. To use the

Fisher algorithm for a unit-level mixed linear model, separate consecutive steps are:

• First the parameter β should be estimated based on the Ordinary Least Squares

(OLS) method. Then, the initial estimated value for β is given by :

β̂U
(1) = (x′x)−1x′y

where there is no need to estimate Σ.
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• Using this initial value, the individual-level residuals can be calculated via:

ê(1) = y− xβ̂U
(1).

• With the use of these residuals, σ2
e can be estimated as below:

σ̂2
e(1) =

1
n− p

(y− xβ̂U
(1))

′(y− xβ̂U
(1)) .

• Suppose λ̂(t) = σ̂2
u(t)/

ˆσ2
e(t) and fk(t) = 1 + nkλ̂(t), then a new estimated value for λ

can be calculated through the equation given below. Note that, σ̂e(1)/1000 is taken

to be the initial value for σ̂2
u. Therefore, λ(1) = 0.001, and the scoring function for

calculating further values for this parameter is give as:

λ̂(t+1) = λ̂(t) +
(1

2

K∑

k=1

n2
k

f2
k(t)

)−1(
− 1

2

K∑

k=1

(
nk

fk(t)
) +

1
2σ̂2

e(t)

K∑

k=1

(f−1
k(t) ς̂ ′k(t) 1nk

)2
)

• Then, σ̂2
u(t+1) = λ̂(t+1)σ̂

2
e(t) .

• Using σ̂2
u(t+1)and σ̂2

e(t), Σ̂(t+1) can be derived based on equation (8), and the new

estimate of parameter β is:

β̂U
(t+1) = (x′Σ̂−1

(t+1)x)−1x′Σ̂−1
(t+1)y .

• Now, σ̂2
e(t+1) can be calculated by:

σ̂2
e(t+1) =

1
n

(y− xβ(t+1))
′ Ŵ

−1

(t+1) (y− xβ(t+1)) .

The steps should be repeated until the differences between consecutive iterations are specif-

ically small and the estimators will converge to specific values. This iterative algorithm

can be run in a statistical software such as S, S-Plus and R using the ‘lme’ function. The

detailed theoretical discussion about this function has been presented in Pinheiro and

Bates (2000).

2.3 Parameter Estimation using Area-level Data

For aggregated-level data, a similar function can be developed for parameter estimation

based on the population model presented in equation (4). The area-level model for the
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sample data is assumed to be derived by aggregating the unit-levels in the working model

as follows:

ȳk = x̄′kβ + εk ; k = 1, . . . ,K (21)

where:

x̄′k =
[
1 x̄k1 x̄k2 . . . x̄kP

]
(22)

and εk = uk + ēk = ȳk − x̄′kβ. Then, the log-likelihood function for the area-level model is

given by:

l(β, σ2
u, σ2

e ; ȳ) = −1
2

{
ln(2Kπ) + ln

[
det(Σ̄)

]
+ ε′Σ̄−1ε

}
(23)

where:

ε′ = [ε1 ε2 . . . εK ] & Σ̄ = diag

(
σ2

u +
σ2

e

n1
, . . . , σ2

u +
σ2

e

nK

)
. (24)

Assuming the variance components to be known in the area-level model, the ML estimator

for parameter β based on area-level sample data is:

β̂A = (x̄′Σ̄−1x̄)−1x̄′Σ̄−1ȳ (25)

where:

ȳ′ = [ȳ1 ȳ2 . . . ȳK ] & x̄′ = [x̄′1 x̄′2 . . . x̄′K ] . (26)

Fay and Herriot (1979) applied an area-level linear regression with area random effects

in the case of unequal variances for predicting the mean value per capita income (PCI)

in small geographical areas. The variance of the the sampling error is typically assumed

to account for the complex sampling error for kth area and is considered be known in the

Fay-Herriot model. This strong assumption seems unrealistic in practice.

Using area-level data, expressions for the Fisher scoring algorithm for the parameter λ

is the same as in (20) (Longford, 2005; p.198). The initial value for σ2
e can be obtained from

the unweighted OLS method. Then, using the Fisher scoring algorithm for the variance

ratio, new estimated random effects for kth area in iteration (t+1) can be calculated via:

σ̂2
u(t+1) = λ̂(t+1)σ̂

2
e(t) . (27)

10



Using σ̂2
u(t+1) and σ̂2

e(t), new estimators for ˆ̄Σ(t+1) and β̂A
(t+1) can be be obtained. Then,

a new estimated value for σ2
e can be calculated as follows:

σ̂2
e(t+1) =

1
K − P

ε̂′(t+1)
̂̄W

−1

(t+1) ε̂(t+1) (28)

where, ε̂(t+1) =
(
ȳ− x̄β̂A

(t+1)

)
and:

̂̄W(t+1) = diag(λ̂(t+1) +
1
n1

, . . . , λ̂(t+1) +
1

nK
) . (29)

Note that, the algorithm for calculating parameter estimates using individual and aggre-

gated level analysis are very similar. The main difference is applied in calculating σ̂2
e(t+1)

using Ŵ(t+1) with individual-level data and ̂̄W(t+1) with aggregated-level data.

3 Synthetic and Empirical Best Liner Unbiased Predictor

Knowing estimates for regression parameters, the kth area mean for the target variable

can be estimated based on the fitted statistical working models through the synthetic

technique as follows:
̂̄Y SU

k = X̄′
kβ̂

U or

̂̄Y SA

k = X̄′
kβ̂

A .
(30)

Here, ̂̄Y SU

k and ̂̄Y SA

k respectively denote the unit-level and area-level mean synthetic es-

timators for the target variable within the kth area and X̄k is the vector which includes

population means of auxiliary variables. The estimated value for the parameter vector

β using the individual-level sample data is β̂U and β̂A is the estimated value using the

aggregated-level sample data.

In the general definition for Linear Mixed Model (LMM) presented in (3), u and e are

assumed to be distributed independently with mean zero and covariance matrices G and

R, respectively.

V ar




u

e


 =




G 0

0 R


 , E(e) = 0 & E(u) = 0 . (31)
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The mean vector and covariance matrix for the target variable Y are respectively:

E(Y|u) = µY = Xβ + u & V = ZGZ′ + R . (32)

The Best Linear Unbiased Estimation (BLUE) of the fixed effects β and Best Linear

Unbiased Prediction (BLUP) of the random effects u in the LMM have been defined by

Henderson (1950; 1975) as solutions to the following simultaneous equations.

X′R−1Xβ̃ + X′R−1Zũ = X′R−1Y

Z′R−1Xβ̃ + (Z′R−1Z + G−1)ũ = Z′R−1Y
(33)

Robinson (1991) defined the BLUP as the best linear function of the data which is unbi-

ased. Note that, within the statistical literature, it is conventional to use “estimation” for

fixed effects and “predictions” for random effects. The results of these estimation meth-

ods are the best, as they minimize the generalized mean square error within the class of

linear unbiased estimators, and they are unbiased as the average value of the estimates is

equal to the average value of the quantity being estimated (Morris, 2001). Considering

the equations in (33), V−1 can be defined in order to simplify the calculations as follows:

V−1 = R−1 −R−1Z(Z′R−1Z + G−1)−1Z′R−1. (34)

It follows that:

GZ′V−1 = (Z′R−1Z + G−1)−1Z′R−1. (35)

The plug-in formulas for β̃ and ũ can be calculated as a result of solving the equations

above. These formulas are: [Morris, 2001]

β̃ = (X′V−1X)−1X′V−1Y

ũ = GZ′V−1(Y−Xβ̃) .
(36)

The ML estimator for the parameter vector β presented in (12) is then the same as the

BLUE for this model parameter.

Under the general definition of LMM, prediction of a linear combination of the fixed and

random effects (θ = b′β + l′u) has been discussed by Henderson (1975), Prasad and Rao
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(1990), and Datta and Lahiri (2000). In a special case, the mentioned linear combination

is presented as: µȲk
= X̄′

kβ + uk when b = X̄k and l′ = (0, 0, . . . , 0, 1︸ ︷︷ ︸
k

, 0, ..., 0). Then, the

BLUP for this combination is:

µ̃Ȳk
= X̄′

kβ̃ + l′GZ′V−1(Y−Xβ̃) . (37)

In the the case of the unit-level mixed model presented in (3), we have G = σ2
u IK & R =

σ2
e IN . In such a case, the linear combination of the predictions for fixed and random effects

as presented by Henderson (1975) is:

µ̃Ȳk
= X̄′

kβ̃ + ũk = X̄′
kβ̃ + γk(Ȳk − X̄′

kβ̃)

= γk Ȳk + (1− γk)X̄
′
kβ̃

(38)

where:

γk =
σ2

u

σ2
u + ψk

& ψk = V ar(ēk|Ȳk) . (39)

Considering the target of inference at the area-level, Ghosh and Rao (1994) defined

the BLUP under the general LMM based on available sample data. Considering µȲk
=

E(Ȳk|uk), the equation (38) can be based on available sample data as follows:

µ̃Ȳk
= X̄′

kβ̃ + ũ = X̄′
kβ̃ + γk

(
ȳk − x̄′kβ̃

)

= γk

[
ȳk + (X̄′

k − x̄′k)β̃
]

+ (1− γk)X̄
′
kβ̃ .

(40)

To calculate the BLUP value in equation (40), variance components are assumed to

be known. Replacing the estimated values for the variance components in equation (40),

a two-stage estimator will be obtained. The resulting estimator is presented by Harville

(1991) as an “empirical BLUP” or EBLUP. The model parameters β, σ2
e and σ2

u can be

empirically estimated for both individual or aggregated level analysis by the Fisher scoring

algorithm as a general method for finding ML or REML parameter estimates, as presented

in section 2.3.

Considering a true working model to be fitted on available sample data, an approxi-

mation for the Mean Square Error (MSE) of EPLUPs under general LMM is: (Saei and
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Chambers, 2003b)

MSEξ( ̂̄Y EBLUP
) = MSEξ

( ˜̄̃
Y

)
' G1(σ) + G2(σ) + G3(σ) (41)

where:

G1(σ) = (1− γk)σ2
u

G2(σ) = (X̄k − γkx̄k)′
[
MSEξ(β̃)

]
(X̄k − γkx̄k)

G3(σ) =

(
σ2

e

nk

)2(
σ2

u +
σ2

e

nk

)−3

+
[
V arξ(σ̂2

u) +
σ4

u

σ4
e

V arξ(σ̂2
e)− 2

σ2
u

σ2
e

Covξ(σ̂2
u, σ̂2

e)
]

(42)

in which:

γk =
σ2

u

σ2
u +

σ2
e

nk

& σ = (σu, σe).

The subscript ξ denotes the MSE, expectation and variance under the assumed population

model. Considering model presented in (3) to be the actual population model, MSE of

the resulting parameter estimate for β is as follows:

MSEξ

(
β̃
)

= V arξ

(
β̃
)

= (x′Σ−1x)−1

Replacing σu and σe respectively with σ̂u and σ̂e, an estimation can be calculated for

the equations presented in (42) as below:

M̂SEξ( ̂̄Y EBLUP

k ) = M̂SEξ

( ˜̄̃
Y k

)
' Ĝ1(σ) + Ĝ2(σ) + 2Ĝ3(σ) (43)

where:

Ĝ1(σ) = (1− γ̂k)σ̂2
u

Ĝ2(σ) = (X̄k − γ̂kx̄k)′
[
M̂SEξ(β̃)

]
(X̄k − γ̂kx̄k)

Ĝ3(σ) =
( σ̂2

e

nk

)2(
σ̂2

u +
σ̂2

e

nk

)−3
+

[
V̂ arξ(σ̂2

u) +
σ̂4

u

σ̂4
e

V̂ arξ(σ̂2
e)− 2

σ̂2
u

σ̂2
e

Ĉovξ(σ̂2
u, σ̂2

e)
]

(44)

in which:
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γ̂k =
σ̂2

u

σ̂2
u +

σ̂2
e

nk

.

The additional term in (43) is due to: [Rao (2003), p. 104]

E
[G3(σ)

]
= G1(σ)− G3(σ). (45)

Detailed discussion about MSE of EBLUPs is presented by Prasad & Rao (1990) and Saei

& Chambers (2003a).

4 Contextual model

It is well known that regression coefficients obtained from individual-level analysis can

be different from those based on analysis of aggregate data. This is referred to as the

ecological fallacy and can happen when the population model should include both unit-

level and area-level fixed effects. It is common to derive mixed models at the individual

level, but sometimes some area-level covariates may need to be included in the model.

In a contextual model, both individual level and group area-level covariates are in-

cluded simultaneously (Mason et al. 1983 , 1984). The area-level covariates are referred

to as ‘contextual effects’ and the model including both unit and area level covariates is a

‘contextual model’. For example, the mean value of the auxiliary variable can be included

in the statistical population model as the contextual effect as in:

Yik = X∗′
ikβ

∗ + u∗k + e∗ik ; i = 1, . . . , Nk & k = 1, . . . ,K

u∗k
iid∼ N(0, σ2

u∗) ; e∗ik
iid∼ N(0, σ2

e∗).
(46)

The aggregated form of this model is given as:

Ȳk = X̄′
kβ
∗∗ + u∗k + ē∗k

u∗k
iid∼ N(0, σ2

u∗) ; ē∗k =
1

Nk

Nk∑

i=1

e∗ik ∼ N(0,
σ2

e∗

Nk
).

(47)
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Here,

X∗′
ik = [X′

ik | X̄′
k],

(
β∗I

)′ = [β∗I0 β∗I1 . . . β∗IP ] ,
(
β∗c

)′ = [β∗C0 β∗C1 . . . β∗CP ]

β∗′ =
[(

β∗I
)′ | (

β∗C
)′] & β∗∗ =




β∗I0 + β∗C0

β∗I1 + β∗C1

β∗I2 + β∗C2

...

β∗IP + β∗CP




.

(48)

Contextual models help researchers to understand and study the issue of the ecological

fallacy which occurs when researchers want to draw a conclusion about an individual-

level relationship based on aggregated-level data analysis. This causes an error in the

interpretation of statistical data as the results based on purely aggregated-level analysis

may not be appropriate for inference about an individual based characteristic (Seiler and

Alvarez, 2000). When contextual effects exist in the population model but are ignored in

working models, the resulting regression coefficient estimates from unit-level and area-level

sample data will be different in expectation. This is referred to as an ecological fallacy.

When area means appear in the population model as contextual effects, the resulting

correct model for the sample unit-level data is:

yik = X∗′
(s)ikβ

∗ + u∗k + e∗ik ; i = 1, . . . , Nk & k = 1, . . . , K

u∗k
iid∼ N(0, σ2

u∗) ; e∗ik
iid∼ N(0, σ2

e∗)
(49)

and the true model for aggregate sample data is:

ȳk = X̄∗′
(s)kβ

∗∗ + u∗k + ē∗k

u∗k
iid∼ N(0, σ2

u∗) ; ē∗k =
1
nk

nk∑

i=1

e∗ik ∼ N(0,
σ2

e∗

nk
) (50)

where:
X∗′

(s)ik = [x′ik | X̄′
k]

X̄∗′
(s)k = [x̄′k | X̄′

k].
(51)
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In the next section, we will consider how small area estimates based on unit-level working

model (5) and the aggregate working model (21) perform when the area means are included

in the assumed population model as contextual effects.

5 Numerical Simulation Study

This section presents the results of a simulation study to assess the empirical MSE of

synthetic estimators and EBLUPs based on unit-level and area-level mixed models. The

population data in this study has been generated based on available area information

available in Australia. There are six states and two mainland territories in Australia and

each has been divided, thereby forming a total of 57 statistical sub-divisions.

As a hypothetical example, we suppose that there is interest in the mean value of

income for the 57 statistical sub-divisions within Australia. It is assumed that there is

a linear relationship between the weekly gross salary as the variable of interest and the

weekly hours worked for individuals aged 15 and over. In this simulation, population

data is generated based on the contextual model (46) using parameter values obtained on

the relation between weekly gross salary and hours worked for individuals over 15 in the

Australian census 2006. Sample units are then selected from different areas based on a

stratified random sampling design in which the sample sizes in the 57 areas are allocated

proportionally to their population sizes. Table (1) presents the model parameter values

used in generating the population of individuals.

Table 1: Parameter Values Considered in the Population Model
β′ =

[
β∗0 β∗I1 β∗C1

]
σ∗u σ∗e λ∗

[-123.61 14.93 3.77] 114.3530 384.6394 0.884

A total population size of 16278397 individuals was generated corresponding to the

population aged over 15 in the Australian 2006 Census. A total sample of size n = 2133

was then selected based on the determined design. The sampling process was repeated

1000 times in this study. For each sample synthetic estimators and EBLUPs are then
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estimated based on the two working models presented in Table 2, corresponding to models

presented in (5) and (21). Details of the population and sample sizes are given in Table 4

and 5.

Table 2: Summery of Working Models and Predictors
Working Models Synthetic Estimator EBLUP

y
(W1)
ik = x′ikβ + uk + eik X̄′

kβ̂ X̄′
kβ̂ + ûk

ȳ
(W2)
k = x̄′kβ

∗∗ + u∗k + ē∗k X̄′
kβ̂
∗∗ X̄′

kβ̂
∗∗ + û∗k

Assuming the contextual model presented in (46) applies for the population, fitting

working model W1 leads to biased parameter estimates. For the aggregate data the true

sampling model is (50), parameter estimates based on W2 may also be biased as sample

area means (x̄k) and population area means (X̄k) may differ. However, W2 includes P+1

regression coefficients to be estimated while 2P+1 regression coefficients are included in

models (49) and (50). Therefore, the dimension reduction in calculating model parameter

estimates is an advantage of applying W2.

Synthetic estimates and EBLUPs of the area means are then calculated based on W1

and W2 being fitted on the sample data. This allows a comparison to be made among unit-

level and area-level working models introduced in Table 2 when area means are involved

in the population model as a contextual effect.

The target of inference is Ȳk given by (47). The bias of the unit-level synthetic estimate

is:

Biasξ

(̂̄Y SU

k

)
= Eξ( ̂̄Y Syn(W1)

k − Ȳk) = X̄′
kEξ[β̂U − β∗∗] , (52)

and for the area-level synthetic estimator the bias is:

Biasξ

(̂̄Y SA

k

)
= Eξ( ̂̄Y Syn(W2)

k − Ȳk) = X̄′
kEξ[β̂A − β∗∗] . (53)

It can be shown that Eξ(β̂U ) ≈ β and Eξ(β̂U − β∗∗) ≈ [0 β∗C ]′. Therefore, the bias of

the unit-level synthetic estimator for kth area is X̄kβ
∗. For β̂A, the components of β∗∗

associated with β∗I are unbiasedly estimated and the components associated with β∗C are

subject to attenuation because of the difference between x̄ and X̄. However, we would
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expect the attenuation not to completely eliminate the component associated with β and

therefore β̂A to be a less biased estimate of β∗∗ than β̂U .

The bias of the unit-level EBLUP for kth area mean is calculated as follows:

Biasξ

(˜̄Y (W1)

k

)
=

[
X̄′

k −Eξ(γ̂k)x̄′k
]
Eξ

(
β̃(W1) − β∗∗

)
+ Covξ

[
γ̂k,

(
ȳk − x̄′kβ̃

(W1)
)]

. (54)

We see that the first term reduces the bias compared with the unit-level synthetic esti-

mation. The second term should be negligible. A similar result holds for area-specific

EBLUP obtained from the appropriate aggregate working model, W2.

Figure 1 summarizes the empirical results by giving the ratio of MSEs for the SAEs

based on unit-level and area-level models for the 57 areas in the simulation. When a

contextual effect is present in the assumed population model, the ratio varies below and

above 1 for the synthetic method, but is generally below 1 for the resulting EBLUPs. The

variance of estimators obtained based on the individual-level analysis are less than the

variance in the aggregated-level approach. However, the resulting bias in the estimation

of β∗∗ is greater. Using the synthetic method in this simulation, for about half the areas

the area-level approach is better than the unit-level approach in terms of MSE. However,

when the EBLUP is applied, the reduction in biases leads to the unit-level approach having

lower MSE in all but a few areas.
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Figure 1: The Relative Efficiency of Unit-level Model to Area-level Model

A comparison between the resulting bias based on the synthetic estimation approach

and EBLUP technique is presented in Figure 2 for the target areas. For positive biases

of the synthetic estimates, unit-level and area-level results look similar in terms of bias

values. However, when the resulting biases for unit-level synthetic estimates are negative,

less biased synthetic estimates can be calculated based on area-level models. For calcu-

lated EBLUPs the bias of the unit-level estimates are predominately larger than that of

aggregated-level estimates. The bias seemes to be decreased in unit-level estimation based

on the EBLUP technique comparing with the synthetic estimation method. This is due

to reduced weight given to the regression component in the presented EBLUP technique.

Ignoring the difference between the sample and population area means for the auxiliary

variable in kth area, the bias for unit-level synthetic estimator and EBLUP for kth area

mean are

Biasξ

(˜̄Y (W1)

k

)
≈ (1− γk)X̄

′
kBiasξ

(
β̃(W1)

)
=

(
σ2

e
nk

σ2
u+

σ2
e

nk

)
X̄′

kBiasξ

(
β̃(W1)

)

Biasξ

(˜̄Y (SU)

k

)
≈ X̄′

kBiasξ

(
β̃(W1)

)
.

(55)

As shown in (55), there is less bias in the unit-level EBLUP comparing with the unit-level

synthetic estimator for kth area. This reduction depends on nk.
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Figure 2: Resulting Bias for Synthetic Estimators and EBLUPs

Means and variances of the parameter estimates for working models used in this nu-

merical study are presented in Table 3. As expected, estimated values for the intercept and

slope are less biased in the aggregated-level analysis. We see that the unit-level slope esti-

mate is unbiased for β1, and the area-level slope estimate is closer to β∗I1 +β∗C1 = β∗∗1 , but

still smaller, consistent with the attenuation effect noted above. As expected, the standard

error of all the parameter estimates are larger for area-level analysis. Interestingly, the bias

for the estimate of λ appears to be less for the area-level approach. The generally smaller

bias of the area-level analysis but larger MSEs, suggests that existing contextual effects

in the population model being considered in W2 causes less bias of parameter estimates

with smaller bias comparing with that of W2.
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Table 3: Parameter Estimates under Population 2
W1 W2

¯̂
β

(
71.14
13.78

)
¯̂
β∗∗

( −88.71
17.29

)

Bias( ¯̂
β)

(
18.74
−4.92

)
Bias( ¯̂

β∗∗)
(

11.10
−2.07

)

SE( ¯̂
β)

(
7.83
0.71

)
SE( ¯̂

β∗∗)
(

11.94
4.02

)

¯̂σu 129.45 ¯̂σ∗u 51.47

Bias(¯̂σu) 7.99 Bias(¯̂σ∗u) -17.47

SE(¯̂σu) 6.18 SE(¯̂σ∗e) 21.41

¯̂σe 285.36 ¯̂σ∗e 369.07

Bias(¯̂σe) -26.72 Bias(¯̂σ∗e) -7.49

SE(¯̂σe) 17.50 SE(¯̂σ∗e) 24.08

λ̄ 0.112 λ̄∗ 0.074

Bias(λ̄) 0.010 Bias(λ̄∗) 0.007

SE(λ̄) 0.022 SE(λ̄∗) 0.071

6 Conclusion

The goal of this paper is to evaluate SAE techniques based on statistical models at different

levels and to study the effect of possible area-level contextual effects in the population

model. The possible effects of ignoring these important area-level factors is explained

for unit-level working models being fitted on sample data. In order to consider realistic

situations, individual-level data from the Australian 2006 Census are used to estimate the

parameter values in population model.

If unit-level data are available, information from individuals can be used in the working

model. Estimators can then be obtained at the area level using aggregating techniques. If

data are unaccessible for unit-level modeling while area-level data are available, area-level

models can be developed for aggregate-level analysis and parameters used in producing

estimates at district levels are estimated from an area-level model directly. When area

means appear in the unit-level population model as contextual effects but are ignored in
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the individual-level working model, the resulting parameter estimates are biased while the

area-level model will automatically include these effects in estimation. In such a case, the

resulting parameter estimates would be unbiased or less biased, and an area-level analysis

may be preferable even if individual-level data are available.

Choosing individual-level analysis helps to produce small area estimates with smaller

variances. However, if the unit-level model is misspecified by exclusion of important

auxiliary variables, parameter estimates obtained from the individual and aggregate-level

analysis will have different expectations. In particular, if an important contextual variable

is omitted, the parameter estimates obtained from an individual-level analysis will be

biased, whereas an aggregated-level analysis can produce less biased estimates. Even if

contextual variables are included in an individual-level analysis, there may be an increase

in the variance of parameter estimates due to the increased number of variables in the

population model.

The size of the contextual effect will be an important feature in determining the rel-

ative efficiency of unit-level and area-level approaches. When individual-level analysis is

being used, the theory and empirical results suggest using EBLUP technique as it is more

efficient than the synthetic method.
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Table 4: The Population Size for Different Statistical Subdivisions
STATE No. Statistical Subdivisions Population(15 an over) Total

ACT 1 Canberra 276469 276469

2 Murray 141384

3 Northern 207344

4 Murrumbidgee 179500

5 Sydney 2643880

6 Richmond-Tweed 301849

NSW 7 South Eastern 211561 5554876

8 Central West 123473

9 Mid-North Coast 351211

10 Illawarra 541424

11 Hunter 707457

12 Far West 26961

13 North Western 118832

NT 14 Northern Territory - Bal 74040 163164

15 Darwin 89124

16 Brisbane 1481729

17 Central West 7683

18 Far North 189129

19 South West 13461

20 Fitzroy 112659

QLD 21 Moreton 427387 2942559

22 North West 20137

23 Mackay 125319

24 Wide Bay-Burnett 226345

25 Northern 159776

26 Darling Downs 178934

27 Adelaide 947857

28 Outer Adelaide 93348

29 Northern 65062

SA 30 Murray Lands 55298 1244878

31 Eyre 28617

32 Yorke and Lower North 37557

33 South East 17139

34 Northern 112182

TAS 35 Greater Hobart 166825 390217

36 Mersey-Lyell 81914

37 Southern 29296

38 Melbourne 3038339

39 Central Highlands 121149

40 Ovens-Murray 78547

41 Gippsland 135565

42 Goulburn 159950

VIC 43 Mallee 75144 4138085

44 Loddon 143693

45 Barwon 221846

46 Wimmera 37877

47 Western District 57861

48 East Gippsland 68114

49 Lower Great Southern 41606

50 Perth 1246870

51 Pilbara 11127

52 South West 111080

WA 53 South Eastern 45401 1568149

54 Upper Great Southern 13544

55 Central 31724

56 Kimberley 26603

57 Midlands 40194
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Table 5: The Sample Size for Different Statistical Subdivisions
STATE No. Statistical Subdivisions Sample Size Total

ACT 1 Canberra 36 36

2 Murray 19

3 Northern 27

4 Murrumbidgee 23

5 Sydney 347

6 Richmond-Tweed 40

NSW 7 South Eastern 28 730

8 Central West 16

9 Mid-North Coast 46

10 Illawarra 71

11 Hunter 93

12 Far West 4

13 North Western 16

NT 14 Northern Territory - Bal 10 22

15 Darwin 12

16 Brisbane 194

17 Central West 1

18 Far North 25

19 South West 2

20 Fitzroy 15

QLD 21 Moreton 56 386

22 North West 3

23 Mackay 16

24 Wide Bay-Burnett 30

25 Northern 21

26 Darling Downs 23

27 Adelaide 121

28 Outer Adelaide 12

29 Northern 9

SA 30 Murray Lands 7 160

31 Eyre 4

32 Yorke and Lower North 5

33 South East 2

34 Northern 15

TAS 35 Greater Hobart 22 52

36 Mersey-Lyell 11

37 Southern 4

38 Melbourne 398

39 Central Highlands 16

40 Ovens-Murray 10

41 Gippsland 18

42 Goulburn 21

VIC 43 Mallee 10 542

44 Loddon 18

45 Barwon 29

46 Wimmera 5

47 Western District 8

48 East Gippsland 9

49 Lower Great Southern 5

50 Perth 163

51 Pilbara 1

52 South West 15

WA 53 South Eastern 6 205

54 Upper Great Southern 2

55 Central 4

56 Kimberley 4

57 Midlands 5
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