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ABSTRACT 

Random effects models for hierarchically dependent data, e.g. clustered data, are widely used. 

A popular bootstrap method for such data is the parametric bootstrap based on the same 

random effects model as that used in inference. However, it is hard to justify this type of 

bootstrap when this model is known to be an approximation. In this paper we describe a 

semiparametric block bootstrap approach for clustered data that is simple to implement, free 

of both the distribution and the dependence assumptions of the parametric bootstrap and is 

consistent when the mixed model assumptions are valid. Results based on Monte Carlo 

simulation show that the proposed method seems robust to failure of the dependence 

assumptions of the assumed mixed model. An application to a realistic environmental data set 

indicates that the method produces sensible results. 

 

Key Words: Hierarchical data; Correlated clusters; Block bootstrap; Confidence interval; 

Consistency; Nonparametric bootstrap. 
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1.  INTRODUCTION 

The bootstrap technique (Efron 1979; Efron and Tisbshirani 1993) was originally developed 

for parametric inference given independent and identically distributed (iid) data. However, 

random effects models for hierarchically dependent data, e.g. clustered or multilevel data, are 

now in wide use. With such data, it is important to use bootstrap techniques that replicate the 

hierarchical dependence structure of the data. A popular way of achieving this is to use a 

parametric bootstrap based on the assumed hierarchical random effects model. This is usually 

very effective provided this model is correctly specified. On the other hand, if the stochastic 

assumptions of the model, e.g. the assumption that the random effects are iid Gaussian 

random variables, are violated, then it is hard to justify use of the parametric bootstrap. See 

for example, Rasbash et al. (2000). This is of particular concern since the bootstrap is often 

recommended as an alternative approach that is likely to lead to confidence intervals with 

better coverage in situations where the distribution assumptions that underly analytical 

methods are questionable (Davison and Hinkley 1997). 

 Much of the early research on bootstrapping clustered data was within the design-

based framework for sample survey inference, where the main focus is on replicating the 

impact of various forms of cluster sampling on repeated sampling inference for finite 

population parameters. See Rao and Wu (1988) and Canty and Davison (1999). However, our 

approach in this paper is model-based, in the sense that we treat the clusters as part of the data 

generation mechanism rather the sampling scheme, and so is similar to the approach set out in 

Field and Welsh (2007). In particular, we consider inference with respect to the population 

model rather the sampling mechanism, and so our focus is on bootstrap inference for model 

parameters that accommodates the hierarchical dependence structure in the data. In this 

context, Carpenter et al. (2003) (hereafter CGR) describe a two level bootstrap for a random 
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effects model, while Field and Welsh (2007) review various approaches to bootstrapping 

clustered data. 

 In what follows we propose a semiparametric block bootstrap method for clustered, 

hierarchical or multilevel data. Our approach is semiparametric, in the sense that the marginal 

model is generated parametrically within the bootstrap while the dependence structure of the 

model residuals is generated nonparametrically. Furthermore, the proposed bootstrap is 

simple to implement and seems free of both the distribution and the dependence assumptions 

of the parametric bootstrap, with its main assumption being that the marginal model is 

correctly specified. Note that the block bootstrap itself is not new, since this method has been 

used extensively with spatial and time series data. See Clark and Allingham (2011), Hutson 

(2004), and Hall et al. (1995). However, to the best of our knowledge, there have been no 

previous applications of the block bootstrap idea to multilevel data. 

 The remainder of this paper is structured as follows. In Section 2 we describe how the 

parametric bootstrap and the CGR bootstrap can be used to construct bootstrap confidence 

intervals for multilevel data. We then describe a semiparametric block bootstrap method for 

such data and prove the consistency of the bootstrap confidence intervals obtained under this 

approach. Empirical results from model-based simulations of these different bootstrap 

methods are described in Section 3. In Section 4 we present results from the application of 

these bootstrap methods to a realistic environmental data set where the hierarchical model is 

at best an approximation. Finally, Section 5 concludes the paper with a summary of our major 

findings and a discussion of avenues for future research. 

 

2. BOOTSTRAP METHODS FOR MULTILEVEL DATA 

In this Section we outline bootstrap methods for constructing confidence intervals for 

parameters of multilevel models, focusing on the two-level case. To this end, consider the 
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situation where we have data on a variable of interest y and a set of covariates x for n 

individuals clustered within D groups. Following standard practice, we refer to individuals as 

level 1 units and clusters as level 2 units. There are ni ( )1,..,i =

n =
i=

D∑

D  level 1 units making up 

level 2 unit i in the sample, with overall sample size . Such hierarchically 

structured data are commonly modelled using random effects. In this paper we focus on a 

linear random intercepts model of form 

ni1

 , , (1) 
    yij = x ij

Tβ + ui + eij j = 1,...,ni;i = 1,.., D

where
 

 denote the value of y for unit j in group i,  is a yij x ij p ×1 vector of auxiliary variables 

for unit j in group i, β  is a   p ×1 vector of regression coefficients, u  denotes a cluster-

specific (level 2) random effect and  is an individual (level 1) random effect. We assume 

that 
  

 contains an intercept term as its first component. It is standard practice to model the 

random effects as Gaussian, and so we further assume that these effects are mutually 

independent between individuals and between clusters, with u N

i

2 )i u

eij

x ij

(0,σ∼  and 2(0, )ij ee N σ∼ . 

It follows that 
   

 and 
  
Cov , where I(A) is the indicator 

function for the event A. Let  

E( yij ) ij
Tβ= x ( yij , yik ) = σ u

2
e
2I (+σ j = k)

y  denote the n ×1 vector of values  with   denoting the 

corresponding 

yij x

 n × p  matrix defined by the . Then      and x ij E(y) = xβ

{ }2 2
i i

T
n nσ σ1 1(VarV y) d= = ;

ie n i+

ˆ ˆ( ,

1,...., D=I

2 2ˆ ˆ, )u e

i uiag V =

t ×1

, where I  and  denote the identity 

matrix of order t and a    vector of ones respectively. The parameters    are 

typically referred to as the variance components of (1). Standard methods such as maximum 

likelihood (ML) or restricted maximum likelihood (REML) are used for estimating the 

unknown parameters of (1); see Harville (1977). In what follows we use a ‘hat’ to denote 

these estimates, i.e. we let 

t 1t

δ = (σ u
2 ,σ e

2 )

θ σ σ= β  denote the ML or REML estimates of 
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  θ = (β,σ u
2 ,σ e

2 )

ˆiu

. These allow us to define empirical best linear unbiased predictors (EBLUPs) 

 for the area effects u . i

 Given a bootstrap distribution for a component of θ̂ , there are a number of methods 

that can be used to construct corresponding bootstrap confidence intervals for the parameter 

in θ  corresponding to that component. For reviews of these methods, see Efron and 

Tibshirani (1993), DiCiccio and Efron (1996), Davison and Hinkley (1997) and DiCiccio and 

Romano (1988). Here we use the percentile method, where a 100(1−α )  percent bootstrap 

confidence interval for any component of θ  is constructed as the interval between upper and 

lower  α 2  percentile values of the bootstrap distribution of that component. Taking some 

liberties with notation, let , 2L̂ αθ  denotes the bootstrap estimate for a parameter in θ  such that 

a fraction  α 2  of all its bootstrap estimates are smaller than , 2L̂ αθ , with , 2Û αθ  denoting the 

bootstrap estimate such that a fraction α 2  of all its bootstrap estimates are larger than , 2Û αθ . 

Then an approximate  100(1−α )  percent confidence interval for this parameter is 

, 2 , 2
ˆ ˆ,L Uα αθ θ⎡ ⎤

⎣ ⎦ . 

 

2.1 PARAMETRIC 2-LEVEL BOOTSTRAP  

The parametric bootstrap method for the ML/REML estimates 2 2ˆ ˆ ˆ ˆ( , , )u eθ σ σ= β  obtained by 

fitting the model (1) to data with 2-level structure is defined as follows. 

1. Generate independent level 2 errors for the D groups as 2ˆ(0, )i uu N σ∗ ∼ ,    and 

generate independent level 1 errors for all n sampled units as 2ˆ(0, )e

i = 1,.., D

ije N σ∗ ∼ , 

D .   j = 1,...,ni;i = 1,..,

2. Simulate bootstrap sample data *( , )ij ijy x  using the model ˆT
ij ij i ijy x u e∗ ∗ ∗= + +β . 
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3. Fit the two level random effects model (1) to the bootstrap sample data generated in 

step 2 to obtain bootstrap parameter estimates 2 2ˆ ˆ ˆ ˆ( , , )u eθ σ σ∗ ∗ ∗ ∗= β . 

4. Repeat steps 1-3 B times to obtain B sets of bootstrap parameter estimates. 

As noted in Section 1, this method works very well provided the model (1) holds. However, it 

is hard to justify this type of bootstrap if the stochastic assumptions of this model, e.g. that the 

random effects are iid Gaussian random variables, are violated. 

 

2.2 SEMIPARAMETRIC 2-LEVEL BOOTSTRAP (CGR) 

Carpenter et al. (2003) describe a bootstrap method for multilevel data that is less sensitive to 

model assumptions than the parametric bootstrap. As usual, we suppose that we have 

estimates 2 2ˆ ˆ ˆ ˆ( , , )u eθ σ σ= β  of 2 2( , , )u eθ σ σ= β

ui 1,..,i D=

. Note that this means that we also have the 

corresponding EBLUPs  of  ( ). In what follows we use the notation  

to indicate the outcome of taking a simple random sample of size m with replacement from 

the set A. The CGR bootstrap is then implemented as follows: 

ˆiu ( , )srswr A m

1. The D EBLUPs ˆiu  of the random effects ui  and the corresponding n level 1 residuals  

ˆ ˆT  are first scaled to ensure that they have variances equal to 2ˆuîj ij ije y x= − β − iu σ  and 

2ˆeσ  respectively. The scaled level 2 residuals are ( ){ } 1/2
1 2ˆ ˆ ˆc

i u ii
u D uσ

−
−= ∑ ˆiu  and the 

scaled level 1 residuals are ( ){ } 1/2

îj

−
1 2ˆ ˆ ˆc

ij e ije n eσ −=
i∑ e . Both sets of scaled residuals 

are then centred at zero. 

2. Sample independently with replacement from ( )  and ( )ˆ ˆc c
ije=e  to get bootstrap 

samples  u
∗  and  e

∗  of D level 2 residuals and n level 1 residuals respectively. That is, 

{

ˆ ˆc c
iu=u

( ) }ˆ ,c D  and iu srsw∗ ∗ ru u= = ( ) { }ˆ ,c ne eije srswr∗ ∗= = . 
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3. Simulate bootstrap sample data ( yij
∗ ,xij )  using the model ˆT

ij ij i ijy x u e∗ ∗ ∗= + +β . 

4. Fit the two level random effects model (1) to the bootstrap sample data generated in 

step 3 to obtain bootstrap parameter estimates 2 2ˆ ˆ ˆ ˆ( , , )u eθ σ σ∗ ∗ ∗ ∗= β . 

5. Repeat steps 2-4 B times to obtain B sets of bootstrap parameter estimates. 

 

2.3 SEMIPARAMETRIC 2-LEVEL BLOCK BOOTSTRAP  

Although the bootstrap errors used in the CGR approach are less sensitive to the stochastic 

assumptions of (1), they still rely on the model-based EBLUPs  of the level 2 random 

effects. In addition, both the parametric and the CGR approaches assume homogeneity of 

within cluster variability. In practice, within cluster errors may not be homogeneous. For 

example, these errors can be correlated in environmental and agricultural applications, 

reflecting unmeasured spatial variation. Provided the within block residual heterogeneity is 

similar from cluster to cluster, we can use a block bootstrap approach to recreate this 

heterogeneity in our bootstrap. We therefore now describe a semiparametric block bootstrap 

approach that allows for such residual heterogeneity. This approach is semiparametric in the 

sense that although the marginal bootstrap model is based on the parametric fit to the sample 

data, the dependence structure in the model residuals is generated nonparametrically. 

ˆiu

 

2.3.1 Semiparametric block bootstrap (SBB) 

We first describe a simple semiparametric block (SBB) bootstrap for two-level data and then 

develop refinements to this method. The steps in the SBB bootstrap are as follows. 

1. Using the marginal residuals: ˆT
ij ij ijr y x= − β , , calculate the level 2 

average residuals for each of the D groups: 

j = 1,...,ni ;i = 1,.., D

1
1

hn
h h hjj

r n r−
=

= ∑ , h = 1,.., D  and the level 1 

residuals within each group h as rhj
(1) = rhj − rh , . Let   j = 1,...,nh;h = 1,.., D r (2) and rh

(1  )
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denote the vector of D level 2 average residuals rh  and the vector of  nh  level 1 

residuals 
  
rhj

(1)  for group h respectively. 

2. Sample independently and with replacement from these two sets of residuals in order 

to define bootstrap errors for levels 1 and 2. In particular, level 2 bootstrap errors are 

given by ( ) ( )(2) (2)
ir srswr∗ ∗= = (2) , Dr r , while level 1 bootstrap errors in cluster i are 

given by ( ) ( )(1) (1)
( ) ,i ij h ir srswr n∗ ∗= =r r i , where { }( )( ) 1, , ,1h i srswr D= … . (1)

3. Simulate bootstrap sample data ( yij
* ,xij )  using the model (2) (1)ˆT

ij ij iy x r∗
ijr∗ ∗+= +β . 

4. Fit the two level random effects model (1) to the bootstrap sample data generated in 

step 3 to obtain bootstrap parameter estimates 2 2ˆ ˆ ˆ ˆ( , , )u eθ σ σ∗ ∗ ∗ ∗= β . 

5. Repeat steps 2-4 B times to obtain B sets of bootstrap parameter estimates. 

 

2.3.2 Use of centred and scaled residuals before bootstrapping (SBB.Prior) 

In the semiparametric block bootstrap SBB described in the previous subsection, we note that 

 and (2)( )iE r∗ ∗ ≠ 0 u
(2) 2ˆ( )iVar r σ∗ ∗ ≠ , where E∗ , Var∗  denote expectation and variance 

respectively with respect to the bootstrap distribution generated under SBB. Consequently 

, implying that the bootstrap confidence intervals generated by SBB are not 

consistent. An alternative, which also satisfies the conditions for consistency (Shao and Tu, 

1995, Chapter 4), is to zero centre and scale residuals prior to their use in the bootstrap. That 

is, following the same procedure as used in the CGR bootstrap, the residuals  

ˆ( ) T
ij ijE y x∗ ∗ ≠ β

rh  and  

computed in step 1 of the SBB are transformed to zero-centred and scaled values 

rhj
(1)

( ){ } 1/2
1 2

ii
r

−

∑ˆc
h ur Dσ −= hr  and ( ){ } 1/2

(1) (1) 2 (1)ˆ ( )c
hj e hjrσ

−
= 1−

iji∑r n  respectively before 

initiating the bootstrap process of steps 2-5, in which case we have , 

r

(2) (1)( ) (i iE r∗ ∗ ∗ ∗ ) 0j= =E r
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(2) 2ˆ( )i uVar r σ∗ ∗ =  and (1) 2ˆ( )ij eVar r σ∗ ∗ = . Zero centring and scaling residuals prior to initiating 

the bootstrap ensures that the confidence intervals generated by the SBB are consistent. 

Because these residual adjustments are carried out before the bootstrap process, we refer to 

this method as SBB.Prior in what follows. 

 

2.3.3 Tilting and tethering adjustments after bootstrapping (SBB.Post) 

The variance components estimates 2ˆuσ  and 2ˆeσ  should be asymptotically uncorrelated. 

However, there is no guarantee that the bootstrap estimates of these parameters generated by 

SBB are empirically uncorrelated. Furthermore, although SBB has the property of preserving 

residual within cluster heterogeneity, there is no guarantee that it preserves the observed 

between and within cluster variances. Both of these properties can be guaranteed by 

appropriately modifying the bootstrap distributions generated by SBB. We therefore now 

describe two further steps in the SBB procedure that ensure these properties. 

• We first modify the bootstrap distributions of the logarithms of the variance 

components estimates so that they are empirically uncorrelated. The steps in this 

process are as follows: 

( )2ˆlog uσ
∗i. Let  and ( )2ˆlog eσ

∗  denote the B vectors of bootstrap values of 2ˆuσ  

and 2ˆeσ  respectively. Define the B × 2  matrices 

( ) ( )2 2ˆ ˆlog , logu eσ σ∗ ∗ ∗⎡ ⎤= ⎣ ⎦S  

( ) ( )*2 *2ˆ ˆlog , logu B e Bav avσ σ∗ ⎡ ⎤= × ×⎣ ⎦M 1 1  

and ( ) ( )*2 *2ˆ ˆlog , logu B e Bsd sdσ σ∗ ⎡ ⎤= × ×⎣ ⎦D 1 1 . 
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 Here  avS  and  sdS  denote the average and standard deviation of the values in 

the vector S,    denotes a B vector of ones and 1B ×  denotes component-wise 

multiplication. 

ii. Calculate the  2 × 2  covariance matrix C  and put ∗ = cov(S∗)

( ){ }1/2∗ ∗ ∗ ∗ ∗− ∗= + − ×L M S M C D . 

iii. The modified bootstrap values of 2ˆuσ  and 2ˆeσ  (denoted *mod 2ˆuσ  and *mod  

below) are then obtained by exponentiating the elements of  L∗ . 

2ˆeσ

• All bootstrap distributions of model parameter estimates (including the modified 

bootstrap distributions of the estimated variance components) are then centred at the 

original estimate values, using a mean correction for regression coefficients, i.e. 

⎤
⎦ , and a ratio correction for variance components, i.e. 

)

( ) ( ) ( )** * *ˆ ˆ ˆ ˆ
k k B k kavβ β β β⎡= + −⎣ 1

( ) ( ) ({ } 12** *mod 2 2 *mod 2ˆ ˆ ˆ ˆu u u uavσ σ σ σ
−

= ×  and ( ) ( ) ( ){ } 12** *mod 2 2 *mod 2ˆ ˆ ˆ ˆe e e eavσ σ σ σ
−

= × . Note 

that we use a '**' superscript here to distinguish the values defining these adjusted 

bootstrap distributions from the original bootstrap values generated by SBB, which are 

denoted by a '*' superscript. 

We refer to the first additional step above as 'tilting' and to the second as 'tethering'. Tilting 

and tethering together represent a posterior adjustment to the bootstrap distributions generated 

by SBB  that is, as we show in the next subsection, another way of modifying SBB to ensure 

its consistency under a linear mixed model. Note that bootstrap distributions for quantities 

that depend on model parameters (e.g. EBLUPs) need to be recomputed using these tilted and 

tethered bootstrap parameter values. Bootstrap confidence intervals are then defined using the 

relevant tilted and tethered bootstrap distributions. Because these adjustments are carried out 

after SBB, we refer to this method as SBB.Post in what follows. 
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2.3.4 Consistency of SBB.Prior and SBB.Post 

The semiparametric block bootstrap and its two variations described above are covered by the 

random effects bootstrap framework described in Field and Welsh (2007). These authors 

show that the random effects bootstrap gives asymptotically consistent results for the 

corresponding random effects model under joint asymptotics, i.e. when the number of clusters 

and the number of observations in each cluster increases. Assuming certain regularity 

conditions, Shao et al. (2000) show that bootstrap percentile confidence intervals are 

asymptotically consistent. Carpenter et al. (2003) use the same arguments as in Shao et al. 

(2000) to prove the asymptotic consistency of CGR-generated bootstrap percentile confidence 

intervals under the random effects model. This follows from showing that the bootstrap 

expectations of the ML estimating equations are zero. We now show that this result also holds 

for SBB.Prior and SBB.Post. 

 Consider the case of ML estimation under (1), where, up to an additive constant, the 

log-likelihood function is      and  is the variance-

covariance matrix of 

l = (y − xβ)T V−1(y − xβ) − log | V | V

y . Differentiating this log-likelihood with respect to β  leads to the ML 

estimating function for β , i.e. ( ) 1( )Tsc −= −x V y x β β . Since ˆ(E y∗ ∗ ) 0− = xβ  for SBB.Prior, 

it follows that the expectation of this estimating function with respect to the bootstrap 

distribution is zero at ˆβ = β . This shows consistency of *β̂  for β̂  under SBB.Prior. In order to 

demonstrate consistency of the bootstrap estimates of the variance components under 

SBB.Prior, we note that { }1 1( ) ( ) ( )tr− −− − = −y x V y x V y x  β β

R = (y − xβ)(y − xβ)T

log | V |

δ = (σ u
2 ,σ e

2 )

(T Ty x β )− β , see McCulloch and 

Searle (2001, page 301). Put     . The log-likelihood function can then be 

expressed as    . The first derivative of this log-likelihood with respect 

to the variance components parameter  defines their estimating function, 

l = −tr(V−1R) −
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1 1

( )sc tr trδ
δ δ

− −⎛ ⎞ ⎛ ⎞∂ ∂
= − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

V VR V , so { }( )E sc δ = 0 . Put ˆ( )( T∗ ∗ ∗= − −R ˆ )y x y x  β β  and note 

that , where  is the ML estimate of V. We then need to show that ˆ (E∗ ∗=V R ) V̂

{ }( )c δ∗ ∗ = 0E s , where 
1 1

( )δsc tr tr
δ δ

− −
∗ ⎛

= − ⎜∂ ∂⎝
V∗⎛ ⎞∂

+⎜ ⎟
⎝ ⎠

V R
⎞∂
⎟
⎠

V . This follows because 

 

1 1

ˆ

0,

1 1

1 1

1 1

( )

T

T

r tr E tr tr

tr E tr

tr tr

E t
δ δ δ δ

δ δ

δ δ

− − − −
∗ ∗

− −
∗ ∗

− −

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− + = − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞∂ ∂
= − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂
= − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
≈

V V V VR V R V

V VR V

V VV V

∗ ∗⎡ ⎤
⎢ ⎥
⎣ ⎦

 

where the last approximate equality is a consequence of the fact that  and   are symmetric 

and , where 

V̂ V

 ∼  denotes 'asymptotically equal'. That is, 2ˆ ˆ ˆ 2 )e( ,uδ σ σ∗ ∗= ∗  is consistent for V̂ V∼

2 2ˆ ˆ( , )u eδ̂ σ σ=  under SBB.Prior. Since ML and REML estimates are asymptotically identical, 

these consistency properties also hold for REML estimation. 

 Similar consistency results hold for SBB.Post, since tethering is another way of 

achieving the same asymptotic behaviour that centering and rescaling guarantees for 

SBB.Prior and CGR. To show this, we use a superscript of "**" to denote post-tethering 

bootstrap realisations, with  E∗∗  denoting the corresponding expectation. Then 

  

( ){ }
( ) (

ˆ ˆ ˆ( )

ˆ ˆ

0

E y

E y E

∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗ ∗ ∗ ∗∗ ∗∗

− = − + −

)
ˆ

ˆ

E y∗∗

= − + −

=

x x x

x x 

β β β β

β β β   

since under tethering , while the tethered residuals ˆ( )∗∗β β̂E∗∗ = ˆy∗∗ − x ∗∗β  and the untethered 

residuals  are identical and ˆy∗ − xβ∗ ( )ˆ 0E y∗ ∗ ∗− =xβ . It immediately follows that the tethered 

SBB bootstrap is consistent for . To prove the corresponding consistency of this bootstrap β̂
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for the estimated variance components, we show that , where ˆ (E∗∗ ∗∗V R∼ )

ˆ )ˆ( )( T∗∗ ∗∗ ∗∗= − −R y x y x  β β . This follows because we can write 

 ( ){ } ({ )}ˆ ˆ ˆ ˆ

ˆˆ ( ) TVar

∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗

= − + − −

= +

R y x x y x

V x x

ˆ ˆ T
∗∗+ −x( )E E∗∗ ∗∗ β β β β

β

β β
 

where the last equality is a consequence of the fact that under tethering, 

  { }{ }ˆ ˆ ˆT
E∗∗ ∗∗ ∗∗ ∗∗ ∗∗− − =y x y x Vβ β  

and because of the independence of the bootstrap distributions of ˆ ∗ ˆ∗∗ ∗∗−y xβ∗β  and . It only 

remains to note that . 1( ) (O n∗∗ −=ˆVar∗∗ β )

 

2.3.4 Calibration to the estimated covariance matrix of the variance components 

By construction, the rescaling of residuals underpinning the SBB.Prior method leads to level 

1 and level 2 bootstrap residuals with variances that are close to the corresponding variance 

component estimates. However, this does not mean that that the covariance matrix of the 

bootstrap distribution of these variance components is close to the estimated asymptotic 

covariance matrix of the variance components estimators. This suggests that we may be able 

to improve on SBB.Prior by calibrating the empirical covariance matrix of the bootstrap 

estimates of the variance components generated under this procedure to the ML/REML 

estimate of the asymptotic covariance matrix of the variance components estimators. This can 

be achieved by a suitable Cholesky decomposition. However, it is important to note that the 

performance of this second order calibrated block bootstrap then depends on the accuracy of 

the estimated asymptotic covariance matrix of the variance components estimators. In the 

simulations reported in the next section we observed that this extra level of calibration lead to 

undesirable sensitivity to model assumptions. This was not unexpected since this second order 
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calibration depends on the model (1) being true. Results for this method are therefore not 

reported, but can be obtained from the authors. 

 

3.  EMPIRICAL EVALUATIONS 

3.1 DESCRIPTION OF THE SIMULATION EXPERIMENTS 

We now describe a series of simulation experiments that were used to evaluate the 

performance of the different bootstrap methods described in the previous Section and which 

are set out in Table 1. In the first two of these experiments, referred to as simulation sets A 

and B below, we used the standard random effects model (1) to generate clustered data. In 

particular, in both we generated data using a two-level model of the form 

, ;    . We fixed the total number of clusters at     
yij = 1+ 2xij + ui + eij i = 1,.., D j = 1,...,ni D = 100

i = 5

ij

 

and within each experiment simulated data for two sets of equal cluster sizes,    and 

. Values of 
 

 were generated independently as . The cluster 

specific (level 2) random errors   and the individual specific (level 1) random errors 
 
e  were 

generated as mutually independent and identically distributed random variables with zero 

means and with variances    and    respectively. 

n

  ni = 20 xij

σ u
2

(0,1)ijx Uniform∼

ui

σ e
2

 In simulation set A,  and . In simulation set 

B, we generated   from a   distribution with mean zero and variance    as 

2(0, 0.04)i uu N σ =∼

χ 2

2(0, 0.16)ij ee N σ =∼

ui σ u
2 = 0.04

( )2
10.2 1 / 2iu χ⎡ ⎤

⎦

i χ 2

−⎣∼ . Similarly, we generated the individual level errors 
 

 independently 

of the cluster level errors   from a  distribution with mean zero and variance    

as 

eij

u σ e
2 = 0.16

( )2
10.4 1 / 2ije χ⎡ ⎤−⎣ ⎦∼ . 

 Note that in both set A and set B, units within a cluster are equi-correlated. Since our 

interest is in clustered data situations where this does not hold, we investigated an alternative 
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to set A where the individual level errors  were generated so that within cluster units are not 

equi-correlated. In this case individual level errors within a cluster were simulated so that they 

corresponded to a first order auto-correlated series of form 

eij

( 1) , 1,...ij i j ij ie e j nλ ε−= + =  with 

 λ = 0.5  and (0,1)ij Nε ∼

1

D
ii

n n
= ij

. This is referred to as simulation set C below. Finally, we 

investigated the impact of correlation between units in different clusters in a fourth set of 

simulations, denoted simulation set D below, where we replicated simulation set C except that 

all individual level errors were now generated from the same first order auto-correlated series 

of size  as  =∑ ( 1) , ,...i j ije e 1j nλ ε−= + = . This simulation therefore approximates the 

type of time series problem that motivated the development of the block bootstrap. 

 A total of R = 1000 Monte Carlo simulations were carried out for each simulation set, 

and within each simulation we implemented each of the bootstrap methods set out in Table 1 

using B = 1000 bootstrap replicates. This number of simulations and bootstrap samples is 

suitable for evaluating 95 per cent percentile confidence intervals, see Caers et al. (1998). 

 

3.2 DISCUSSION OF SIMULATION RESULTS 

Average coverage rates of nominal 95 percent bootstrap confidence intervals for the various 

model parameters were obtained for the different simulations sets. These coverage rates are 

reported in Table 2.  It is clear that there is not much difference in the coverage rates for the 

regression coefficients (i.e. α  and β ) between the different bootstrap methods and between 

the different simulation sets, with the notable exception that the CGR method recorded low 

coverage for α  in our large cluster size ( ) simulations, indicating a potential bias 

problem with our implementation of this method. 

ni = 20

It is well known that classical estimation inference for the variance component 

parameters of (1) are sensitive to deviations from this model. As a consequence we now focus 
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on bootstrap coverage performance for the variance component parameters    and   . In 

simulation set A the assumed model is true, and so the coverage rates of the parametric 

bootstrap and CGR are around 95 per cent. In contrast, SBB records low coverage, especially 

for small (  ) cluster sizes. This is effectively corrected by SBB.Post and SBB.Prior, 

although there is evidence that for small cluster sizes SBB.Prior is more effective than 

SBB.Post. 

σ u
2 σ e

2

ni = 5

 Turning to results from simulation set B, we see that the parametric bootstrap fails. 

The performance of CGR is better, but is still unsatisfactory. In contrast, although the simple 

block bootstrap SBB is remains unsatisfactory for small cluster sizes, its performance for 

large cluster sizes is good. This performance is reversed for SBB.Prior which performs better 

for small cluster sizes than for large cluster sizes. Cluster size does not seem to impact as 

much on SBB.Post, which performs adequately and seems better than CGR in this simulation. 

 The performances of the different bootstrap methods in sets C and D were 

qualitatively similar to those recorded for sets A and B. The simple block bootstrap SBB fails 

when cluster sizes are small and recovers somewhat as the cluster size increases. The 

performances of both the parametric (Para) and CGR bootstraps are on a par, as are those of 

SBB.Post and SBB.Prior, with SBB.Prior the better performer for small cluster sizes. Overall, 

SBB.Prior appears to be the best performing of the five bootstrap methods that we 

investigated, with SBB.Post a little behind. Both these bootstrap methods seem robust to the 

departures from model assumptions that we considered in our simulations.  

 Although we do not present these results here, we also carried out number of 

simulation studies that examined the performance of the bootstrap methods set out in Table 1 

in other situations, all of which have some relevance to real life data: 
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• We replicated simulation sets A to C with a smaller number of clusters, i.e. D = 

50, and noted that the relative performances of the different bootstrap methods 

were almost identical to those observed when D = 100. 

• We examined the impact of misspecification of the cluster structure in the block 

bootstrap by replicating simulation set A with data generation and model fitting 

based on D = 100 clusters, but with bootstrap data generated using a smaller 

number D = 50 clusters. This did not change the behaviour of the block bootstrap 

methods. 

• We also examined the impact of varying cluster sizes by replicating simulation 

set A with cluster sizes ranging from 1 to 100, with about half the clusters having 

10 or fewer observations. Again, the block bootstrap methods SBB.Post and 

SBB.Prior performed satisfactorily. 

 

4.  APPLICATION TO ENVIRONMENTAL DATA MODELLING 

In this Section we apply the different bootstrap methods set out in Table 1 to the 

environmental data analysed in Beare et al. (2011). These data consist of n = 3177 values of 

positive daily rainfall measured at a group of rain gauges over a period of approximately four 

months, together with the values of 37 covariates measuring daily meteorological conditions 

as well as the spatial characteristics of the different gauges. The data were collected as part of 

a trial of the effect of two ground-based cloud ionizing devices on downwind rainfall, and so 

the covariates include measurements relating to the daily operational status of the two devices 

as well as the distance and downwind orientation of a gauge relative to each device on a day. 

Since the hypothesised impact of these devices is to enhance downwind rainfall, it is 

necessary to include terms in the model for observed rainfall that allow for the natural 

variation in rainfall due to the spatial and temporal inhomogeneity of rain cloud movement 
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over the target downwind area. In the analysis described in Beare et al. (2011) this was done 

by including random effects for 397 spatio-temporal clusters in the rainfall model, where 

these clusters were defined by groups of gauges that had similar relative orientations to the 

two devices on a day. The distribution of these spatio-temporal cluster sizes can be seen in 

Figure 1, and we note that they vary from minimum of 1 gauge to maximum of 57 gauges, 

with average size of 8 gauges. 

 A more conservative approach to defining cluster random effects for these rain data is 

based on the fact that the random sequence used to control the operation of the two devices 

was essentially made up of 4 day 'blocks'. Assuming that there could be significant 

unexplained between block and between device heterogeneity in rainfall then leads one to 

consider random spatio-temporal effects based on clustering gauge-day rainfall measurements 

by both 4 day block and whether the rainfall measurement is for a gauge that is downwind of 

only one of the devices or downwind of both. We refer to these clusters as 4 day downwind 

clusters in what follows. There are 83 such clusters in the data, and the distribution of their 

corresponding sizes is shown in Figure 1. Note that these sizes range from 1 to 197 with 

average of 38. 

 The next issue that needs to be addressed is the scale at which the daily rainfall data is 

modelled using (1). Clearly, we can fit this model to the actual rainfall values. However, 

given that rainfall measurements are strictly positive and heavily skewed, an obvious 

alternative is use (1) as a model for the logarithm of rainfall. The marginal distributions of 

daily rainfall on the raw scale and on the log scale are shown in Figure 2. The apparently 

discrete nature of the distribution of log rainfall for small values of this variable evident in 

Figure 2 is due to the fact that rainfall in gauges is measured in increments of 0.2 mm. Figure 

3 allows one to compare the predicted values (i.e. fitted values for fixed effects plus predicted 

random effects) generated by fitting (1) to both raw rainfall as well as to log rainfall using 
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both spatio-temporal clusters and 4 day downwind clusters, with a REML fit used in all cases. 

This clearly shows that fitting (1) to log rainfall is the better choice. It also demonstrates that a 

random effects specification using spatio-temporal clusters leads to a better fit than a random 

effects specification using 4 day downwind clusters. 

 In Section 3 we noted that the block bootstrap methods SBB.Post and SBB.Prior 

should be robust to the assumption that level 1 and level 2 errors in (1) are independent and 

identically distributed Gaussian variables. Although this assumption may be reasonable when 

when (1) is fitted to log rainfall, it is clear from Figure 3 that it is hard to justify when (1) is 

fitted using raw rainfall values. We therefore examine the application of bootstrap methods to 

the rainfall data under both types of clusters as well as when (1) is fitted to raw rainfall and to 

log rainfall. This leads to 4 sets of analyses. These are reported in Table 3 and in Figures 4 

and 5. 

 Our initial analysis focussed on comparing the bootstrap tests of significance for the 

fixed effects in the model, where we decided that an effect is significant if its 95 per cent 

confidence interval does not include zero. In no case did we observe a situation where the 

standard parametric test (i.e. one based on the asymptotic REML-based confidence interval) 

led to a different conclusion about significance compared with any of the bootstrap tests. This 

is consistent with the results that we obtained in our simulations, and so we do not show them 

here. They can be obtained from the authors on request. 

 However, we did observe substantial differences between the different bootstrap 

methods as far as inferences about the variance components in the model are concerned. 

Table 3 shows the estimated standard errors and Figure 4 shows the associated 95 per cent 

confidence intervals for these components generated by the different bootstrap methods under 

the four different model specifications. The corresponding bootstrap sampling distributions 

for these variance components under these model specifications are shown in Figure 5. We 
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see that the estimated standard errors generated by the REML fit of (1) (denoted Regression) 

and those generated by the parametric bootstrap method (denoted Para) are very close (see 

Table 3). The estimated standard errors generated by the CGR bootstrap are also very close to 

those generated by Para and by Regression when the model is fitted on log scale. When the 

model is fitted on the raw scale, these estimated standard errors are larger. However, in all 

cases the estimated standard errors generated by the block bootstrap methods are much larger 

(often more than twice as large) as the estimated standard errors generated by CGR, Para and 

Regression. Since there is considerable doubt about (1) as a model for actual rainfall values, 

plus concern about the validity of the homogeneous random effects assumptions when (1) is 

fitted on the log scale, these results imply that the more conservative estimated standard errors 

generated by the block bootstrap methods may be preferable. This conclusion is reinforced by 

the confidence intervals displayed in Figure 4. These show that the intervals defined by 

Regression, Para and CGR are qualitatively very similar, and typically narrower than those 

generated by SBB.Post and SBB.Prior. They also show that the intervals generated by the 

unmodified block bootstrap SBB tend to biased upwards in the case    and biased 

downwards in the case of   . Of more concern, however, is the extreme narrowness of the 

intervals for    generated by Regression, Para and CGR. This concern is reinforced when we 

examine the bootstrap distributions for these methods shown in Figure 5, which appear to 

show unwarranted precision as far as estimation of the variance components in the model is 

concerned. In contrast, the bootstrap distributions generated by SBB.Post and SBB.Prior 

appear more realistic. These conclusions are consistent with the conclusions drawn from the 

simulations described in Section 3 where we noted that in case of non-normal data, both Para 

and CGR lead to under coverage, while both SBB.Post and SBB.Prior lead to intervals with 

coverage that is much closer to nominal levels. 

σ u
2

σ e
2

σ e
2
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5. CONCLUDING REMARKS 

Our aim in this paper has been to describe and to evaluate an alternative semiparametric block 

bootstrap method for clustered data. The method itself is described in Section 2, and, when 

used with either additional post-bootstrap processing (SBB.Post) or with modified 

nonparametric level 1 and level 2 residuals (SBB.Prior), appears to provide a simple and 

robust alternative to the model dependent bootstrap methods for clustered data that are 

presently available in the literature. Given that the first order structure of the underlying linear 

mixed model is adequately specified, both SBB.Post and SBB.Prior account for within cluster 

heterogeneity as well as between cluster dependence. This good performance is demonstrated 

in the application to an environmental data set in Section 3, where we observe that it was only 

these block bootstrap methods that provided realistic results across all four modelling 

scenarios that we investigated. 

 Extension of SBB.Prior and SBB.Post to versions of (1) that include random slope 

parameters is straightforward. We let  be a zij q ×1 vector of group level covariates for unit j 

in cluster i and replace model (1) by 

 . (2) yij = x ij
Tβ + zij

Tui + eij

The only change to SBB that is required in this case is the definition of the level 2 average 

residual  rh  for cluster h. This can be replaced by the q ×1

h

 vector of level 2 average residuals 

for group h:    ,   , where  is the  matrix of  for group h 

and    is  vector of marginal residuals. Investigation of the empirical performance of 

this extension is currently under way, as is research into extending SBB.Prior and SBB.Post 

to generalised linear mixed models, and to M-quantile-based alternatives (Chambers and 

Tzavidis, 2006) to (2) above. 

rh
(2) = (zh

T zh )−1zh
Trh

×1

h = 1,.., D z nh × q
  
zij

rh   nh
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Table 1. Description of bootstrap methods used in the simulation studies. 
 
Name Description of bootstrap method 

Para Two-level parametric bootstrap 

CGR Carpenter et al. (2003) bootstrap 

SBB Semiparametric block bootstrap 

SBB.Prior Semiparametric block bootstrap with centred and rescaled residuals 

SBB.Post Semiparametric block bootstrap with tilting and tethering adjustments 

 
Table 2. Average coverage rates of nominal 95 per cent bootstrap confidence intervals for 

model parameters, simulation sets A - D. 

   ni = 5  ni = 20  

Method α  β    σ u
2  σ e

2  α  β    σ u
2    σ e

2  
Set A 

Para 0.95 0.94 0.95 0.95 0.96 0.95 0.93 0.95 
CGR 0.91 0.95 0.95 0.94 0.81 0.95 0.94 0.94 
SBB 0.95 0.93 0.23 0.26 0.97 0.95 0.89 0.86 

SBB.Prior 0.95 0.95 0.96 0.98 0.96 0.95 0.94 0.99 
SBB.Post 0.95 0.93 0.86 0.99 0.97 0.95 0.94 0.99 

Set B 
Para 0.95 0.95 0.77 0.59 0.94 0.95 0.61 0.54 
CGR 0.93 0.95 0.84 0.87 0.81 0.95 0.82 0.86 
SBB 0.96 0.93 0.64 0.72 0.95 0.95 0.94 0.96 

SBB.Prior 0.96 0.95 0.94 0.96 0.94 0.95 0.82 0.99 
SBB.Post 0.96 0.93 0.82 0.97 0.95 0.95 0.83 0.99 

Set C 
Para 0.91 0.96 0.95 0.77 0.94 0.93 0.95 0.82 
CGR 0.88 0.94 0.95 0.76 0.77 0.95 0.94 0.83 
SBB 0.93 0.92 0.28 0.08 0.95 0.94 0.90 0.64 

SBB.Prior 0.92 0.94 0.96 0.89 0.93 0.95 0.94 0.95 
SBB.Post 0.93 0.92 0.88 0.93 0.95 0.94 0.93 0.97 

Set D 
Para 0.90 0.96 0.94 0.88 0.94 0.95 0.94 0.88 
CGR 0.87 0.94 0.94 0.86 0.75 0.95 0.95 0.87 
SBB 0.91 0.92 0.24 0.27 0.94 0.93 0.90 0.78 

SBB.Prior 0.91 0.94 0.96 0.96 0.93 0.94 0.94 0.95 
SBB.Post 0.91 0.92 0.85 0.96 0.94 0.93 0.94 0.95 
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Table 3. Bootstrap estimates of standard errors for estimates of variance components for 

environmental data set. Note that Regression is the estimated asymptotic standard error 

produced under REML. 

Estimated Standard Error Cluster Model Parameter Estimate 
Regression Para CGR SBB SBB.Prior SBB.Post

  σ u
2  5.622 0.610 0.625 0.957 1.366 1.176 0.915 

Rain 
  σ e

2  13.207 0.352 0.352 0.701 2.081 2.357 3.172 

  σ u
2  0.306 0.032 0.033 0.035 0.063 0.043 0.033 Sp

at
io

-
te

m
po

ra
l 

Log  
Rain 

  σ e
2  0.654 0.017 0.017 0.018 0.054 0.062 0.078 

  σ u
2  4.246 0.815 0.862 1.104 1.460 1.202 1.064 

Rain 
  σ e

2  15.269 0.388 0.389 0.823 2.800 2.902 3.801 

  σ u
2  0.206 0.040 0.042 0.036 0.166 0.081 0.078 4 

da
y 

do
w

nw
in

d 

Log  
Rain 

  σ e
2  0.775 0.020 0.020 0.021 0.099 0.103 0.099 

 

Figure 1. Distributions of cluster sizes for environmental data set, with spatio-temporal 

clusters on the left and 4 day downwind clusters on the right. 

   

Figure 2. Distribution of daily rainfall for environmental data set - raw scale (left) and log 

scale (right). 
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Figure 3. Plots of actual vs. predicted values for linear mixed model fitted to environmental 

data set using daily rainfall values (left column) and log daily rainfall values (right column). 

Solid line is y = x line and dotted line is average value of y. Top row corresponds to model 

with spatio-temporal clusters, while bottom row corresponds to model with 4 day downwind 

clusters. 
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Figure 4. Nominal 95 per cent confidence intervals for variance components for 

environmental data set. Horizontal line in each plot is estimated value of parameter. 
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Figure 5. Bootstrap distributions of estimates of variance components for environmental data 

set. Dashed line shows the value of the estimate and the dotted line shows the mean of the 

bootstrap distribution. 
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 (b) Spatio-temporal clusters 
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