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Further Simulation Results on Resampling Confidence

Intervals for Empirical Variograms

Robert Graham Clark 1 and Samuel Allingham 2

1. Background

Clark and Allingham (2010) described and evaluated a number of replication-based confi-

dence intervals for the binned empirical variogram. All were based on fitting an exponential

variogram model to two-dimensional spatial data. This article will hereafter be referred to as

CA10. CA10 evaluated the coverage of the various confidence intervals by simulating spatial

data. Datasets were simulated using multivariate normal or lognormal distributions, with

the exponential or Gaussian variogram, with differing effective ranges. The Gaussian vario-

gram was included to assess the robustness of the intervals to the assumption that spatial

correlations followed an exponential variogram model.

This note further explores the robustness of the confidence intervals to mis-specification of

the variogram, by extending the simulations of CA10 to include cubic and spherical variogram

models. Confidence intervals were calculated based on an assumption of an exponential

variogram model, as in CA10.
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2. Design of Simulation Study

Simulations were conducted in the R statistical environment (R Development Core Team,

2007). For each model considered, 500 datasets of 2500 spatially correlated, normally distri-

buted values were generated on a 50 by 50 regular square grid. Distances between distinct

points ranged from 1 to 69.3. Variables on this spatial field were generated as follows:

(i) Normally distributed values were generated using the spherical variogram model and

the cubic variogram model, as defined in formulas (5) and (6) of CA10. In each case,

the nugget parameter, C0, was set to 0.5, and C was set to 2. This implies that the

variables have a marginal variance of 1.25. The range parameter, a, was chosen so

that the effective range was 0 (i.e. independent data), 2, 5, 10 and 15. The data were

generated using the GaussRF function in the RandomFields package (Schlather, 2006),

using the direct matrix decomposition method.

(ii) In addition, lognormally distributed spatially correlated variables were generated by

exponentiating the variables from (i) at each point, after multiplying by
√

0.25/
√

1.25.

This meant that these variables had marginal LN(0, 0.25) distributions. This is a

moderately right-skewed distribution, with median 1, mean 1.13 and skewness 1.75.

The binned empirical variogram (see (2) in CA10) was calculated for each simulation

and variable. The first 3 bins were defined to be of width zero and contained the separating

distances 1,
√

2 and 2. This was done because the data are on a regular grid with unit

spacing, so that there were many pairs of points whose distances are exactly equal to these

values, but no pairs whose distances lie between these values. Subsequent bins were intervals

of width 1 up to a distance of 10, and from then were of width 2 up to a distance of 40.
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Thus the midpoints of the bins were {1,√2, 2, 2.5, 3.5, ..., 9.5, 11, 13, 15, ..., 39}.

Variance estimates for the log of the binned empirical variogram at each midpoint were

calculated using the 5 methods described in CA10: a block jack-knife, a block bootstrap, a

quasi-bootstrap, a quasi-block-jackknife and a quasi-block-bootstrap. The “quasi” methods

involved transforming the spatial dataset based on a Cholesky decomposition of its model-

led variance-covariance matrix (assuming an exponential variogram), then resampling the

transformed data (using the standard bootstrap, block bootstrap or block jack-knife), and

then back-transforming. The bootstrap methods were all calculated using 100 replicates, and

blocks were of size 10 by 10, so that the region consisted of 25 square blocks. 90% confidence

intervals for the log of the variogram were calculated using the normal approximation, and

then exponentiated to give confidence intervals for the variogram.

These methods for confidence interval calculation were used for the normally distributed,

and log-normally distributed variables. For the latter variables, the application of a Box-Cox

transformation was also evaluated. See CA10 for details.

The non-coverage rates of the intervals were estimated for each bin for each simulation,

by taking the proportion of the 500 cases where the confidence interval did not cover the

true value of the variogram. For convenience, in calculating coverage, the true variogram for

each bin was approximated by the mean over the 500 replicates of the empirical variogram

for the bin.
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3. Simulation Results for Normally Distributed Data

Figure 1 shows the non-coverage rates of the various confidence intervals over the 500

simulations, when the data was normally distributed, and followed a spherical variogram

model. Results are shown for effective range 2, 5 and 10. All of the confidence intervals

did reasonably well when the effective range was 2. All methods performed worse as the

range increased except for the quasi-block-jackknife, which had non-coverage rates close to

the nominal 10% in all cases. The block jackknife and block bootstrap clearly performed the

worst of all five methods.

Figure 2 shows the non-coverage rates when the data was normally distributed and fol-

lowed a cubic variogram model. Results were very similar to Figure 1, except that the

quasi-bootstrap performed worse for the cubic model.

4. Simulation Results for Lognormally Distributed Data with No Transformation

Applied

Figure 3 shows the non-coverage rates when the data was lognormally distributed and

followed a spherical variogram model. Figure 4 shows results for lognormal data following

a cubic variogram model. All of the methods performed worse than for normally distribu-

ted data, particularly the quasi-bootstrap which was spectacularly poor when the effective

range was 5 or higher. The quasi-block-jackknife was clearly the best performer, and had

non-coverage rates reasonably close to the nominal 10% when the range was 2 or 5, but

unacceptably high non-coverage (around 20%) when the range was 10.
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5. Simulation Results for Lognormally Distributed Data using a Box-Cox Trans-

formation

Figures 5 and 6 show non-coverage rates for the same lognormal simulated datasets as

Figures 3 and 4, but this time applying a Box-Cox transformation. The power parameter

was estimated from the data in each case. All of the confidence intervals had non-coverage

rates much closer to nominal when the Box-Cox transformation was used.

The quasi-block-jackknife was still clearly the best performer in all cases. This method

gave non-coverage rates reasonably close to 10% for range 2 and 5. For range equal to 10,

its non-coverage rates were higher at around 15% for short lags, but close to 10% for longer

lags.

6. Conclusions

The findings of CA10 also apply when the true variogram model is spherical or cubic.

In particular, the quasi-block-jackknife clearly gives the best confidence interval coverage of

the five methods considered, for normal and lognormal data, spherical and cubic variograms,

and several values of the effective range.
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Figure 1: Noncoverage Rates of Confidence Intervals for VGs, for Normal Data Simulated

from Spherical Variogram Models (90% Nominal Coverage)
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Figure 2: Noncoverage Rates of Confidence Intervals for VGs, for Normal Data Simulated

from Cubic Variogram Models (90% Nominal Coverage)
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Figure 3: Noncoverage Rates of Confidence Intervals for VGs, for Lognormal Data Simulated

from Spherical Variogram Models (90% Nominal Coverage)
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Figure 4: Noncoverage Rates of Confidence Intervals for VGs, for Lognormal Data Simulated

from Cubic Variogram Models (90% Nominal Coverage)
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Figure 5: Noncoverage Rates of Confidence Intervals for VGs of Box-Cox-Tranformed Data,

for Lognormal Data Simulated from Spherical Variogram Models (90% Nominal Coverage)
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Figure 6: Noncoverage Rates of Confidence Intervals for VGs of Box-Cox-Tranformed Data,

for Lognormal Data Simulated from Cubic Variogram Models (90% Nominal Coverage)
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