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Abstract
Time series resulting from aggregation of several sub-series can be seasonally

adjusted directly or indirectly. With model-based seasonal adjustment, the sub-
series may also be considered as a multivariate system of series and the analysis
may be done jointly. This approach has considerable advantage over the indirect
method, as it utilises the covariance structure between the sub-series.

This paper compares a model-based univariate and multivariate approach
to seasonal adjustment. Firstly, the univariate basic structural model (BSM)
is applied directly to the aggregate series. Secondly, the multivariate BSM is
applied to a transformed system of sub-series. The prediction mean squared
errors of the seasonally adjusted aggregate series resulting from each method
are compared by calculating their relative efficiency. Results indicate that gains
are achievable using the multivariate approach according to the relative values
of the parameters of the sub-series.

AMS Subject Classification: 62M10, 91B84

Keywords: Seasonal adjustment, Basic structural model, Kalman filter, mul-
tivariate time series, state space model.

1 Introduction

Seasonally adjusted time series of economic and social data are important prod-
ucts of many official statistical agencies. Data for a number of series is often
collected, sometimes geographically or by industry, and then aggregated to ob-
tain a total series. Seasonal adjustment of this aggregated series, as well as the
sub-series (or cross-sectional series), is usually required for publication. Given
that seasonal adjustment involves estimating and removing the seasonal effects
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of the series, it is important that the method employed produces accurate esti-
mates of the seasonal components.

When the seasonal component of a series is estimated from the aggregated
series and then removed, the process is called direct seasonal adjustment. Al-
ternatively, if each of the sub-series is seasonally adjusted separately, and then
summed to obtain the aggregated seasonally adjusted series, the process is called
indirect seasonal adjustment. Both direct and indirect seasonal adjustment em-
ploy univariate analyses. Although the indirect method utilises all the sub-
series, it does not do so jointly and ignores the relationships between the sub-
series.

The focus of this paper is to determine whether the use of the sub-series
improves the estimates of the unobserved components of the aggregate series
and hence the seasonally adjusted aggregate series. By using a structural time
series model, seasonal adjustment may be performed for the aggregate series
using all the information in the sub-series by borrowing strength from the con-
nections between the sub-series. The variance of the seasonally adjusted series
given by the univariate and multivariate models will be compared using their
relative efficiency. The aim is to examine if gains are achievable for the variance
of the seasonally adjusted aggregate series by jointly modelling the sub-series.
An empirical study will thoroughly investigate the conditions which affect rel-
ative efficiency. This will be carried out by fixing the known parameters of an
aggregated series and varying the parameters of the sub-series.

Section 2 gives a brief background of the seasonal adjustment approaches
and also reviews some applications of the multivariate basic structural model
(BSM). The BSM for the univariate and multivariate approaches are detailed
in Section 3 and a measure to compare them is given in Section 4. The design
of the empirical study and parameter settings are outlined in Section 5. Results
are presented in Sections 6 and 7 with conclusions in Section 8.

2 Background

In general, there are two main approaches to seasonal adjustment, namely a
filter-based approach and a model-based approach. Filter-based methods esti-
mate time series components, such as the trend and seasonal factors, by appli-
cation of a set of filters to the original series. This iterative technique is applied
by the widely used X-11 package (Shiskin et al., 1967). X-11 evolved to include
the use of ARIMA (Autoregressive Integrated Moving Average) models to fore-
cast the series in order to improve the estimation of components at the end of
the series, thereby reducing revisions. Developments include X-11-ARIMA and
X-11-ARIMA-88 developed by Dagum (1988) and X-12-ARIMA (U.S. Bureau
of Census).

Model-based seasonal adjustment requires modelling the observed time se-
ries and the unobserved components such as the trend, seasonal and irregular
components. There are two main approaches to modelling time series: the
ARIMA model-based (AMB) approach (see Burman, 1980; Hillmer and Tiao,
1982) and the structural time series (STS) approach (see Engle, 1978; Harvey
and Todd, 1983; Harvey, 1989). The ARIMA model-based approach to seasonal
adjustment involves fitting a seasonal ARIMA model to the overall series and
then decomposing it into appropriate models for each of the components (Mar-
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avall, 1995). This approach is often called ‘signal extraction’ (Whittle, 1963
and Burman, 1980). It is implemented with the TRAMO-SEATS (Time series
Regression with ARIMA noise, Missing values, and Outliers - Signal Extraction
in ARIMA Time Series) software (Gomez and Maravall, 1996).

Structural time series models are models where the components of the series
are modelled separately. They are appropriate for modelling time series from
many disciplines such as economics, sociology, engineering and geography (Har-
vey, 1989, p xi). The Kalman filter (Kalman, 1960), first developed in the field
of engineering, is the algorithm used to estimate the structural components of
the model. Programs such as STAMP (Structural Time series Analyser, Mod-
eller and Predictor) and others such as the set of functions collectively called
the SsfPack (Koopman et al., 1999) in the module S+FinMetrics may be used
for the analysis. The AMB approach is generally not suitable for multivariate
analysis, whereas in the structural time series model known as the basic struc-
tural model (BSM) (Harvey, 1989), multivariate analysis is a natural extension
to the univariate model.

A comparison of three seasonal adjustment methods with respect to both
temporal and sectoral aggregation is discussed in Geweke (1978). Using spectral
densities, Geweke calculated the mean squared error (MSE) using the multivari-
ate, indirect and direct methods of seasonal adjustment for stationary series. For
model-based seasonal adjustment, Geweke (1978) concluded that the covariance
structure between the series is crucial. He found that the joint ARIMA model
was advantageous, as summarised by Taylor, when the sub-series are “very het-
erogeneous, or where the stochastic structure of the non-seasonal and seasonal
components are dissimilar” (Taylor, 1978, p432)

Planas and Campolongo (2001) used ARIMA models to confirm and extend
the results in Geweke (1978). They studied the seasonal adjustment of contem-
poraneously aggregated series and compared the relative accuracy of the direct
method with the indirect and multivariate methods. They confirmed Geweke’s
result that when the stochastic properties of the two series are even slightly
dissimilar, the indirect adjustment is more precise than the direct adjustment
(see also Ghysels, 1997). The multivariate adjustment was found to be the most
accurate estimation in terms of the final estimation error. However, multivariate
estimation was difficult to implement due to its complexity.

Due to the flexibility of the basic structural model and its state space form,
multiple time series can be modelled jointly with little difficulty. Extending this
idea, a target series can be modelled jointly with one or more related series in
order to obtain better estimates of the time series components of the target
series. Harvey and Chung (2000) calculated the filtered estimates in a bivariate
BSM model and discussed the improvement in the root mean squared error
(RMSE) of the slope component of the trend over that obtained from just using
the univariate model. They found that the gains achieved in the estimation of
the slope component using the bivariate model came primarily from the high
correlation between the slopes of the two series.

The main advantage of applying a BSM is that multivariate series may be
modelled as an extension to the univariate model. Other advantages are that
the structural components are a direct result of the estimation using the Kalman
filter and the estimate of the variance of the seasonally adjusted series is a by-
product of estimating the components (Jain, 2001). This paper parallels the
work by Geweke (1978) and Planas and Campolongo (2001) but within the
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basic structural model framework.

3 Basic structural model

A structural time series model allows time series characteristics such as trend,
seasonal and error components to be modelled explicitly. The series of ob-
servations of the aggregated series, Y1, . . . , YT , can be directly modelled by a
univariate additive BSM. If the aggregated series, denoted by Ytot,t, is a sum of
K sub-series, for t = 1 . . . T ,

Ytot,t =
K∑

k=1

Ykt (3.1)

then Y1t, . . . , YKt, may be modelled jointly with a multivariate BSM. The fol-
lowing sub-sections describe the univariate and multivariate BSM models to be
used in this study.

For the experimental study in this paper, the local level seasonal (LLS)
model is chosen. The local level seasonal model has the restriction that the
trend does not include a slope component (for more details see Harvey, 1989,
Section 2.3).

3.1 Univariate BSM

For a single additive time series, the observations at time t denoted by Yt, may
be written as the sum of a local linear trend, Lt, a dummy seasonal component,
St, and an irregular or disturbance term, εU, t. It may be written, in the notation
adopted by Feder (2001), for t = 1, . . . , T as

Yt = Lt + St + εU, t, εU, t ∼ N(0, σ2
U, ε) (3.2)

Lt+1 = Lt + ηU, t, ηU, t ∼ N(0, σ2
U, η) (3.3)

St+1 = −
s−1∑

j=1

St+1−j + ωU, t ωU, t ∼ N(0, σ2
U, ω). (3.4)

The local level seasonal model is given by (3.2), (3.3) with (3.4) and will
be the univariate model adopted for the aggregate series. The disturbance
terms ηU, t, ωU, t and εU, t, are assumed to be serially and mutually independent,
and their respective variances, {σ2

U, η, σ2
U, ω, σ2

U, ε} are the parameters of the
univariate model.

3.2 Multivariate BSM

If a univariate time series is disaggregated such that the sum of the K sub-series
is the aggregated (or total) series (3.1), then a multivariate BSM can be used for
the sub-series, Y1t, . . . , YKt. The series may be linked by the correlations of the
disturbances driving each component. By modelling the sub-series jointly, these
correlations are included as part of the structure of the covariance matrix for
each component. Harvey (1989, Section 8.2) refers to this as ‘contemporaneous
correlation’ and the model becomes a ‘seemingly unrelated time series equations’
(SUTSE) model.



Seasonal Adjustment of an Aggregate Series 5

For a multivariate BSM, Marshall (1992) decomposes the disturbance terms
into common effects, which are time specific, and time-unit specific effects, and
relates these to the random error terms in a dynamic error components model.
The local level seasonal model for the observation for series k at time t, denoted
by Ykt, is given below with k = 1, 2, · · · ,K representing the K sub-series with
dummy seasonal components.

Ykt = Lkt + Skt + εt + ε∗kt (3.5)
Lk,t+1 = Lkt + ηt + η∗kt (3.6)

Sk,t+1 = −
s−1∑

j=1

Sk,t+1−j + ωt + ω∗kt (3.7)

The disturbance terms, εt, ε∗kt, ηt, η∗kt, ωt, ω∗kt are assumed to be mutually
independent Normal random variables. The common effects are ηt, ωt, εt and
the time-unit specific effects are ε∗kt, η∗kt, ω∗kt.

The resulting three covariance matrices may have the following structure
(Marshall, 1990):

Var(xt1K + x∗t ) = Σx = σ2
xJK + Dx∗

where x stands for η, ω, or ε and x∗t stands for (η∗1t, . . . , η
∗
Kt)

′, (ω∗1t, . . . , ω
∗
Kt)

′,
or (ε∗1t, . . . , ε

∗
Kt)

′. 1K is a K dimensional vector of one’s, and JK = 1K1
′
K .

The matrix Dx∗ can be defined as Dx∗ = diag
[
σ2

1x∗ , . . . , σ
2
Kx∗

]
. Note that if

the diagonal elements of Dx∗ are equal, the resulting covariance matrix has a
compound symmetry structure.

The K unit-specific variances are the variances that are specific to the K
sub-series. The matrix D∗

x, has K different values on the diagonal, and hence
each of the three component covariance matrices (namely Ση, Σω, and Σε)
would have (K + 1) unknown parameters, giving a total of 3(K + 1) unknown
parameters. For example, if K = 2, then the covariance matrix for the level
component is

Ση =
(

σ2
η + σ2

1η∗ σ2
η

σ2
η σ2

η + σ2
2η∗

)
(3.8)

and similarly for Σω, and Σε.
Since the aggregate series given by (3.1) is the sum of the K sub-series, the

parameters of the aggregate series can be defined in terms of the parameters of
the sub-series:

σ2
tot,η = K2σ2

η +
K∑

k=1

σ2
kη∗ , σ2

tot,ω = K2σ2
ω +

K∑

k=1

σ2
kω∗ ,

σ2
tot,ε = K2σ2

ε +
K∑

k=1

σ2
kε∗ . (3.9)

The univariate and multivariate BSMs may be written more concisely in
state space form (SSF) and then analysis is carried out with the Kalman filter.
The Kalman filter provides the optimal estimator of the state vector, αt+1,
taking into account the observations up to time t using a forward recursion. The
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elements of the state vector are the unobserved components such as the level
and seasonal components. The mean squared errors (MSEs) of the estimates
of the unobserved components are also provided by the Kalman filter. Details
of state space form for the univariate and multivariate models are given in the
Appendix. For more general information on state space models and the Kalman
filter refer to Kalman (1960), Harvey (1989), and Durbin and Koopman (2001).

3.3 Application of the Kalman filter

A BSM can be written as a linear Gaussian state space model and analysed by
applying the Kalman filter and Kalman smoother to the observations. In a state
space model, the state vector, denoted by αt (see Appendix for details) contains
all the series components. The Kalman filter provides the optimal estimator of
the state vector, at time t, taking into account observations up to time t, via
a forward recursion. Denote the information provided by Y1, Y2, . . . , Yt, as Yt

when t < T . The Kalman smoother further improves the component estimates
and provides the optimal estimator of the state vector at time t < T , taking
into account all the observations, Y1, Y2, . . . , YT .

In state space form, the state vector estimator which includes the estimates
for all the series components may be written as at|t. Its corresponding error
variance matrix is Pt|t. They are defined as (Durbin and Koopman, 2001):

at|t = E(αt|Yt)
Pt|t = Var(αt|Yt) (3.10)

The Kalman filter can be applied using the S+FinMetrics software, in partic-
ular the set of functions collectively called the SsfPack (Koopman et al., 1999).
Further details of αt are given in the appendix.

4 Comparison of univariate and multivariate methods

A direct approach to seasonal adjustment is based on Yt using the univariate
model (3.2) to (3.4), an indirect approach would be (but not carried out in
this paper) based on each individual sub-series Ykt, k = 1, 2, · · · , K, and a
multivariate approach is based on Ykt using the multivariate model (3.5) to
(3.7). The main focus of this paper is to compare the accuracy of the seasonally
adjusted aggregate series of the direct approach with that of the multivariate
approach. This section explains how a simple transformation of the multivariate
model allows explicit analysis of Ytot,t and hence a method of comparison of the
accuracy of the seasonally adjusted aggregate series.

Let A be a K×K matrix:

A =




1 1 1 . . . 1 1
1 0 0 . . . 0 0
0 1 0 . . . 0
...

. . .
...

0 0 0 . . . 1 0




=




1 1 . . . 1
0

I(K−1)

...
0


 .

Applying A to obtain the transformed data, the aggregate series becomes aug-
mented to the set comprising of series 1 to series (K − 1). Define Y(M), t such
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that

Y(M), t = A (Y1t, Y2t, . . . , YKt)
′
= (Ytot,t, Y1t, . . . , YK−1,t)

′
. (4.1)

In general, if the current-adjusted series is given by Y a
t|t = Yt − Ŝt|t, where

Ŝt|t is the estimate of the seasonal component, an element of at|t (3.10), then the
appropriate measure of the accuracy of the adjusted data is the error variance
of the seasonal component estimate, conditional on the data (see Harvey, 1989;
Burridge and Wallis, 1985). This is the error variance given by the Kalman
filter as calculated in the matrix Pt|t (3.10), for the element pertaining to the
seasonal component. The current-adjusted series can be viewed as the prelimi-
nary seasonally adjusted series as it is conditional on observations up to time t
(Yt).

To compare the accuracy of the two approaches, their relative efficiency is
calculated by:

REt(M) =
MSE(ŜU

t|t)

MSE(ŜM
t|t)

, t = 1 . . . T (4.2)

where MSE(ŜU
t|t) and MSE(ŜM

t|t) denote the value of MSE(Ŝt|t) using the uni-
variate model and transformed multivariate model respectively.

5 Design of the study

To examine the question of whether, and under what conditions, the multivari-
ate method is beneficial compared with the univariate method in determining a
seasonally adjusted aggregate series, an empirical study using a range of param-
eter values is employed. A particular aggregate series with known parameters
is taken and then disaggregated into two sub-series. The two sub-series are
determined by setting the parameters for each component and for each series.
These parameters are used in determining the elements of the covariance ma-
trices Ση, Σω and Σε. The specification of their structure is referred to as
the design of the sub-series. By fixing the parameters for the total series, the
parameters of the sub-series may be varied. This top-down approach allows a
controlled way of measuring the effect of the parameters of the sub-series on the
accuracy of the seasonally adjusted total series.

In the literature there is extensive discussion on direct versus indirect ad-
justment (see Ghysels, 1997; Hood and Findley, 2003; Ladiray and Mazzi, 2003;
Otranto and Triacca, 2002). In general, it is agreed that when the series have
similar patterns, direct adjustment is favoured and when the series have dissim-
ilar patterns, indirect adjustment is favoured. In model-based seasonal adjust-
ment, particular attention needs to be given to the relationship of parameters
between the sub-series and between components, as shown in Geweke (1978)
and Planas and Campolongo (2001). Their conclusions have been used to guide
the setting of the sub-series parameters.

5.1 Setting the parameters

In this case study, a range of parameter values is set with reference to two con-
cepts. Firstly, the relationship of the parameters between-series (i.e. within
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components) is studied. For example, the parameter values for the level compo-
nent for series 1 as compared to the parameter values for the level component for
series 2. Secondly, the relationship of the parameters within-series (i.e. between
components) is also studied. Thus, the structure of the covariance matrix for
the level component and that for the seasonal component are considered relative
to one another.

A measure of between-series similarity, c, of the stochastic properties of the
series is defined here to help quantify the comments above. Let cη, cω and cε be
the ratios of the variances of sub-series 1 and 2 for the level, seasonal and error
components respectively. For example, the variance of the level component for
sub-series k is given by:

Var(Lk,t+1 − Lkt) = Var(ηt + η∗kt)
= σ2

η + σ2
kη∗ .

Then the c-ratio for the level component is defined to be:

cη =
Var(L1,t+1 − L1t)
Var(L2,t+1 − L2t)

=
σ2

η + σ2
1η∗

σ2
η + σ2

2η∗
(5.1)

Similarly for the the seasonal and error components, the c-ratios are given re-
spectively by:

cω =
σ2

ω + σ2
1ω∗

σ2
ω + σ2

2ω∗
, cε =

σ2
ε + σ2

1ε∗

σ2
ε + σ2

2ε∗
. (5.2)

If cη = cω = cε = 1 then for each covariance matrix (namely Ση, Σω, and
Σε), the diagonal elements have the same value. This means that the same
properties between series apply for each component, which corresponds to a
compound symmetry structure for each matrix. For the seasonal component, it
does not mean that the set of seasonal factors is the same for sub-series 1 and
sub-series 2, but the degree of stability of the seasonal component is the same.

In this study, the c-ratios vary in the set {1, 5, 10, 20} and their reciprocals
{1, 0.2, 0.1, 0.05}. Furthermore, to set a design where the stochastic structures
of the non-seasonal and seasonal components are different, the c-ratios need to
differ between components, and so for one component, it could be greater than
one, and for another component it could be less than one.

With this in mind, combinations of the c-ratios for the components are
formulated and are labelled in Table 1. Table 1 shows design ‘a’ where all
c-ratios are greater than or equal to one. Note that cη and cε have been set
to the same value in each design thereby reducing the number of combinations
considered and setting the focus on the seasonal c-ratio, cω. Design ‘b’, also
shown in Table 1, has cω > 1 but has the reciprocal of these values for cη and
cε.

In addition to the c-ratios, the correlation between the series due to the
common disturbance term, needs to be considered for each component. For this
study, the correlation values for the seasonal component, ρω, is set to one of the
following values {0.1, 0.3, 0.5, 0.7, 0.9}. For the level and error components,
the correlation values (ρη and ρε) considered are {0.2, 0.4, 0.6, 0.8}. These
values have been chosen to avoid certain combinations of the c-ratios which
would result in the homogeneous case. That is, where the covariance matrices
are proportional to one another, (Harvey, 1989, Section 8.3). The design table,
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Table 1: Labels for sub-series design ‘a’ : cω ≥ 1, and cη, cε ≥ 1, and design ‘b’ :
cω ≥ 1, and cη, cε < 1

cη and cε

Design ‘a’ Design ‘b’
1 5 10 20 0.2 0.1 0.05

cω 1 a11 a12 a13 a14 - - -
5 a21 a22 a23 a24 b22 b23 b24

10 a31 a32 a33 a34 b32 b33 b34
20 a41 a42 a43 a44 b42 b43 b44

Table 2: Correlation design combinations for ρω, ρη, and ρε

ρη and ρε

0.2 0.4 0.6 0.8 1.0
ρω 0.1 A1 B1 C1 D1 E1

0.3 A2 B2 C2 D2 E2
0.5 A3 B3 C3 D3 E3
0.7 A4 B4 C4 D4 E4
0.9 A5 B5 C5 D5 E5

labelling the correlation combinations is given in Table 2. For example, the
design ‘A1a23 ’ refers to the case cω = 5, cη, cε = 10, ρω = 0.1, and ρη, ρε = 0.2.
Not all of the correlation designs will be possible for each of the c-ratio design
combinations due to the constraints on the multivariate variance parameters
which are explained in the next section.

The multivariate model may be expressed in terms of the nine parameters:
{cη, cω, cε, ρη, ρω, ρε, σ2

tot,η, σ2
tot,ω, σ2

tot,ε}.

5.2 Application of constraints

In this study, the total series remains fixed but the properties of the underlying
sub-series vary. The variance parameters for the total series are set with

σ2
tot,η = 0.01, σ2

tot,ω = 1, σ2
tot,ε = 1. (5.3)

With these given univariate parameters, as well as the constraints given in
(3.9), the c-ratios and the correlation for the required design, the multivariate
parameters for each component are determined by solving a set of simultaneous
equations. For example, the seasonal component equations are:

σ2
tot,ω = 4σ2

ω + σ2
1ω∗ + σ2

2ω∗ , cω =
σ2

ω + σ2
1ω∗

σ2
ω + σ2

2ω∗
,

ρω =
σ2

ω√
(σ2

ω + σ2
1ω∗)(σ2

ω + σ2
2ω∗)

. (5.4)
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Solved in terms of σ2
tot,ω, cω and ρω, the seasonal parameters are

σ2
ω =

ρω
√

cωσ2
tot,ω

1 + cω + 2ρω
√

cω
, σ2

1ω∗ =
σ2

tot,ω(cω − ρω
√

cω)
1 + cω + 2ρω

√
cω

,

σ2
2ω∗ =

σ2
tot,ω(1− ρω

√
cω)

1 + cω + 2ρω
√

cω
. (5.5)

Since σ2
1ω∗ ≥ 0, σ2

2ω∗ ≥ 0 and σ2
ω > 0, the restrictions on the correlations are

such that if cω ≥ 1, then 0 < ρω ≤ 1√
cω

, and if cω < 1, then 0 < ρω ≤ √
cω.

Similar constraints apply to the level and error components.
Given the nine multivariate parameters, the data for Y1t and Y2t are gener-

ated from the multivariate model equations for t = 40+T as described in (3.5),
(3.6) and (3.7), with starting values L1 = 5, S1 = −1.5, S0 = −1, S−1 = 0.5
for both series. The first 40 data points of each series are discarded, leaving the
t = 1 . . . T simulated quarterly observations required. For this study, T is set
to 40, giving 10 years of quarterly data. The length of the series is therefore
adequate to examine the behaviour of the relative efficiency over time. The
transformation described in Section 4 is applied to obtain the required series:
Ytot,t and Y1t.

Using the SsfPack functions (Koopman et al., 1999) in S+FinMetrics, the
univariate state space model (Section A.1) is applied to the aggregate series
Ytot,t, and the multivariate state space model (Section A.2) is applied to the
two series Ytot,t and Y1t. This yields MSE(ŜU

t|t) and MSE(ŜM
t|t) respectively for

t = 1 . . . 40. The relative efficiency, REt(M), can then be calculated for each
time point.

Known parameters are applied here so that the effect of the design on the
relative efficiency ratio is not obscured by the values of any estimated parame-
ters. The effect of estimation of the parameters is considered in a forthcoming
study.

6 Results: effect of the parameters of the sub-series

The relative efficiency, REt(M), is determined for each c-ratio combination
specified in Table 1 using the known parameters. To obtain an overview of
these results, the same correlation combination (A1 )is chosen for each design,
with ρω = 0.1 and ρη = ρε = 0.2.

Figure 1 shows the results over t = 1 . . . 40 for the 16 different ‘a’ designs
given in Table 1. For t = 1 . . . 4, the relative efficiency is exactly one. This
result is due to the exact initial Kalman filter, as described in detail in Koop-
man (1997). However, from t = 5, gains using the multivariate method are
achievable for some, but not all, of the ‘a’ designs. These gains vary in magni-
tude and over time. For those designs which achieve gains, the gains climb in
the next few time points to reach a steady value. The time until approximate
convergence depends on the design. For example, design a41 has the largest
relative efficiency, RE40(M) = 1.29, but has the slowest rate of convergence.

The next few highest gains are for designs a31, a14 and a13 respectively.
Note that a41 has cω = 20 and cη, cε = 1, and a31 has cω = 10 and cη, cε = 1,
both with a high c-ratio for the seasonal component. For the design a14, cω =
1, cη, cε = 20 and for design a13, cω = 1, cη, cε = 10. Thus, the four ‘a’ designs
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which give the highest REt(M) result, have either a high between-series c-ratio
for the seasonal component or a high between-series c-ratio for the non-seasonal
components, but not both. The result is higher if the two c-ratios defining the
design are at opposite ends of the scale. So, even when the variances for the
two series are the same for the seasonal component (cω = 1), if the variances
of the non-seasonal components are very different (cη ≥ 10, cε ≥ 10), a gain is
still achievable (although not as large as when the variances differ) for the total
seasonal component.

To explore the differences among the ‘a’ designs in more detail, the numerical
results for T = 40 for each design are extracted. These results, which are
equivalent to RE40(M), are found in Table 3. The lowest results for the relative
efficiency belong to the designs which have cω = cη = cε, namely, a11, a22,
a33, and a44. Note that for a11, where cω = cη = cε = 1, represents the
compound symmetry case. Even when all the c-ratios are high, as in a33 and
a44, where the series are largely dissimilar for all components, the fact that
they are equal, overrides the between-series effect. Thus, when the c-ratios are
equal, the structure of the covariance matrices become closer to a homogeneous
state. As there is little or no gain in using the multivariate approach for these
four designs, it is recommended to use the univariate approach.

The ‘b’ designs use the reciprocal of the values of cη, cε given in the ‘a’
designs and the results over time are shown in Figure 2. The results show a
similar pattern for REt(M). However, the magnitude is much greater than for
the ‘a’ designs, with nine designs giving an RE40(M) of over 1.25. The largest
gain is achieved by design b44 (cω = 20, cη, cε = 0.05), with RE40(M) = 2.48.
Again, it can be seen that the designs where cω is very different from cη and
cε, for example b44, b43, b34, give the highest gains. The numerical results for
T = 40 for each ‘b’ design are given in Table 3.

The correlation combination in all ‘a’ and ‘b’ designs discussed so far, is
identical, with ρω = 0.1 and ρη = ρε = 0.2 (labelled A1 ). The results show
that, even when the correlations between sub-series are small, large gains are
attainable, with the size of the gain depending on the design structure.

Three designs have been chosen to determine the effect of increasing the
seasonal correlation for the ‘a’ design. Firstly, designs a12, a13 and a14 have
been analysed with correlation combinations A1 to A5, which keep the non-
seasonal correlation coefficient low at 0.2, while allowing the seasonal correlation
to be one of {0.1, 0.3, 0.5, 0.7, 0.9} as defined in Table 2.

By taking the results for the last time point (T = 40) from each REt(M)
time series, the positive relationship between the seasonal correlation and the
REt(M) value is shown. Plot(a) in Figure 3 shows these results as well as
those for design a11. Firstly, for the compound symmetry design a11, the result
for the relative efficiency remains constant at one as the seasonal correlation
increases. The gradient of the curve increases from design a12 to design a13
to the steepest curve for design a14, thus as the non-seasonal c-ratios (cη, cε)
increase from 5 to 10 to 20.

The effect of increasing the non-seasonal correlation whilst keeping the sea-
sonal correlation constant is analysed for designs a21, a31, a41 with correlation
combinations A1 to E1. From Table 2, this means that the seasonal correlation
is kept at ρω = 0.1, and the non-seasonal correlations ρη, ρε are one of {0.2,
0.4, 0.6, 0.8, 1.0}. The results for T = 40 from each of the REt(M) time series
have been plotted against the non-seasonal correlation and given in Plot (b) in
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Figure 1: Results of REt(M) for sub-series design ‘a’ with correlation settings
A1 (ρω = 0.1, and ρη = ρε = 0.2).
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Figure 2: Results of REt(M) for sub-series design ‘b’ with correlation settings
A1 (ρω = 0.1, and ρη = ρε = 0.2).
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Table 3: Results of RE40(M) for sub-series design ‘a’ and ‘b’ with correlation
settings A1 (ρω = 0.1, and ρη = ρε = 0.2).

cη and cε

1 5 10 20 0.2 0.1 0.05
cω 1 a11 1.000 a12 1.067 a13 1.116 a14 1.159 - - -

5 a21 1.093 a22 1.001 a23 1.005 a24 1.018 b22 1.373 b23 1.506 b24 1.616

10 a31 1.184 a32 1.015 a33 1.001 a34 1.002 b32 1.606 b33 1.811 b34 1.982

20 a41 1.295 a42 1.045 a43 1.012 a44 1.001 b42 1.901 b43 2.213 b44 2.482
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Figure 3: (a) RE40(M) versus seasonal correlation for designs a11, a12, a13, a14 with
A1-A5. (b) RE40(M) versus non-seasonal correlation for designs a11, a21, a31, a41
for A1-E1.
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Figure 3. The plot also shows the results for design a11. It can be seen that the
impact of the increasing non-seasonal correlation is dependent upon the relative
values of the variance parameters. There seems to be an interaction between
the magnitude of cω and the non-seasonal correlation, since the gradient of the
curve increases as both cω and ρη, ρε increase.

7 Other aggregate series

The empirical results presented so far in this paper are for a particular aggregate
series with known parameters (5.3). The total series parameters have remained
constant, whilst the sub-series parameters were varied. There is an infinite set
of total series for which this study could be repeated. In this section, it is shown
that similar results are obtained when other aggregate series are used.

To obtain an idea of what might occur if the total series had different pa-
rameters to those already chosen, some results are produced for two other series.
For ease of reference, the total series previously considered is now referred to as
Series 1, and consequently, the others are referred to as Series 2, and Series 3.
The model and associated parameters for each will be described in the following
subsections.

Series 1: As a reminder, Series 1 is modelled by a local level seasonal BSM
(given by (3.2), (3.3) with (3.4)), which has a level component without a slope,
and a dummy seasonal component for quarterly data. The parameters are the
variances of the disturbance terms, specified as:

Series 1 : σ2
tot,η = 0.01, σ2

tot,ω = 1, σ2
tot,ε = 1.

The relationship between these univariate parameters may be described by the
seasonal to non-seasonal ratio for the series:

σ2
tot,ω

σ2
tot,η + σ2

tot,ε

=
1.0

0.01 + 1.0
= 0.99.

Series 2: For Series 2, the local level seasonal BSM model is retained but
the level parameter is increased to 0.5 (as compared to 0.01 for Series 1 ). The
resulting univariate parameters are:

Series 2 : σ2
tot,η = 0.5, σ2

tot,ω = 1, σ2
tot,ε = 1.

The seasonal to non-seasonal ratio for Series 2 is given by:

σ2
tot,ω

σ2
tot,η + σ2

tot,ε

=
1.0

0.5 + 1.0
= 0.67.

Series 3: The BSM model including a slope term was fitted to the well
known data set, ‘airline passengers’ described in Harvey (1989, page 93). The
monthly airline passengers data was aggregated to produce a quarterly time
series and logarithms were taken. Harvey (1989, page 94) specifies the BSM
parameters to be

Series 3 : σ2
tot,η = 5.32× 10−4, σ2

tot,ω = 1.32× 10−4,

and σ2
tot,ζ = 1.08× 10−6, σ2

tot,ε = 0. (7.1)
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Since the measurement error variance is zero, εU, t is excluded from the model
equations. In the model for Series 1 and Series 2, the correlated measurement
error terms for the sub-series are put into the state vector due to the restriction
in the software package. This is not necessary here. Thus, rather than the
local level seasonal model, Series 3 is generated from a BSM with level, slope
and dummy seasonal components, and has no measurement error term. The
parameters in (7.1), as well as some initial values, are used to generate data for
Series 3 from the model equations.

The seasonal to non-seasonal ratio for Series 3 is given by:

σ2
tot,ω

σ2
tot,η + σ2

tot,ζ

=
1.32× 10−4

(5.32× 10−4) + (1.08× 10−6)
= 0.25.

Series 1, 2 and 3 have different parameters and as a result have different
seasonal to non-seasonal ratios. Series 2 and Series 3 are both disaggregated
into two sub-series, as carried out for Series 1, described in Section 5.

7.1 Results for other aggregate series

Results for Series 2 and Series 3 are presented here, and correspond to those
for Series 1 given in Section 6. The relative efficiency, REt(M), has been
calculated for each combination of the c-ratios given in Table 1 for Series 2.
Only one correlation design has been considered here, namely A1, for which
ρω = 0.1 and ρη, ρε = 0.2. For Series 3, the c-ratio for the measurement error,
cε, does not exist. It is replaced by cζ which is the analogous ratio of variances
for the slope component between the series, thus

cζ =
Var(R1t)
Var(R2t)

=
σ2

ζ + σ2
1ζ∗

σ2
ζ + σ2

2ζ∗
. (7.2)

The results for RE40(M) for design ‘a’ are found in Table 4. For comparison
purposes, the results for Series 2 and Series 3 are shown together with the
previous results for Series 1. Looking at the results for the three series, it is
clear that the parameters of the total series do not greatly affect the relative
efficiency. There are some small differences, notably for designs a13, a14, and
a41. For designs a13 and a14, the relative efficiency increases from Series 1 to
Series 3. However, for some designs which have a high cω and low non-seasonal
c-ratios, such as design a41, the relative efficiency decreases; in this case it
decreases from 1.29 to 1.26. Note that design a41 has the highest relative
efficiency for each of the total series.

Table 5 shows the results of RE40(M) for design ‘b’. The results of rela-
tive efficiency for Series 2 and 3 show similar patterns as those for Series 1.
Design b44 has the highest relative efficiency for each series, with the largest
(RE40(M) = 2.6) being for Series 3, the airline series. For design b24, the
relative efficiency increases from 1.62 to 1.77 from Series 1 to Series 3.

The relative efficiency has also been plotted over time for Series 2 and Series
3, as done previously for Series 1. Figure 4 plots (a) and (b) show the results
of REt(M) for design ‘a’ for Series 2 and Series 3 respectively. Each plot
has the same vertical scale and the same legend for comparison with Figure
1. Comparing the three plots, it is noted that the rankings of the designs are
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Table 4: Series 1, 2, and 3 : results of RE40(M) for design A1a.
Design ‘a’ cη and cε (or cζ)

1 5 10 20
cω 1 Series 1 a11 1.0000 a12 1.0674 a13 1.1158 a14 1.1588

Series 2 1.0000 1.0732 1.1299 1.1840
Series 3 1.0000 1.0769 1.1416 1.2092

5 Series 1 a21 1.0929 a22 1.0005 a23 1.0045 a24 1.0178
Series 2 1.0949 1.0005 1.0048 1.0199
Series 3 1.0923 1.0005 1.0050 1.0216

10 Series 1 a31 1.1837 a32 1.0152 a33 1.0008 a34 1.0021
Series 2 1.1827 1.0156 1.0008 1.0022
Series 3 1.1719 1.0151 1.0008 1.0023

20 Series 1 a41 1.2945 a42 1.0454 a43 1.0124 a44 1.0010
Series 2 1.2849 1.0450 1.0125 1.0010
Series 3 1.2581 1.0422 1.0121 1.0010

Table 5: Series 1, 2, and 3 : results of RE40(M) for design A1b.
Design ‘b’ cη and cε (or cζ)

0.2 0.1 0.05
cω 5 Series 1 b22 1.3728 b23 1.5063 b24 1.6158

Series 2 1.3946 1.5532 1.6963
Series 3 1.4000 1.5839 1.7705

10 Series 1 b32 1.6060 b33 1.8108 b34 1.9818
Series 2 1.6246 1.8636 2.0849
Series 3 1.6092 1.8769 2.1576

20 Series 1 b42 1.9014 b43 2.2125 b44 2.4820
Series 2 1.9004 2.2529 2.5939
Series 3 1.8340 2.2030 2.6072

almost identical, with the main differences being seen for designs a14 and a31.
For Series 1, the time plots intersect at t = 8 with a31 eventually having the
greater gain. For Series 2, the gain for design a14 climbs more quickly but then
eventually becomes almost the same as for a31. For Series 3, the gain for design
a14 is always larger than for a31.

For some designs, convergence rates also differ across the plots. A marked
difference between Series 1 and Series 2 is that the level parameter increases
from 0.01 to 0.5, thereby decreasing the seasonal to non-seasonal ratio from 0.99
to 0.67. Series 2 seems to have a slower convergence rate than that for Series
1. For Series 3, which has a seasonal to non-seasonal ratio of only 0.25, the plot
shows slower convergence than for the other two series.

Figure 4 plots (c) and (d) show the results for REt(M) for design ‘b’ for
Series 2 and Series 3 respectively. Again, each plot has the same vertical scale
and legend for comparison with Figure 2. The rankings of the nine designs are
again similar for each of the three series. The designs which differ here the most
are b43 and b34. Convergence rates are again slower for Series 3 than for the
other two series.
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8 Conclusion

In this empirical study, the relative efficiency of the seasonally adjusted aggre-
gate series has been investigated by using a multivariate structural time series
model applied to the non-stationary sub-series. It focuses on one particular
local level seasonal aggregate series and utilises a selection of designs for two
sub-series. Keeping the aggregated parameters fixed, the exact multivariate
parameters are determined with reference to the ratios of the variances of the
sub-series, and also the correlations for each of the seasonal and non-seasonal
components. Gains are attainable under conditions which rely on the values of
the parameters of the seasonal component and the non-seasonal components.
The between-series (i.e. within components) and the within-series (i.e. between
components) relationships for the two series have been studied and both affect
the relative efficiency. The results are best summarised under five main points.

Firstly, when the two sub-series have the same variance parameters for both
the seasonal and non-seasonal components (c-ratios are all equal), then there is
no difference between the multivariate and the univariate methods. This is due
to the design being close to the homogeneous system.

Secondly, the relative efficiency is higher when the c-ratio for the seasonal
component is very different to the c-ratio for the non-seasonal components,
even if all c-ratios are greater than one, as in design ‘a’. The magnitude of the
relative efficiency becomes much greater if the c-ratio is greater than one for
one component (e.g. seasonal) but is less than one for other (i.e. non-seasonal)
components, as in design ‘b’. This study shows that even when the correlations
between the series are low, gains are achievable with a multivariate model with
only two sub-series.

Thirdly, if the c-ratios are held constant with non-seasonal correlation kept
constant and low, when the seasonal correlation is increased incrementally, the
relative efficiency improves, but the extent of the increase depends on the design
structure.

Fourthly, a similar result holds if the seasonal correlation remains fixed at a
low value and the c-ratios are kept fixed, and then the non-seasonal correlations
are increased. Thus, better gains are achieved when the seasonal and non-
seasonal correlations are at opposite ends of the (positive) correlation scale.

Lastly, this study also examines the evolution of relative efficiency over time.
For the first four time points, the multivariate method and univariate method
yield exactly the same MSEs for the filtered estimates. As time progresses, the
relative efficiency increases above one for each simulation carried out in this
study. There are different rates of convergence but, on the whole, each plot of
the relative efficiency reaches a steady state. Those with higher c-ratios for the
seasonal component tend to be slowest to converge.

This paper reports the results of modelling two disaggregate series of a par-
ticular aggregate time series with known parameters. Two other aggregate series
with different seasonal to non-seasonal ratios are also studied and they both pro-
duce similar results. The method proposed here may be extended to aggregated
series with more than two sub-series (Birrell, 2008).
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A Appendix

A.1 State space form for the univariate model

The state space form of the univariate LLS model as described in Section 3.1 is
given by:

Yt = Zαt + εU, t, (A.1)
αt+1 = Tαt + Gγt, (A.2)

where, for quarterly data (s=4), and a dummy seasonal component,

αt = [Lt, St, St−1, St−2]
′
, α1 ∼ N(a1,P1),

γt = [ηU, t, ωU, t]
′
, γt ∼ N(0,Q),

Z =
(
1 1 0 0

)
, εU, t ∼ N(0, H),

T =




1 0 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0


 , G =




1 0
0 1
0 0
0 0


 , Q =

(
σ2

U, η 0
0 σ2

U, ω

)
,

Var (Gγt) = GQG′ =




σ2
U, η 0 0 0
0 σ2

U, ω 0 0
0 0 0 0
0 0 0 0


 , H = σ2

U, ε. (A.3)

The standard set of filtering equations which make up the Kalman filter may
be found in Chapter 4 of Durbin and Koopman (2001). These equations are
applied to the aggregate series data and yield the estimates of the components
for each time point at|t and their MSEs, Pt|t.

The variance matrix, P1, of the initial state vector α1, is assumed to have
the form:

P1 = κP∞,1 + P∗,1, (A.4)

where κ is a large scalar value, P∗,1 is the covariance matrix of the stationary
components in α1 and P∞,1 is the covariance matrix of the non-stationary
components in α1 (Zivot and Wang, 2006).

Non-stationary components in the state vector require diffuse initialisation.
A state is called diffuse if its covariance matrix is arbitrarily large. The problem
of dealing with diffuse initial states in the Kalman filter was first solved by
de Jong (1991). An alternative approach of dealing with diffuse initial conditions
is to apply the exact initial Kalman filter as described in detail in Koopman
and Durbin (2000). The exact approach is computationally more efficient in the
process of parameter estimation when compared to other initialisation strategies
such as that of de Jong (1991) and Koopman and Durbin (2000, p293).

In particular, for the univariate local level seasonal BSM with a dummy
seasonal component model, a1 = E(α1) is a 4 × 1 zero vector, P∞,1 is a 4 × 4
identity matrix and P∗,1 is a 4×4 zero matrix. The term ‘zero vector’ is a vector
in which each element is zero, and ‘zero matrix’ is used to describe a matrix in
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which each element is zero. The exact initial Kalman filter can be applied using
the S+FinMetrics software, in the SsfPack set of functions (Koopman et al.,
1999).

A.2 State space form for the multivariate model

The multivariate model in Section 3.2 is transformed as described earlier in
Section 4. As a result of the transformation on two sub-series, the two series
in the system are the total series, Ytot, t, and series 1, denoted by Y1t. The
transformation permits estimation of the seasonal component of the total series,
Stot, t, within a multivariate framework.

Due to the common disturbance term, εt, in (3.5), the multivariate BSM
contains correlated measurement errors, which cannot be handled by the stan-
dard Kalman filter or by standard software packages. To overcome this problem,
Durbin and Koopman (2001, Section 6.4) suggest including the measurement
errors in the state vector. Their suggested approach has been implemented in
this paper.

The state space model for the transformed system, Y(M), t (4.1), with K = 2
may be specified as follows, given that the measurement errors are placed within
the state vector:

Y(M), t = (Z(m) ⊗ I2)α(M), t,

α(M), t+1 = (T(m) ⊗ I2)α(M), t + (G(m) ⊗ I2)γ(M), t, (A.5)

where I2 is a 2× 2 identity matrix and

α(M), t = [Ltot, t, L1t, Stot, t, S1t, Stot, t−1, S1, t−1, Stot, t−2, S1, t−2,

εtot, t, (εt + ε∗1t)]
′
,

γ(M), t =
[

ηtot, t, (ηt + η∗1t), ωtot, t, (ωt + ω∗1t), εtot, t+1, (εt+1 + ε∗1, t+1)
]′

.(A.6)

with α(M), 1 ∼ N(a(M), 1,P(M), 1). The system matrices are given by:

Z(m) =
(
1 1 0 0 1

)
,

T(m) =




1 0 0 0 0
0 −1 −1 −1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0




, G(m) =




1 0 0
0 1 0
0 0 0
0 0 0
0 0 1




,

Var
(
(G(m) ⊗ I2)γ(M), t

)
=




Σ(M), η 02 02 02 02

02 Σ(M), ω 02 02 02

02 02 02 02 02

02 02 02 02 02

02 02 02 02 Σ(M), ε




, (A.7)

where 02 is a 2 × 2 zero matrix. The transformed covariance matrix for the
level component (refer to (3.8)) is denoted by Σ(M), η:

Σ(M), η =
(

σ2
tot,η 2σ2

η + σ2
1η∗

2σ2
η + σ2

1η∗ σ2
η + σ2

1η∗

)
, (A.8)
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and similarly for Σ(M), ω and Σ(M), ε.
To compensate for the restructuring of the state vector, the set up of the

exact initial conditions matrices described in Durbin and Koopman (2001, Sec-
tion 5.2) is amended. The variance matrix, P(M), 1, of the initial state vector,
α(M), 1, is given by

P(M),1 = κP(M)∞,1 + P(M)∗,1, (A.9)

The P(M)∗,1 matrix in (A.9) holds the variance of the stationary part of α(M), 1.
It is a 10×10 zero matrix with the lower right 2×2 block diagonal replaced by the
Σ(M), ε covariance matrix. The P(M)∞,1 matrix (also of dimension 10×10 here
since K = 2) is an identity matrix but with the lower right 2× 2 block diagonal
replaced by a 2× 2 zero matrix. For further details of the exact initialisation of
the filter refer to Koopman and Durbin (2000).
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