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A Comparison of Ag and Ag-Alloy
Sheathed Bi-2223 Tapes

Hua K. Liu, Zhong M. Zhang, Rong Zeng, Josip Horvat, and Miles Apperley

Abstract—Ag and Ag-alloy sheathed Bi-2223 tapes were fab-
ricated by a powder-in-tube technique with different configura-
tions of the precursor and restack sheath materials: Ag, AgAu7
wt%, AgSb0.6 wt%, AgMg0.2 wt%. Analysis of the and volume
fractions of the Bi-2223, Bi-2212, Bi-2201 and Bi-3221 phases indi-
cated that volume fractions of Bi-2223 90%, Bi-2212 5%,
Bi-2201 0% and Bi-3221 2%, normally result in tapes
with the highest . The mechanical properties of the tapes re-
vealed consistent results. Generally, the harder the sheath mate-
rial, the higher tolerance to the bending strain and higher the ten-
sile strength of the tape. The sequence of the alloys’ hardness from
highest to lowest was AgMg0.2 wt%, AgSb0.6 wt%, AgAu7 wt%
or Ag.

Index Terms—Ag and Ag-alloy sheath, Bi-2223 tapes, mechan-
ical properties, phase volume fractions.

I. INTRODUCTION

M ANY groups [1]–[12] have investigated Ag and
Ag alloys (including elements Au, Mg, Pd, Mn,

Cu, Ni, and Ti) as the sheath materials for fabricating
Bi Pb Sr Ca Cu O (Bi-2223) tapes suitable for ap-

plications such as power cables, current leads, and coils for
transformers and motors. The Bi-2223 material is a brittle
ceramic, so the sheath material must provide a strengthening
mechanism for the filaments without diminishing the prop-
erties of the Bi-2223 during processing. In this paper we
report the results for the tapes fabricated by a powder-in-tube
technique with different configurations of Ag, AgAu7 wt%
AgSb0.6 wt% and AgMg0.2 wt% as the precursor and restack
sheath materials.

II. EXPERIMENTAL

Ag and Ag-alloy sheathed tapes with 37 filaments were
fabricated using commercial Bi-2223 precursor material and
powder-in-tube techniques. The sheath configurations of the
tapes are listed in Table I.

Short length samples of tape were heat treated at a tempera-
ture in the range of 832C to 846 C for the first stage (HT1),
followed by a second stage (HT2: 825C for 40 h, slow cooled
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TABLE I
37 FILAMENT BI-2223 TAPE CONFIGURATIONS

Fig. 1. Critical current (I ) of short tapes measured at 77 K and self-field after
HT2.

to 785 C and then normal cooled to room temperature). An in-
termediate roll (IR) pass was performed between each heat treat-
ment stage.

The phase compositions were determined from X-ray
diffraction data. Assuming: Bi- Bi-

Bi Bi , the volume fractions of
the phases were calculated by the peak intensity ( ,

, , and ) of Bi-2223, Bi-2212,
Bi-2201 and Bi-3221 phases, respectively, divided by the sum
of their intensities.

The critical current ( ) was measured in self-field at 77 K
using a four-probe method and a 1V cm criterion. The crit-
ical current density ( ) vs. magnetic field ( ) of the tapes was
determined at 77 K in the directions of ( ) and

.
The bend strain tolerance was investigated by measuring the

critical current at zero field ( ) of a short sample and the
after one-way bending the sample around progressively smaller
diameter formers in the range 110 to 20 mm. The sample was
straightened after each bend cycle. The percentage of bend

1051-8223/03$17.00 © 2003 IEEE
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TABLE II
PHASESCONTENT (%) FROM X-RAY (HT 1: 834 C).

TABLE III
PHASESCONTENT (%) FROM X-RAY (HT 1: 838 C).

TABLE IV
PHASESCONTENT (%) FROM X-RAY (HT 1: 842 C).

strain was calculated by , where is the tape
thickness and is the former diameter.

Hardness measurements were performed at room temperature
using a Leco Microhardness Testing Machine (M-400-Hl) and
a 10 g load. Tapes (after heat treatment) were mounted in epoxy
and polished to a 1 m finish, across the transverse direction
of the tape. The hardness of the sheath was measured across a
line between the outermost 2223 filament and the tape edge. An
error of 3% in hardness readings was estimated.

The tensile strength of the tapes was measured at room tem-
perature using a Lloyd instruments, LRX Plus tensile testing
machine.

III. RESULTS AND DISCUSSION

A. Optimum Dependence on Alloy Sheath Configurations

Fig. 1 shows the of the tapes measured at 77 K and self-
field after HT2. It is clearly seen that the of all tapes is very
low when C compared with HT1 at other temper-
atures, and therefore 846C is well outside the optimum HT1
range. The highest were achieved when C for
tapes 1 and 5, 840C for tapes 2, 3 and 4, 834C for tape 6 and
842 C for tape 7. These results indicate that the tapes with dif-
ferent configurations of precursor and restack sheath materials
need optimized HT1 conditions when all other processing con-
ditions are the same.

B. Optimum Corresponds to Volume Fraction of Phases

Tables II–IV show the volume fractions of the Bi-2223,
Bi-2212, Bi-2201 and Bi-3221 phases for the tapes after

C, 838 C and 842 C, and after HT2. Comparing

Fig. 2. NormalizedJ dependence on the magnetic field of the tapes at 77 K.

the in Fig. 1 and the phase analyzes in Tables II–IV, it can be
seen that the highest is achieved when the volume fractions
are , , and .

C. Normalized – Field Dependence and the Sheath
Materials

Fig. 2 shows the relationship between the normalizedand
the applied magnetic field, with the field perpendicular ( )
and parallel to the tape surface ( ) at 77 K for the dif-
ferent tapes 1, 3, 5, 6 & 7 with C, and tapes 2
& 4 with C. The relationship between and
magnetic field is characteristic of multifilamentary 2223 tapes
fabricated using a PIT technique. No conclusive correlation be-
tween alloy type or configuration and performance in field
was highlighted.
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Fig. 3. RelativeI =I as a function of bend strain.

Fig. 4. The hardness profiles in the sheath materials of the tapes.

D. Bend Strain and the Sheath Materials

The results of the one-way bend test for the tapes 1 – 7 with
C are shown in Fig. 3. It was clearly observed

that the tolerance of to bending was quite different for the
various tapes. The critical bend strain, (bend strain when

) of tapes 1 and 7 was approximately 0.3%; while
the of tapes 3 and 5 was 0.42% and 0.47%. Tapes 2 and
4 had of 0.28% and 0.25%. Tape 6 possessed the highest

of 0.73%, displaying best performance oftolerance to
bend strain. From these results it was concluded that tapes with
like restack sheath materials had similar bend strain properties
and that the improved tolerance to bend strain could be realted
to the mechanical properties of the sheath materials.

E. Hardness Profiles and the Sheath Materials

The hardness of the sheath materials (tapes with
C) are shown in Fig. 4. A line in Fig. 5

shows the region in the tape cross-section on which the mi-
crohardness distribution was examined. From Fig. 4, tape 6
with Mg in the restack sheath shows the highest hardness of

90 Hv. The sheaths of tapes 3 and 5 containing Sb, show the
next level of hardness at approximately 70 Hv. The lowest level
of hardness ( Hv) was measured in those tapes with Au
or pure Ag in the restack sheath. The sequence of the sheath
hardness from highest to lowest was therefore AgMg0.2 wt%,
AgSb0.6 wt%, AgAu7 wt% or Ag. These results are consistent

Fig. 5. A line shows the region in the tape cross-section on which the
microhardness distribution was examined.

Fig. 6. The stress-strain relationship of the tapes measured at room
temperature.

with the bend strain performance revealed in the previous
section. Harder restack sheaths, such as those with Mg or
Sb, must provide a mechanism by which the tolerance of the
Bi-2223 to bend strain can be improved.

F. Tensile Strength and the Sheath Materials

The tensile strength of the tapes (with C) are
shown in Fig. 6. The best strengthening effect was showed by
tape 6 in which the restack sheath contained Mg. Tape 3 and
tape 5 in which the restack sheath contained Sb, had the next
best strengthening effect. Tapes 2, 4 and 7 were similar to tape
1 (pure Ag sheath) indicating that the use of Au has negligible
effect on tensile strength. This trend was also consistent with the
assessment of the bend strain tolerance.

IV. CONCLUSIONS

Ag, AgAu7 wt%, AgSb0.6 wt% and AgMg0.2 wt% alloys
were used as precursor and restack sheath materials for fabri-
cating 37 filament Bi-2223 tapes using a PIT technique with a
two-stage heat treatment process.

Analysis of the and volume fractions of the Bi-2223,
Bi-2212, Bi-2201 and Bi-3221 phases indicated that volume
fractions of Bi- , Bi- , Bi-
and Bi- normally result in tapes with the highest
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The normalized dependence on magnetic field of the tapes
at 77 K and were compared. The relationship between
and magnetic field was characteristic of multifilamentary 2223
tapes fabricated using a PIT technique. No conclusive correla-
tion between alloy type or configuration andperformance in
field was highlighted.

The sequence of the critical bend strains, of the tapes is
0.73% for tape 6, 0.42% & 0.47% for tapes 3 and 5,0.3
for tapes 1 and 7, and 0.28% & 0.25% for tapes 2 and 4.
Tapes with like restack sheath materials had similar bend strain
properties. The variation in the bend strain tolerance of the
tapes was consistent with the results of the hardness and tensile
strength measurements. It was observed that the sequence
of the sheath hardness and tensile strength from highest to
lowest was AgMg0.2 wt%, AgSb0.6 wt%, AgAu7 wt% or Ag
corresponding to the ranking of bend strain tolerance.
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