
University of Wollongong
Research Online

Department of Computing Science Working Paper
Series Faculty of Engineering and Information Sciences

1982

SLOP - An interactive library database system
Michael P. Shepanski
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
Shepanski, Michael P., SLOP - An interactive library database system, Department of Computing Science, University of Wollongong,
Working Paper 82-12, 1982, 17p.
http://ro.uow.edu.au/compsciwp/32

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/compsciwp
http://ro.uow.edu.au/compsciwp
http://ro.uow.edu.au/eis
http://ro.uow.edu.au/
http://ro.uow.edu.au/

SLOP - AN INTERACTIVE LIBRARY
DATABASE SYSTEM

Michael P. Shepanskl

Department of Computing Science
University of Woflongong

Preprint No. 82-12 May 26. 1982
Aeprln1ed 9.4.04

P.O. Box 1144. WOLLONGONG N.S.W. 2500. AUSTRAUA
tel (042)-270-859

telex AA29022

I HE UNIVERSITY OF WOLLONGONG

DEPARTMENT OF COMPUTING SCIENCE

DEPARTMENTAL NOTES AND PREPnJNTS

SLOP - AN INTERACTIVE LIBRARY DATABASI:: SYSH:M

Michael P. SHEPANSKI

Department of Computing Science
University of Wollongong

Abstract

SLOP is a modular tree-based database system for library
management, featuring fast arbitrary data retrieval. Its
module structure is briefly discussed together with a
superficial review of the support modules, followed by an
explanation of the data structures used. Finally the internal
control structure of the central module is examined. A
knowledge of user-level features of SLOP is assumed.

Keywords: Databases, Inventory Systems, Trees, Optimal
Binary Search Trees, Modular Programmmg.

Preprint No 82-12

P.O. Box 1144. WOLLONGONG. N.S.W.AUSTRALIA
telephone (042)-282-981

telex AA29022

May 26. 1982

SLOP - An Interactive Library Database System.

Michael Shepanski

Computing Science Dept..
University of Wollongong

NorthfJelds Ave.
Wollongong
N.S.W.2500
Australia.

1. SUPPOR"I MODULES

SLOP is implemented as a series of modules. The calling hierachy of the module
structure is as follows:

Signal

Itemopt

Enterwords

Fillfieids

Central

Utilities

Records

Treeshuffle

The majority of processing is done In the Central module. which contains some
24 functions and most of the code. Another module. Treeshufflo. controls all the
database maintenance which Is done In the background when the user has quit exe­
cution. However. all of the keyboard operations. flIe access and signal handling are

-2-

done elsewhere.

The lower-level routines (Utilities. Records. Signal. Enterwords. Itemopt and
Fillfleids) will be superficially examined first. since they provide the abstractions
which are needed for Central and Treeshuffle.

1. 1. Utilities

This module provides a set of low-level convenience functions for service to other
routines. These include the comparing of two strings (as used for keying comparis­
ons). conversion from lowercase to uppercase. removing unwanted spaces in a string.
determining whether a character is a vowel. and searching tables.

NOTE: there is a type of table commonly used throughout SLOP. called' struct
types (] '. This has the form of a list of character-strings. with a corresponding char
for each one. It is useful when the program Is to converse with the user in strings. but
use single bytes for Internal processing. This is done for space-saving (e.g. the Class
field is stored on the database as a single character). or for use In the switch con­
struct (e.g. Choosing the appropriate action after a command has been read), or for
other reasons. The two functions

search <table. string)
unsearch (table. character)

do the lookups in table to return the character corresponding to string (search 1. or
the string corresponding to character (unsearch l.

1.2. Records

This moduJe controls all access to the database file. It is an interface between
the record-oriented view required by the rest of the SLOP system. and the UNIX· prim­
itives (creat, open, Iseek, read, write, 'stat). It presents the rest of the program with a
header node. followed by a sequence of records numbered 1. 2. 3. etc.

It Is initialized by the call

dblnlt ()

which tries to open the database file according to the global filename string dbfile. Jf
access is denied. or if the file is locked. a message will be printed to the standard
error output and the program will terminate execution. However. if the global variable
override Is SIGNALLED (a constant equal to 255). the locking mechanism Is over­
looked. and the database is opened if at all possibJe.

Access to the file header is provided through the functions:

getnulrec (structptr)
putnulrec (structptr)

These functions retrieve (or store) a structure of type DBhead in location structptr In
core.

Similarly. access to the data nodes is provided through the functions:

getdbrec (recordno. structptr)
pUd brec (recordno. structptr)

These operate similarly with structures of type DBrecord. where recordno is the ordl-:­
nal number of the record. and structptr Is a pointer to the required structure. Note
that these return recordno when successful. and the constant NULL when not.

The number of records In the database may also be found. with the function

Xl.NX is a Trader'n:lrk ct Bell Laborataies.

-3-

filcslze 0

which returns the total number of records (including the header>.

1.3. Signal

This implementation-dependent module ensures that all likely interrupting sig­
nals are handled properly. The required actions for these signals are as follows:

SIGHUP Quit as fast as possible
(while keeping database intact>.

SIGINT Branch to appropriate part of
Central module to prompt.
reaCl and execute the next command.

SIGQUIT Cause a core dump immediately.
then quit as fast as possible
(while keeping database intact>.

SIGTERM Quit as fast as possible
(while keeping database intact).

SIGPIPE Reassign the standard output to a
data sink (I.e. '/dev/null') and the
stanClard error output to the terminal.

Signals due to program errors (e.g. arithmetic exceptions. memory segmentation vio­
lations etc.> are not caught or ignored.

Because SIGINT causes a branch Into Central it is necessary. at that point. to
nave the system function

sotjmp (environment)

where environment is a global datum (used by Signal) of type imp_but·

This signal-catching 15 initialized by the call

slglnlt 0

which sets up the initial trapping functions.

Of course. It is necessary for some processing to proceeCl unhindered. This is
Clone with the call:

dlsableslgs 0

From this call. until further notice. there wll/ be no Interruptions to program execution.
SIGQUIT will stili make a core dump immediately and SIGPIPE will stili readjust the
standard outgoing streams. but these effects will be transparent as far as the central
procedure is concerned.

To re-enable the catching of signals. the call

enablcslgs ()

is used. This checks whether any signals have occurred during the period of disable­
ment and. if so. takes the appropriate action. This means either jumping to the
. seCjmp' call or quickly tidying up the database and quitting execution.

Since all execution should begin and end In the central module. the actual work
of clearing up the database and exiting Is done by a function called dicnow in Central
(see below). This is not to be confused with the work of Treeshuffle which does a
complete overhaul of the database.

"5eeset;rrp (3), LNX Pr(JJrarTlTB"s Manual.

-4-

1.4. Entorwords

The Enterwords module Interfaces to and controls the keyboard, analogously to
the way Records interfaces to the database file. All keyboard data entry is done
through Enterwords which uses the UNIX standard I/O library function gets and buffers
the output to provide a word-oriented data entry facility.

The most important function supplied is

rcadl1m (stringptr)

which fills the string beginning at str/ngptr with one input item from the keyboard. An
input item is defined as EITHER a string of non-whitespace input characters, wherein
an underscore (' _') is interpreted as a space by read/tm, OR any sequence of items
between matching quotes (i.e. either between two apostrophes or between two
double-quotes). In any case, an item can never include the newline character, and
any amount of blank lines will be ignored until read/tm finds an Item to supply.

The auxiliary function

roadln (\lstringptr\D

tills the string with the whole Input line, regardless of how much has already been
read. This is useful when no Interpretation at all is required, e.g. shell-escape com-
mands. .

If It is necessary to ensure that a new line of input is being read, the function

nowln 0

may be used. It throws away any text which has been buffered from the last input line
and guarantees that the any text provided by the Enterwords module will be from a new
one.

The other auxiliary function

eoln 0

returns a true value If there is no more text available on the current line, and false (0)

if there is some.

Note that end-of-file termination (cntrl-D) is caught in the Enterwords module
and, since this requires the same handling as the 'quit' command, a call (non­
returning) is made to the Central function quit 0, when this happens.

l.b. Itemopt

Most of the commands available to the SLOP user are of the form:

command [[by] fieldname <pos~lbly something else>]

Central is only ever interested In the numeric code of the field, not fleldname. This
numeric code is a number in the range

o <= fieldno <NKEYFIELDS

where NKEYFIELDS is a constant (currently 7>, The Itemopt module provides an inter­
face between this Central view, and the text-oriented view supplied by Enterwords.

Once the central module has decided which command ,t is processing, the func-
tlon

itemopt 0

will examine the user's input. and return a single-byte field number corresponding to
fieldname ("title" default).

-5-

1.6. Fillficlds

This module provides all key strings for Central. It contains a cluster of functions
which either Initialize a field or prompt the user (where necessary) and use £nterwords
to solicit a string. which Is then checked and/or modified as required. The reason
Fil/fields must be a module by itself is that its contents may often need to be modified
for slight changes in application. and this can be done without reference to other rou­
tines.

The following functions:

geCtltle <pointer)
gecclass <pointer)
gccauthor <pointer)
gecsource <pointer)
gCCborrower <pointer)
geCISBN (pointer)
gcClibref <pointer)
gccstatus <pointer)
gccpubdate <pointer)
geCbdate <pointer)
gcCborrowed (pointer)
gcClocation <pointer)
gcCkeys <pointer)
gcccomments <pointer)

prompt the user as necessary and solicit a string to fill the appropriate field starting at
pointer and continuing to an appropriate maximum length. There are also the two ini­
tialization functions

.inlCstatus <pointer)
inlClcr (structpointer)

which are used to set initial values when a new record is being added (inicstatus
queries the user and sets the string at pointer to the single-byte code for either
. PRESENT' or •ONORDER'; in/C/er sets the left. centre and right tree-pointers (see
FILE STRUCTURE below) to their required initial values J.

The data-entry functions involve some modification of the input data (usually
extraneous spaces are deleted) and testing <e.g. for control characters. maximum
length. etc.). In the case of geCelass, geCstatus and IniCstatus the string is con­
verted into its corresponding character for internal use. In any case. diagnostics and
prompts will be produced as necessary. and the Fi/lfields functions will always pro­
duce a valid field.

NOT~: get-pubdate, geCborrowed, geC/oeat/on, geceomments and geCkeys are
not currently available.

-6-

2. DATABASE STRUCTURES AND ALGORITHMS

The database used by SLOP is a system of ordered binary trees of linked lists of
recorCls. This structured Is explained (as it evolved>. by a process of stepwise
enhancement; A simplified version of the binary tree will be discussed first. Then the
linked lists will be introduced. The relationship between the various trees will be
explained and then there will be an examination of tree-rebalancing algorithms and
the freelist.

2.1. The Binary Tree

In this section. we will consider a simplified model of the databaso in
which only the' title' field is used as search key.

The database is a sequence of records. one after another. The Records module
allows us to access these as the basic units of file access.

First. there is a header node. which contains all information pertinent to the data­
base as a whole. but not relating to any speCific record. For example. this contains
the locking flag which prevents multiple simultaneous access to the database. It is the
first record on the file.

Following this. there is a sequence of data records numbered 1. 2. 3. etc. Each
of these contains all of the data fields for one item In the library. and may be accessed
directly (through the Records module) once this record number is known.

In our hypothetical model. an ordered binary tree is used to provide fast access
when the title is given. It may look like the following:

-7-

BYTE V2 Nl
magazine

BYTE Vl N3
magazine

UNIX P.M.
manual

BWK & DMA
Bell Labs

Alice in W.
book

Carroll. L.

BYTE Vl N4
magazine

Zilog DATA
book

Thus. in addition to the data fields. each record contains two 'pointers'. These
are. of course. the record numbers of the roots Of the appropriate sub-trees. The left
subtree contains records which have titles that are LESS. and the right subtree con­
tains records which have titles that are GREATER. (The Utilities module provides a
routine (slrcomp> to do this comparison of fields.]

The record number of the root of the tree is stored in the header node. If there is
no data in the tree. then this record number is NULL (0). In fact. at any leaves of the
tree. the pointer to a nonexistent subtree is always NULL. Note that trying to read a
data record numbered NULL is impossible.

Thus. the algorithm to find a record In this tree is simple. Once the required title
is known. we simply start at the root and Iteratively do the following:

Try to read the current node. If this is unsuccessful. the required record does not
exist.

If the target title Is less than the title of the current node. Move downwards along
the left pointer.

If the target title Is greater than the title of the current node. Move downwards
along the right pointer

Otherwise (Le. the target title is equal to the title of the current node) we have
found it.

[This is done In the binseQrch function.]

-8-

2.2. Linked Lists

The above model demonstrates how the tree mechanism can be used to find ONE
record with a given title. But what if there is more than one?

When there is a number of items with the same title. they are stored as a linked
list and the first item on the list is a node on the binary tree. Another pointer is
needed to point vertically down the linked list So each record stores three record
numbers. left. centre and right. Thus the database may look like this:

-9-

BYTE V2 Nl
magazine

/ 1

BYTE Vl N3
magazine

IIJ , '

I

UNIX P.M.
manual

BWK& DMR
Bell Labs

I ,

Alice In W.
book

Carroll. L.

UI • UI

Alice in W.
film

01 I I 01

Alice in W.
book

Carroll. L.

01 IIJ IIJ

BYTE Vl N4
magazine

011010

BYTE V2 Nl
magazine

IIJ IIJ r IIJ

2110g DATA
book

o 1 III I III

UNIX P.M.
manual

BWK & DMR
Bell Labs

01010

In the parlance of SLOP identifiers. this whole complex is called a ternary tree.
since each record has three branches (although not all are used) and to distinguish it
from the binary tree. which is only that part consisting of the headers to the linked
lists.

Many of the SLOP commands operate on all the records which match a particular
title. (Consistent with our present simplified model. we will not yet consider searching
by other fields.> To do this. all we must do Is a binary search (as described above) to

- 10-

find the first node of the linked list and. if it exists. Iteratively follow the chain to its end.
doing the required operation to each node on the way.

To provide an in-order list of all records (Le. the 'list' command) all that is
needed is to recursively list the left subtree. list all the way down the current linked list
and then list the right subtree.

Adding a new record. however. becomes slightly more complicated by this
arrangement. Unlike a simple binary tree. where new records can always be hung
from the leaves. care must be exercised with these chains because they may grow very
long. Under no circumstances do we wish to traverse the length of the chain to add a
single record. ~

We do as follows: First. we ascertain the record number of the place where it is to
go (see' Freellst' below>. Then. the data fields for the record are solicited and all its
tree-painters are set to NULL. The binary tree Is descended until either a match is
found or a leaf is reached. If a leaf is reached. then the new node is linked on the
end. like in a simple binary tree. If a matching record is found. then the new node will
be joined Into its linked list in the position Immediately after the first node. In any
case. after the new node has been linked to the ternary tree. it Is then written out to
the file in Its nominated position.

Removing a record is done simply by flagging its status field to the constant
FREE. This inhibits any printing of the contents of that record.

2.3. Multiple Trees

We have. so far. worked with a simplified model wherein only the 'title' field Is
used for locating records. However. SLOP finds records equally well regardless of
which field is used as a key. This Is because there is one tree for almost every field.
The trees (and hence the corresponding fields) are numbered In the range:

o <= field number <NKEYFIELDS

(where NKEYFIELDS is a constant. currently 7>.

There is. nevertheless. only one copy of each record. so no data is duplicated.
Each record really contains three arrays of pointers (left. centre and right>. for eaCh
field. with three pointers for each tree.

All that has already been said about the title tree stili applies when the other trees
are ignored. Similarly. the same could be said about the author tree. or the class tree.
or any of the others. Note that a new node must be added to all trees. but a search or
a traversal need only reference one.

Note also that there Is no tree for the 'status' field. Since status changes every
time an Item is received, borrowed. returned or removed. having a status tree would
mean moving a node from one place to another on the tree (The same problem arises
with the' borrower' tree). This is a planned extension. The proposed algorithm is to
flag the old node 'FREE' and then add the updated node to each tree in the same way
that new nodes are added.

2A. Tree Robalanclng Algorithms

The tree manipulation algorithms described above are designed to give the best
possible immediate response to the user. That is to say. hanging a new record
directly from the leaves of the trees and simply flagging removed records are very
quick operations in themselves. However. If the Input is (by chance or otherwise)
sorted to a large extent. then this node-addition algorithm will soon lead to a painfully
slow search tree. Similarly if 'removed' records are lett in the trees.

The solution to these problems, which does not Incur any penalty in Immediate
response time. is to rebalance the trees totally at a time when the user is not waiting.

-11-

Thus. when the user has quit execution a background process examines a count of the
number of changes and/or removes which have been done since the trees were last
rebalanced and. If it is significant relative to the size of the database. the 'following
maintenance is done:

It is necessary for each binary tree (i.e. disregarding the lengths of vertical
chains) to be perfectly balanced so that the head of any given chain can be located as
fast as possible. So each tree (taken one at a time) is traversed (in-order) to con­
struct an in-core list of record numbers in order of the current field. This list is then
used to rebuild a perfectly balanced tree.

It is also desirable to disconnect all free nodes from the tree. Thus the traversal
algorithm (function buildllst in the TreeshuffJe module) which is done on each tree is
as follows:

Attempt to load the root node. If this is impossible. then we are past the leaf of
the tree. so return.

Recursively traverse the left sub-tree (Le. the tree whose root has a record
number given by the current left pointer).

Move down the current chain (If necessary) until reaching either a non-free
node or the end of the chain.

If a non-free node was reached:

This will be the head of the new chain. Put Its record number on the in-core
list.

Move down the chain to the bottom. ignoring the free nodes and linking the
others together.

Recursively traverse the right sub-tree.

Now all the chains are optimal and intact. and we must use this list of record­
numbers to generate a new. perfectly balanced binary tree using the following algo­
rithm (function bulldtree in the Treeshuffle module) on the whole list:

We are given the two addresses between which the list has been built. If there is
no space between them. then there is no tree to build. so return NULL.

Ascertain the middle address of the list.

Recursively build a tree from the sub-list between the start and middle
addresses. and ascertain the record-number of its root.

Recursively build a tree from the sub-list between the middle and finish
addresses. and ascertain the record-number of its root.

Load the record whose record-number is specified at the middle address. This is
the root of the tree. Set its left and right pointers to the record-numbers (just
found) of the roots of the sub-trees. Re-store the root record.

Return Its record-number.

Once this has been done. all the non-free nodes have been re-structured Into an
optimal binary tree of optimal linked lists. This whole rebalancing process Is repeated
for each tree. When it is finished. there are no free nodes in any trees at all. They
have been completely isolated.

2.b. The Freollst

When a record is first flagged FREE. it is stili necessary because it is a node in
all of the search trees. However. once the tree rebalancing algorithms we have just
seen have been completed. the free record has no purpose whatsoever. Its space on
the file is being wasted. The UNIX file system does not permit these records to be
thrown away. since no file can ever decrease in size. What we must do. then. is to

- 12-

re-use them when we want to add more recods.

In order to do this. the unlinked records are joined together in a linked list. Each
node in this freel/st points to the one physically before. starting from the last one on
the file and continuing to the first one. which has a null pointer. Any of the integer
fields (I.e. those which hold a record number) in the record could be used for this link.
The arbitrary choice is that the title-left pointer is used. The record number at the
start at the free list Is stored In the header node. It there are no records in the free
list. then this record number is NULL

The freelist is constructed by the f1isCupdate function in the treeshuffle module.
but only after all the trees have been rebalanced and. even then. only it a sufficiently
large number of records have been removed since the last time the freelist was rebuilt.
The algorithm for building It is relatively straightforward:

Set the integer datum lastfree to NULL (0)-

For each record on the database file (sequential search):

Load the record.

It It flagged FREE:

Set its title-left link to lastfree.

Set lastfree to its record-number.

Re-store the record.

Set the treellst-pointer In the header node to lastfree.

From then on. when a record is to be added. the' treelist-pointer on the header
node Is consulted. If there is a freelist. the second one along becomes the new first
node of the freelist. and the new data record is put in the physical place of the free
node just unlinked. Of course. if there is no freellst. the new addition is appended to
the end at the database file.

- 13-

3. CENTHAL CONTnOL STRUCTURE

In this section. the internal control structure of the Central module will be exam­
ined. The overall structure may be seen from the following flow diagram:

START

Interpret
command-line

arguments

Initialize
Signal & Records

modules

Prompt and read
a command

quitreceive remove returnlistfind

parent

borrow change

Execute
escaped 1Et------<..

shell
command

add

(FINISH)
Execute

Treeshuffle
module

Unlock
database
and store

header

SIGQUIT

SIGQUIT

- 14-

The main function is responsible for the initialization processing and for sustain­
ing the repetition of the command-processing operations. [Note that a SIGINT cannot
cause the initialization to be bypassed. because Its junction on the flowchart is only set
up (by the set...)mp call (see Signal in section 1 above)) when that stage is reached
by reguiar means. J

3. "I. The pnOCESS_CMD Function

The process_cmd function is called repeatedly to prompt and read a user com­
mand. and call the appropriate routine to execute it. The shell escape has such a
radically different input format. that it Is treated as a special case. If the command is a
shell escape. process_cmd itself does all the necessary work to Invoke a temporary
shell with the standard C library function system. Otherwise. the command-name is
looked up in a table (struct types commands [J) and the character representation is
used in a switch construct to call the appropriate command-handling function. which
does the rest of the work (including reading arguments) for itself. Each of these func­
tions is named directly according to the command it executes. except for the return_
function which executes the 'return' command. [The underscore is to avoid confusion
with the C •return' instruction. J

3.2. The BOHHOW. F/ND. RECEIVE. REMOVE and AETUFlN_ Command Proces'
sors

The commands:

borrow
find
receive
remove
return

are all very similar in many ways. Each involves finding all records with a given key.
and performing some operation upon them.

The findwork function is used by each command-processor in this family to
ascertain which key is being used and what particular value of that key is being
sought. and then to search the appropriate binary tree for the head of the required
chain. The actual tree search is done in the binsearch function (see DATABASE
STRUCTURES AND ALGORITHMS above>. Findwork places the appropriate field
number in the global variable fle/dno (which is used for this purpose throughout
SLOP). and returns the record number of the node that was found (If the search was
unsuccessful. it prints an appropriate message and returns NULL>.

If the call to findwork is successful. the command-processor works Its way itera­
tively down the chain. loading each node into the global record named record (which
is used generally as a core copy of whatever node is being dealt with). and doing
whatever operation is reqUired.

3.3. The LIST Command Processor

The 'list' command requires that a field number is ascertained and the appropri­
ate tree is traversed in in in-order fashion.

The list command-processor simply uses the Itemopt module to choose a tree,
and then calls the recursive function listwork to do all the traversal. according to the
algorithm given in section 2 above. Note that free nodes are treated just like the oth­
ers. except in the output function. prlntrec. where they are ignored.

- 15-

3.4. The CHANGE Command Processor

The' change' command is used to interactively update one or more fields of a
record. and then to re-store it in such a way that the integrity of the database is not
disturbed.

This command-processor has not yet been implemented (it is currently an empty
function). mainly because of the lack of a suitable facility for Interactively changing
particular fields in a record.

3.b. The ADD Command Processor

This is an implementation of the record-addition algorithm described in 2.2. 2.3
and 2.5 above.

Firstly. It consults the freelist to determIne where the next record is to go. rNote
that the freelist is not actually changed yet. because an interrupt during data entry
could prevent the new record from being stored.] Then the function solicit_record is
called. which communicates with the Fillf/elds module to load all the fields of the
current in-core record. The database Is now about to be manipulated. so signals are
disabled. The function linknewnode is then Invoked for each tree to link the node
(whose record number has just been determined) logically.into the database. It is
then stored physically and the freellst Is updated.

3.6. Finishing Execution

When either a 'quit' command is given. or an end-at-file is encountered tram the
standard input. the function quit is invoked. Its purpose is to provide a normal exit
tram the program. using Tteeshuffle to optimise the database as necessary.

Its functions must proceed unhindered. so a dlsables/gs call is issued straight
away. Then a fork system call is used to create a child process. while the parent quits
immediately. leaving the database locked but returning control to the user.

This child process then calls the Treeshuffle module which tests the number of
changes and removes which have been done and. If there have been sufficient, per­
torms the optimising operations described in 2.4 and 2.5 above. When this Is finished
a non-returning call is made to the function dienow.

This function's job is to do the minimum possible maintenance on the database
so that it is stili usable. and then quit execution as fast as possJble. It can also be
called directly from the Signal module. in the event ot SIGHUP. SIGTERM or SIGQUIT.
All it does is flag the database as unlocked. write the core copy of the header node out
to the file. and exit.

4. ACKNOWLEDGEMENTS

Many thanks go to Ross Nealon. who had the initial conception of the database
being a binary tree. wrote the first hundred-or-so lines of code which sketched out the
control structure that is still used. and patiently answered many questions.

	University of Wollongong
	Research Online
	1982

	SLOP - An interactive library database system
	Michael P. Shepanski
	Recommended Citation

