
University of Wollongong
Research Online

Department of Computing Science Working Paper
Series Faculty of Engineering and Information Sciences

1982

Stack permutations and an order relation for binary
trees
Reinhold Friedrich Hille
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
Hille, Reinhold Friedrich, Stack permutations and an order relation for binary trees, Department of Computing Science, University of
Wollongong, Working Paper 82-8, 1982, 11p.
http://ro.uow.edu.au/compsciwp/25

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/compsciwp
http://ro.uow.edu.au/compsciwp
http://ro.uow.edu.au/eis
http://ro.uow.edu.au/
http://ro.uow.edu.au/

STACK PERMUTATIONS ANI>
AN ORDER RELATION FOR BINARY TREES

R. Fritz Hille

Department of Computing Science
University of Wollongong

Preprint No. 82-8 Reprinted 9.4.84

P.O. Box 1144. WOLLONGONG N.S.W. 2500. AUSTRALIA
tel (042)-270-859

telex AA29022

STACK PERMUTATIONS AND

AN ORDER RELATION FOR BINARY TREES.

by
R.F. Hille

Department 01 Computing Science
The University 01 Wollongong

p.O. Box 1144
WoJlongong 2500

Australia

ABSTRACT

An isomorphism between stack permutations of a set of n elements
and ordered binary trees with n t/ertices Is presented. which allows the
construction of simple linear time algorithms to compute a ranking
1unction and its inverse for binary trees. No pre-processing of tables is
required. as was the case with previously published methods.

Keywords and phrases: binary trees. encoding. lexicographic order.
permutations. staCk. '

CR categories: 5.31. 5.32. 5.39.

STACK PERMUTAT.ONS AND

AN ORDER RELATlON FOR BINARY TREES.

by
R.F. Hille

Department of Computing Science
The University of Wollongong

p.O. Box 1144-
WoUongong 2500

Australia

1. INTRODUCTION

Binary trees play an important role In computing. not only as data structures but also

as analytical devices. We focus our attention on ordered binary trees, because the

distinction between left and right subtree Is naturally Implied In the usual computer

re prese ntat/ons.

By a stack permutation of a set we mean a permutation that can be generated by pass-

Ing the set through a stack once. They are the inverses of Knott's tree permutations

C1].

He describes a numbering system for binary trees based on the following definition of

an order relation:

Given two binary trees T1 and T2. we say T1 (T2 Iff:

1. cIT1) (cCT2L or

2. c<TU =cIT2> and 1(T1> <ICT2>. or

3. c<TU = cIT2> and 1(Tl> = IIT2> and rCT1> <r<T2>,

where err) Is the tree's cardinality. i.e. the number of vertices. 1m and rm are the left

and right subtrees. respectively.

Knott uses his tree permutations to define a ranking function. which is a mapping from

these permutations Into the set of Integers. His tree permutations are In fact the

pre-order traversal sequences of binary trees, which are labeled such that their In-

-2-

order traversal sequences give the integers in ascending order. He defines them in

the following way: a tree permutation p =Pl p' p" has the property that p' and p" are

again tree permutations. Pl Is Just the leftmost element of p. His ranking function is

a 1-1 mapping from the set of these permutations. and hence from the set of ordered

binary trees. onto the set (1.2.3..... Bn) of Integers. where Bn Is the number of ordered

binary trees with cardinality n £2. sec. 2.3.4.4). Knott's algorithm for computing the

ranking function. rankCT). runs In linear time and gives the relative addresses of the

-
element CrankClm). rankCrm» in a two dimensional array of size

where BcClCT» stands for the number of trees with the cardinality of the left subtree

and BcCrCT» for the number of trees with the cardinality of the right subtree. Hence.

his algorithm requires pre-processing of a large table whose size grows exponentially

with the cardinality of the trees.

His method for computing rank- 1 involves the generation of tree permutations from

whiCh the corresponding binary trees can easily be constructed. This algorithm also

requires pre-processing of the table.

Rotem and Varol [3] use ballot sequences instead of tree permutations to generate all

trees of given cardinality. These ballot sequences are the inversion tables of the tree

permutations. The authors concede that their method does not produce the trees in

lexicographical order. but claim that their algorithms are more efficient than those

reported by Knott

I

Solomon and Finkel [4J present an algorithm that transforms a tree into its successor

by operating directly on the tree. and a modification of Knott's Inverse ranking func-

tlon. Their algorithms still require the preparation of a table of Catalan Numbers

8 ::n
1

l+n

-3-

Their algorithm Nextm requires calls to two routines that run In O(n}. Their RJJ.nk- 1IT}

runs in O(nlogn>. whereas their Rankm requires OCn} operations. These algorithms

stili require the pre-processing of tables.

Proskurowski [5] constructs all ordered binary trees with n vertices by generating all

extended binary trees with n+1 leaves. This is achieved by expanding certain leaves 01

the extensions of ordered binary trees with n-1 vertices. His order Is derived 1rom a

way of deciding which leaf to expand next. It appears that his algorithm expand will

always commence by expanding the smallest tree 1Irst and building the list from the

beginning. His extended binary trees are characterised by sequences 01 binary digits.

He generates the master list of trees in reverse order.

Rotem and Varol (3} claim:.•... there is no simple way of deriving stack sortable permu-

tations in their order corresponding to the natural order of trees.·

We present a bijection mapping between stack permutations and ordered binary trees

and derive from it a simple way to generate binary trees In order corresponding to the

lexicographical order of the related stack permutations. Our algorithms ENCODE and

DECODE transform a tree Into a binary sequence or a sequence Into a tree. respec-

tively. The algorithm NEXT constructs the successor 01 a given sequence. These algo-

rlthms require no pre-processing of tables and their time complexity Is linear in the

number 01 tree nodes.

2. Stack Permutations and Binary Trees.

A stack permutation of the set S = Cl.2.3.....n} is a permutation that can be generated

by passing this set through a stack once. The necessary string of additions and dele-

lions represents a legal sequence of stack operatIons. meaning. that at any time the

number of deletions does not excede the number of additions. We represent the stack

-.,f-

operations add and delete by the binary disglts 1 and O. respectively. Consequently.

we have an isomorphism between legal sequences of stack operations and our stack

permutations. We can now construct a simple isomorphism between stack permuta­

tions and binary trees In the following way:

The digit 1 means to add the left child to the current node. whereas the sUbsequence

01 means to add the right child. A subsequence of k digits 0 preceding the next digit 1

means to ascend k-1 left links (return k-l levels of recursion) before adding the right

child to the node just reached.

For example, the sequence

1101000

means that we generate the permutation {2.3.1} from the set £1.2.31 and It represents

the binary tree

The sequences have 2n+1 digits because every vertex forces a ·1· and every open link

forces a ·0·, A binary tree with ~ vertices has n+1 open links.

The trees are always labeled in such a way that their pre-order traversal sequence

gives the Integers In ascending order. The stack permutation generated is then given

by the In-order traversal sequence of the tree.

The proof that this Is an Isomorphism can easily be constructed directly by showing

that there exists exactly one binary tree for every stack permutation. and that there

exists exactly one stack permutation for each binary tree.

Given a legal sequence of stack operations. one can always construct at least one

corresponding ordered binary tree according to the mapping. It Is easily seen that

-5-

there cannot be another different binary tree corresponding to the sequence.

Conversely. given an ordered binary tree. one can traverse It In pre-order and build

the sequence by adding a ·1· every time a ver:tex Is visited. When an empty pointer

field is encountered. a ·0· Is added to the sequence. Hence. It is possible to con-

struct at least one sequence for each binary tree. The fact that this sequene is

unique follows from the uniqueness of the traversal order.

T,he order of the trees. and therefore also the order of the stack permutations. is the

same as the lexicographic order of the binary sequences. Thus. the five binary trees

with cardinality 3 are. in order:

and the corresponding binary sequences together with the stack permutations In the

same ascending order are:

1010100 1 23
1011000 1 32
1100100 2 1 3
1101000 23 1
1110000 321

The last two digits are always ·0· and may be omlned. We show them here for com-

pleteness.

It seems at first sight that the order of the trees produced here 15 the same as the

order defined by Knott. However. since the stack permutations are the Inverses of the

tree pemutations. the order of the trees will differ In general from that given by Knott.

This does not matter very much because the order Is used here primarily for the pur-

pose of avoiding isomorphism checking (see Read. R.C. I7J> when generating a list of

trees.

-6-

If one wants to generate a random binary tree one may either use the algorithm 01

Arnold and Sleep [81 for the uniform random generation of balanced paranthesis

strings or construct a mapping. and therefore an algorithm. from the integers Into the

set of bit strings defined above. This allows the use of a random number generator.

The successor of a given binary sequence can be constructed by locating the right-

most digit ·1· that has aleft neighbour ·0· and transposing the two. The tail of the

sequence (to the right of the current position) must then be reversed to the firtst one 01

It·s size, that is. alf digits ·1" must be put back at their original places. This can

already be done during the search. The current sequence is the last one If the "1"

located 15 the leftmost digit of the sequence.

3. The AJgorithms

Gj\l8n a binary tree with n vertices. and therefore a binary sequence with 2n+1 digits.

we construct the successor In the following way:

procedure NEXT
begin

begin at the right end of the sequence
flnished:=false
while there are digits to the left and not finished do
begin

move left to the nearest "1"
If the left n'eighbour is "0· then
begin

exchange
1inlshed:=true

end
else

move the ",. to Its original place
end

end NEXT

In the worst case the while loop runs n times. namely when the given sequence is

already the last one. A small amount of book keeping Is required, namely. how many

-7-

digits ·1· are already in their original places. This determines the original place of

the current,"'· If it must be moved.

Our procedure ENCODE is the equivalent 01 Knott's ranldng function. It produces a

binary sequence which is interpreted as an integer for the purpose of determining its

successor or comparing It with the code sequence of another binary tree. The algo-

rlthm ENCODE Is essentially a pre-order traversal of the tree, adding the digits 1 or 0

to the sequence a1 the right moment

proced ure ENCODE(rootptr)
begin

If not rootptr=nll then
begin

add .,. to the sequence
ENCODE(rootptr.left)
ENCODE(rootptr.rlght>

end
else

add ·0· to the sequence
end ENCODE

The Inverse of this algorithm simply scans the sequence from left to right and builds

the tree according to the mapping descrIbed in section 2. This corresponds to a

pre-order traversal of the tree and hence also runs in linear time because every vertex

is visited exactly once.

-8-

procedure DECODE(rootptr)
begin

rootptr:=geCnode
geLdlgit
If digit: 1 then

DECODE(rootptr.left)
If dlglt=O'and nexCdlgit=l then

DECODE(rootptr.rlght>
geLdigit

end DECODE

4. A Classlfic~tlon of Tree Permutations

In his paper £1J Knott mentiones four classes of tree permutations. which he charac-

terises as hLR, hRL, LRh, and RLh. Obviously. thes~ correspond to the pre- and

post-order traversal sequences of the trees associated with the permutations. He then

states that the classes LhR and RhL are degenerate because they contain only one

permutation.

The reas.on for this ·degeneracy· Is very simple. Knott's tree permutations are the

pre-order traversal sequences of trees that are labeled In such a way that their in-

order sequences are just the Integers in ascending order. The class LhR of permuta-

lions Is made up of the In-orde'r tr~versal sequences of trees whose in-rder traversal

sequence is C1.2.3N}. Hence the degeneracy.

Instead of the four classes of tree permutations mentioned by Knott we can define 24

classes. The trees can be labeled In 6 different ways. namely two for each of the

three traversal sequences. In each case they can be traversed in four different ways.

so that we obtain 24 classes of tree permutations. There exist various close relatlon-

Ships between these classes.

-9-

5. Conclusion

We have presented an algorithm for computing the value of a ranking function of a

binary tree. the inverse..and an algorithm to compute the successor of a binary tree.

The time complexity of these algorithms is O(n). where n Is the number of vertices.

No pre-processing of tables is reqUired. Previously published algorithms for the same

purpose required the pre'-processing of tables. and computing the inverse 01 the rank­

Ing function required time O(nlogn).

- 10-

REFERENCES

(lJ Knott. G.D. -A numbering System lor binary Trees·, COmm ACM 20 (1977)113­
115.

l21 Knuth, D.E. "The Art of Computer Programming-, vets. 1 and 3, second edition,
Addison-Wesley. 1973.

l31 Rotem, D. and Varol. Y.L "Generation of Binary Trees from Ballot Sequences·, J.
ACM 25 (1978)396-404.

l41 Solomon, M. and Finkel, R.A. -A Note on Enumerating Binary Trees" J. ACM 27
(1980)3-5.

l51 Proskurowski. A. "On the Generation of Binary Trees·, J. ACM 27 <1980>1-2.

(6) Rotem. D. "On a Correspondence between Binary Trees and a certain Type of
Permutation", Into. Proc. Lett... (975)58-61,

(7) Read. R.C. -Every one a Winner· in Algorithmic Aspects of Combinstorics. Afpach,
Hell, and Miller, Eds., North-Holland. Amsterdam, 1978, pp. 107-120.

(8J Arnold. D,P. and Sleep. M.R. -Uniform Random Generation of Balanced
P?ranthesls Strings- ACM Transactions on Programming Languages and Systems
2 <1980>122-8.

	University of Wollongong
	Research Online
	1982

	Stack permutations and an order relation for binary trees
	Reinhold Friedrich Hille
	Recommended Citation

