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ENDOGENEITY, KNOWLEDGE AND DYNAMICS OF LONG
RUN CAPITALIST ECONOMIC GROWTH

E.J. Wilson  and  D.P. Chaudhri 

ABSTRACT

The revival of interest in economic growth and technological leadership
issues has resulted in the re-examination of the theoretical foundations of the
economics of growth.  The neoclassical concerns with steady state paths and
neo-Keynesian focus on short-term issues have remained intact in this process.  
However the 'new economics of growth' extensions proposed by Lucas (1988)
and Romer (1986) and attempts by Scott (1989) to explain technological
progress, do not address Arrow's (1962) concerns or explain Kuznet's (1957)
and Maddison's (1991) empirical telescoping of the economic growth experience
of the last two hundred years.

This paper attempts to address some of these issues by developing a
model which adopts Aghion and Howitt's (1992) suggestion to examine
endogenous growth in the form of technological innovation in monopolistic
capital goods production.  Human capital and non-rival partially excludable
technology are inputs to production, which may have non-constant returns to
scale.  Profit maximising behaviour is analysed in terms of a variable Tobin's q,
which when greater than one, drives economic growth.

This approach differs from endogenous growth theory in that production
is characterised as initially increasing returns to scale, which subsequently
diminish as production expands until decreasing returns to scale are realised.
Central to this model is the nonlinear set of dynamic saddlepath solutions for
the production of new technology, which is important for three reasons.  First,
the solutions characterise the adoption of new technology as the process of
Schumpeterian 'creative destruction'.  Second, the possible speeds of adoption of
new technology can vary significantly over time.  Third, the families of possible
saddlepaths define an endogenously evolving metaproduction function.

These analytic processes are briefly compared with some stylised
historical evidence of changing technological leadership in observed long run
economic growth processes.

KEYWORDS: Creative destruction, endogenous growth, technological innovation, Tobin's q,
variable returns to scale, nonlinear saddlepaths.
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1.  INTRODUCTION

The drivers of economic growth have been the subjects of intense debate among
economists of differing schools of thought over the last two centuries.1  The recent revival of
interest in the form of the 'new economics of growth' has led to an exciting resurgence in
economic theorising.2  However, this process of scientific investigation is starting to indicate
some shortcomings in theory and methodology.  They include the interrelated difficulties of
adequately specifying the growth process and explaining the dynamic essence of economic
growth.  Early empirical studies do not attempt to measure these things and mostly focus on
testing for conditional convergence.3

This paper attempts to address some of these issues by proposing a four-sector
model of long run economic growth.  The approach adopts Aghion and Howitt's (1992)
suggestion for further research by analysing economic growth in terms of Schumpeterian
creative destruction, which explicitly incorporates technological change in physical and
human capital.  This is done by modeling endogenous growth in the form of Romer's (1990)
technological innovation in monopolistic capital goods production.  Human capital and non-
rival partially excludable technology are inputs to production, which may have non-constant
returns to scale.  Profit maximising behaviour is analysed in terms of Tobin's q, which when
greater than one, drives economic growth.

This approach differs from endogenous growth theory in that production is
characterised as initially increasing returns to scale, which subsequently diminish as
production expands until decreasing returns to scale are realised.  Central to this model is the
nonlinear set of dynamic saddlepath solutions for technological production, which is
important for three reasons.  First, the solutions characterise the adoption of new technology
as the process of Schumpeterian 'creative destruction'.  Second, the possible speeds of
adoption of new technology can vary significantly over time.  Third, the families of possible
saddlepaths define an endogenously evolving metaproduction function.

The paper is organised into four sections.  The next section presents the basic model
with required static equilibrium relationships.  Consumption is then introduced and the
requirements for equilibrium growth are analysed in Section 3.  The main contribution of this
paper is in Section 4, which explores possible nonlinear dynamic saddlepath solutions for
long run economic growth characterised as variable returns to scale.  The model explicitly
includes the process of Schumpeterian creative destruction and variable rates of adoption of
new technology.  A metaproduction function is then presented which stylizes Maddison's
(1991) historical evidence of shifting technological leadership during the last two centuries.
The final Section 5 presents a brief summary.

                                                
1 See Marglin (1984) and Solow (1970) for competing views.  For an excellent overview of the theories see

Sen (1970), particularly the introductory chapter, Hahn (1971), and Abhamovitz (1989).
2 Recent interest has been rekindled by Romer (1986, 1990) Lucas (1988), Ram (1986), Barro (1990, 1991),

Basalla (1988), Scott (1989) among many others.  The wisdom of Adam Smith on specialisation,
Marshall's on external economies and Allyn Young's on increasing returns has been combined or formalised
in seminal papers by Arrow (1962), Schults (1976), Romer (1986) and Lucas (1988).  This literature is
referred to as the 'new economics of growth'.

3 Empirical studies were led by Barro (1990) and Sala-i-Martin (1992).  Subsequent analysis has been carried
out by Quah (1993), Mankiw, Romer and Weil (1992), Levin and Renelt (1992), Levine and Servos
(1993).  Reservations about some of this work have been expressed by Pack (1994) and Solow (1994).



2.  PRODUCTION

2.1  The Basic Production Model

The production side of the model comprises three sectors, namely, final goods,
intermediate capital goods and research sectors.  The production of the homogeneous final
good, denoted by y, is characterised by perfect competition with simplified aggregate
production function: 4

y = x 0 < < 1 (2.1)

A monopolist with production function produces the intermediate good x:

x = a hx 0 < < 1,  0 < + <
>1 (2.2)

where a represents the stock of knowledge and hx  the stock of human capital used in
producing the intermediate good x.5

The inverse demand curve is simply:

px = x −1 (2.3)

where px  represents the price of x.  Clearly the producer of x is a price maker for < 1, with
price elasticity of demand:

px
=

1

−1
(2.4)

For neoclassical constant returns to scale in final goods production, the demand for the
intermediate good is forced to be infinitely elastic with constant px  set to unity.

The research sector is characterised by perfect competition with the production of
knowledge resulting in new technology, denoted ˙ a , by:  6

                                                
4 Production could be specified in terms of the expanded function,   y = f x , hl , l( )  where   hl  and   l  represent

human capital and unskilled labour inputs respectively.  However, the simpler specification in equation
(2.1) gives a more analytically tractable equation (2.3), which allows the analysis of the interaction between
human capital and technology in the other two sectors.

5 Adoption costs in terms of foregone production of intermediate good x can be included in the production
function (2.2).  Consider adoption costs in the form of x  where x = x abhx

c  for 0 < < 1  and

0 < + b +c <
>1 .  Transforming gives, x = a hx  with = b 1−( )−1

 and = c 1−( )−1
.  For the inequality

requirement, + b + c <
>1, that is, b + c<

>1− , which gives + <
> 1, as required. For the lower

inequality, + > − 1−( )−1
 which for 0 < < 1  means that − 1−( )−1

 will be negative.  This paper
will constrain + > 0  for convenience.  Alternatively, the production function could be defined as

x = a hx − x , where <1  represents the amount of x used in the adoption of a.  The function becomes

x = 1−( )−1
a hx  which only differs from equation (2.2) by the constant of proportionality 1−( )−1

.
6 The production of new technology, ˙ a , is assumed to be adopted by the monopolist.  The new technology

may be embodied in physical or human capital or it could also be disembodied, for example in the form of
information or computer software.  The only requirement is its excludability.  The externalities and the
public good components are ignored to keep the analysis manageable.



˙ a = Aha a 0 < <1, 0 < + >
<1 (2.5)

where ha  represents the stock of human capital employed in this sector.  This specification
incorporates Romer's (1990) non-rival technology with  importantly not restricted to unity.
We will initially set A=1 for convenience, then in Section 4 below we will redefine it as an
endogenous systematic parameter.

2.2  Static Maximisation

The monopolist's current nominal profit, x , is given by:

x = px x − wxhx − pa
˙ a (2.6)

where w x  is the nominal wage rate and pa  is the price paid for the adopted technology, ˙ a  in
the current period.  The inclusion of pa  is important because of the assumption of partial
excludability of the new technology, which has to be purchased by the monopolist.7

Maximising profit for a risk neutral monopolist using equations (2.2),  (2.3) and (2.5)
gives:

∂
∂a

= 2 a − 1hx − pa a −1ha = 0

Solving for the equilibrium price, pa
* : 8

pa
* =

2

a − hx

ha

< (2.7)

Inspection of equation (2.7) shows that pa
*  and a are inversely related for the monopsonist

when < .  This is a very important condition for this model.
Rearranging (2.7) and substituting equations (2.2) and (2.5) obtains:

pa
* =

2 x
˙ a 

(2.8)

Clearly an increase in the production of the final goody y, which in turn increases the demands
for good x and for technology, a, will increase the equilibrium price of new technology,pa

* .  A
reduction in the production of new technology, ˙ a , will also increase pa

* .
Let's now maximise monopolistic profit, x , with respect to the human capital, hx ,

employed in the production of the intermediate capital good in order to determine the

                                                
7 The monopolist producer of capital good, x, acts as a monopsonist in purchasing the new technology, ˙ a 

from the research sector.
8 Profit maximisation is assured when: ∂2

x ∂a2 = 2 −( )a −2hx < 0 iff < .



equilibrium wage rate, w x
* .  Using equations (2.2), (2.3), (2.5) and (2.7), calculate 

∂ x

∂hx

= 0  for

endogenous pa  to derive the equilibrium wage, w x
* : 9

w x
* =

2

−( )a hx
−1 < 1,  < (2.9)

This wage rate is positive for <  and it can be seen that the demand for hx  varies
inversely with w x

*  when < 1 .
The equilibrium equality between the economic and technical rates of substitution

between ˙ a  and hx  is given by the ratio of equations (2.7) and (2.9):

w x
*

pa
* = −( )a ha

hx

(2.10)

Using equation (2.5) gives the required result, subject to the requirement that < :

w x
*

pa
* = −( ) ˙ a 

hx

(2.11)

The knowledge and new technology producing research sector will now be considered.
Current profit, a , is defined for the perfectly competitive firms as:

a = pa
* ˙ a − waha (2.12)

where  ˙ a  is the technology purchased by the monopolist acting as a monopsonist, pa
*  is the

given price for each price taking competitive research firm and wa  is the wage rate for human
capital, ha  employed in the research sector.  Using equations (2.5), (2.7) and maximising

current profit by setting 
∂ a

∂ha

= 0  for risk neutral producers gives: 10

wa
* =

2

a
hx

ha

=
2 x

ha

< 1 (2.13)

This relationship shows that an increase in the demand for intermediate capital good, x and
therefore for ˙ a  and ha  will increase the equilibrium wage for human capital employed in
research, wa

* .  Also a reduction in ha will also increase wa
* .

                                                
9 Profit maximisation also requiries: ∂2

x ∂hx
2 = 2 −1 − 1( ) −( )a hx

−2 < 0  iff <1  and
< .

10 The maximisation condition is satisfied when: ∂2
a ∂ha

2 = paa − 1( )ha
−2 < 0 iff  <1 .



Intermediate Capital
Good Sector

Given the static equilibrium, human capital wage rates in the intermediate sector and
the knowledge and new technology producing research sector, the static equilibrium levels of
employment, ha

*  and hx
*  can be determined.  Setting wa

* = wx
*  and using equations (2.9), (2.13)

and the fact that ha + hx = h :

ha
* =

+
h = h (2.14)

and: hx
* =

+
h = 1 −( )h (2.15)

where = − > 0  and 0 < < 1.
In summary, the equilibrium levels of production in the three sectors are given by the

following relationships:

Research Sector ˙ a * =
+

 
  

 
  a h 0 < <1,  0 < + >

<1 (2.16)

x* =
+

 
  

 
  a h 0 < < 1,  0 < + <

>1                    (2.17)

Final Good Sector y* =
+

 
  

 
  a h 0 < <1,  0 < a +( )<

>1 (2.18)

These structural equations include both direct and indirect links between the sectors.
Our three sector model bears some resemblance with Marxian two sector models and

also neoclassical two sector models to the extent that the final goods sector is linked with the
other two sectors through profit maximising behaviors of self interested rational production
agents (employer and workers).  It differs in some important respects, particularly returns to
scale.  We introduce a fourth sector, namely consumption in the following section to derive
equilibrium conditions linking the sectors in static and dynamic settings.

3.  CONSUMPTION AND EQUILIBRIUM GROWTH

3.1  Consumption

To close the model, consider risk averse households who select the time path of
consumption, c, to maximise utility, u c( ):

u c( ) = u c t( )[ ]
0

∞

∫ e− rtdt (3.1)

where r is the discount rate. The instantaneous felicity function, u c t( )[ ] , is assumed to have
constant intertemporal elasticity of substitution, for example:



u c( ) =
c1−

1 −
> 0,  ≠ 1

The resource constraint is given by:

˙ a + x = y − c (3.2)

where savings flows, y − c , are used to create new technology, ˙ a , and intermediate capital
goods, x.

Utility can be maximised via equation (3.1) subject to equation (3.2) by defining the

current value Hamiltonian, H =
c1 −

1 −
+ ˙ a , with transversality condition, lim

t→∞
a t( ) t( )[ ] = 0.

Solving for 
∂H

∂c
= 0  and using equations (2.5), (3.2) and the Euler equation, ˙ =−

∂H

∂a
 gives

the desired result:

˙ c 

c
= ha a −1 (3.3)

Increases in ha ,  and  increase the production of new technology, ˙ a , which allows
increased growth in consumption.  Note that higher stocks of technology, a, will increase
(decrease) consumption growth if and only if >1 , ( <1).

3.2  Equilibrium Growth

The balanced growth paths for the variables of interest can be easily calculated.  From
equation (2.5):

˙ a *

a
= ha

* a −1 (3.4)

so that increases in ha , and unambiguously increase the growth in technology.  Using the
equilibrium condition for ha

*  given by equation (2.14) shows:

˙ a *

a
=

+
 
  

 
  h a −1 (3.5)

Equation (2.5) details how an increase in will increase the productivity of human capital
used in producing new technology, ˙ a .  An increase in  (which also lowers ) will increase
the productivity of the stock of knowledge, a, in producing the intermediate good, x via
equation (2.2), which will increase the demand for new technology by the monopolist.
According to equation (2.2), a decrease in  will mean that human capital will be less
productive in producing x and so the demand for hx  will fall.  Given the equilibrium wage
condition, wa

* = wx
* , the employment of human capital in the research sector, ha

* , will increase,
causing ˙ a  to increase as well.

The growth in equilibrium consumption is given by combining equations (3.3) and
(3.4):



˙ c *

c
=

˙ a *

a
(3.6)

The growth in the equilibrium intermediate capital good is: 11

˙ x *

x
=

˙ a *

a
+

˙ h 

h
(3.7)

The growth in the equilibrium final good is: 12

˙ y *

y
=

˙ a *

a
+

˙ h 

h
(3.8)

Equations (3.5) to (3.8) show the central importance of the stocks of human capital, h,
and knowledge, a, to the equilibrium growth process of this simple four sector economy.
Zero growth in human capital, ˙ h = 0  and unitary elasticity of substitution between
consumption at two points in time, = 1 , gives:

˙ y *

y
=

˙ x *

x
=

˙ c *

c
=

˙ a *

a
iff = = =1 (3.9)

This result is equivalent to Romer's (1990) steady-state growth rate and shows that growth is
unbounded and equal to h( ) .  Unlike Romer, this model does not set  and  equal to

unity, which equations (3.5) to (3.8) show are crucial assumptions for the behaviour of 
˙ a 

a
 and

therefore the equilibrium growth path of the economy.  In this sense, setting = = 1  gives a
mechanistic evolution of the economy, along the lines of the early exogenous technological
change growth models.  Consequently, now consider the dynamics of growth with particular
focus on the role of the parameter , for increasing, decreasing and constant returns to scale
in the production of the intermediate capital good, x.

                                                
11 From equation (2.2),  x* = a hx

* and taking Naperian logs gives lnx* = lna + lnhx
* . Differentiating with

respect to time gives ˙ x * x = ˙ a * a( )+ ˙ h x
* h( )  and using equation (2.14) gives ˙ x * x = ˙ a * a( )+ ˙ h h( ).

12 Taking Naperian logs of equation (2.1),  y* = x*  gives lny* = lnx* , such that ˙ y * y = ˙ x * x( ) .

Substituting using equation (3.7) gives ˙ y * y = ˙ a * a( )+ ˙ h h( ) .



4.  THE DYNAMICS OF CAPITALIST ECONOMIC GROWTH

4.1  Tobin's q

The monopolist's task is to determine the profit maximising time path of employment of
human capital, hx , and adoption of new technology, ˙ a .  This problem requires maximising the

net present value, x t( )e−rtdt
0

∞

∫ , subject to the constraint, ˙ a = ha a , where r is the discount

rate.  The Hamiltonian is defined as:

H = xe
−rt + ˙ a 

with transversality condition  lim
t→∞

a t( ) t( )[ ] = 0 .  For convenience, set the shadow price

= qae− rt  which gives the present value in terms of qa .  The variable qa  is Tobin's q, which is
defined as the marginal valuation of technology relative to its replacement cost.  For values of
qa > 1  the monopolist will purchase the new technology at price pa , whereas for qa < 1 , the
monopolist will use the stock of existing technology and therefore not innovate.  In this sense,
the solution of the Hamiltonian problem will determine the optimum adoption of technology
in terms of the present value of this new technology's contribution to the monopolist's

profits.  Consider the Euler equation for a risk neutral monopolist, ˙ =−
∂H

∂a
.  Substituting

equation (2.6) and = qae− rt :

∂ qaert( )
∂t

= − ∂ x

∂a
e− rt

∴ ˙ q a − rqa( )ert = − ∂ x

∂a
e− rt

which solves to the well-known and important result:

˙ q a = rqa −
∂ x

∂a
(4.1)

The last term in equation (4.1) represents the marginal profit obtained by the monopolist
from the marginal technology.  It can be determined by substituting equations (2.2), (2.3),
(2.8), (2.9) and (2.15) into the profit equation (2.6) and differentiating with respect to a:

∂ x

∂a
=

2

1−( ) −( )a −1 h( ) < 1, < ,  < − (4.2)

For < 1 , 
∂ x

∂a
 is an inverse function of the stock of technology, a. 13

Solving equation (4.1) gives the standard result:

                                                
13 When 1 < <  then there is a positive relationship between ∂ x ∂a  and a.



qa =
∂ x

∂a
e− r s− t( )ds

0

∞

∫ (4.3)

which shows that qa  is the net present value of all future marginal monopoly profits due to the
marginal adoption of new technology.  For values of Tobin's qa > 1, the monopolist will
willingly adopt new technology, which implies ˙ a > 0 .  However, when qa = 1 the monopolist
will be indifferent between existing and new technology, such that ˙ a = 0 . When Tobin's
qa < 1, the monopolist will have to rely on existing technology. To the extent this causes
disinvestment in existing technology then ˙ a < 0 . These important effects can be incorporated
into the new technology equation (2.5), ˙ a = Aha a  by replacing the initially fixed parameter A
by the divergence of the endogenous Tobin's qa  from unity. That is, by setting A = qa −1:

˙ a = qa −1( )ha a (4.4)

Now qa
>
<1  implies ˙ a >< 0, as required.

Note that this extension fundamentally differentiates the approach of this model from
others.  For example, in Romer's (1990) model, ˙ a  is always positive in steady state via
equation (3.5) which forces positive growth in consumption, c, the intermediate capital good,
x and the final good, y, via equations (3.6) to (3.9). 14  In this model, positive economic
growth is only obtain when the marginal valuation of new technology (representing the net
present value of all future marginal monopoly profits) is greater than unity, that is when
qa > 1 .  The steady state equation (3.4) needs to be replaced with:

˙ a *

a
= qa −1( )ha

* a −1 (4.5)

Importantly, the value of qa and therefore ˙ a , can vary endogenously in this model.  This
allows the analysis of the behaviour of the monopolist in terms of the dynamic solution for
qa , ˙ a  and therefore a.  Linearising the equations of motion (4.1) and (4.4) around the steady
state, a = a*  and qa = 1 when ˙ a = ˙ q = 0 , gives the system of equations:

˙ a 

˙ q a

 
 
 

 
 
 =

0
∂ ˙ a 

∂qa qa =1

∂2
x

∂a2

a= a*

r

 

 

 
 
 
 
 

 

 

 
 
 
 
 

a − a*

qa − 1

 

 
 

 

 
 (4.6)

The general solution for initial values a0  and q0  is given by:

                                                
14 In this subset of the model, the steady state properties require the value of q to be unity and ˙ q = 0 .

Solving equation (4.1) gives qa
* =

∂ x ∂a

r
= 1, so the steady state discount rate, r, can be interpreted as the

marginal monopoly profit from adopting new technology, ∂ x ∂a . This relationship for the marginal value

of new technology, qa
* , can be compared with Romer's (1990) equation (6′) on page S87, rearranged

to: pA =
r

.



a − a* = a − a0( )e t (4.7)

qa − 1 = qa − q0( )e t (4.8)

where the negative characteristic root, , is chosen to ensure the locally stable, globally
unstable saddlepath:

=
1

2
−r r2 − 4

∂2
x

∂a2

a= a
*

×
∂˙ a 

∂qa qa =1

 

 
 

 

 
 

 

 
 
 

 

 
 
 

1
2 

 
 

 
 

 
 
 

 
 

(4.9)

From equation (4.2):

∂2
x

∂a2 =
2

1−( ) −( ) −1( )a −2 h( ) (4.10)

Now 
∂2

x

∂a2 < 0  for < 1 , <  and < 1 . Combining equations (2.14) and (4.5) gives:

∂˙ a 

∂qa

= a h( ) > 0 (4.11)

which ensure a real value general solution in equation (4.9).
Solving the system of equations (4.6) for qa  gives the required equation for the

saddlepath:

qa = 1+
a − a*

r −
∂2

x

∂a2

 
  

 
  (4.12)

This is shown as the SS schedule in Figure 1 for < 1 , which gives 
∂2

x

∂a2 < 0 .  Inspection of

equation (4.12) shows that if the stock of technology is below the optimum level, a < a* ,
then Tobin's qa > 1 , which causes the stock of technology to grow, ˙ a > 0 .  Conversely,
a > a*  implies qa < 1  which forces ˙ a < 0 .  The economy will therefore move along the locally
stable saddlepath, SS, in the direction of the arrows until the steady state point
a = a* , qa = 1( ) is reached.



qa = 1 a = o

a > o

qa > 1

qa < 1

a < o

a* a

qa T

T

S

S
qa = o

FIGURE 1.

4.2  Schumpeterian Creative Destruction

Now consider a shock to the equilibrium in the form of an increase in the marginal
productivity of technology, a, or human capital, hx , used to produce the intermediate capital
good, x.  This is represented by an increase in the parameters  or .  According to equations

(4.10) and (4.12), 
∂2

x

∂a2  will increase and the SS schedule will shift upwards to S1S1 in Figure

2. 15  Since qa  is now greater than unity, the increased marginal valuation of profit due to the
new technology adopted by the monopolist, causes ˙ a > 0  so that the level of technology will
increase until the new steady state a1

*  is reached (consistent with qa = 1 again).

a = 0

a* a

qa

S

qa = 0
S

s1

qa  = 0

S1

q1

1

a1*

1 

B

A C

FIGURE 2.

                                                
15 The increase in productivity would increase profits, x , according to equation (4.2) and increase the

demand and therefore the price, pa , of the new technology.



This simple example can be interpreted in terms of Schumpeterian creative destruction
in that higher profits associated with the new adopted technology at point B in Figure 2
"destroys" the previous profits and existing technology at point A.  However diminishing
returns, in the form of < 1 , ensure that qa will return to unity at point C on the new
saddlepath, S1S1.  

Indeed the model has the potential to explain interesting and important behaviour in
terms of the monopolist's adoption of new technology.  For example, equation (4.7):

a − a* = a − a0( )e t

shows the speed of adoption of technology by the monopolist is a positive function of .
When there are diminishing returns, < 1 , then < 0  and so the rate of adoption of new
technology is positive but diminishing exponentially. The value of  determined in equation
(4.9) is affected by the parameters in equations (4.10) and (4.11).  For example, the speed of
adoption, , will increase if human capital, h, increases, its productivity, , increases, or the
productivity of technology, , increases.  

A further behavioral extension of the model is to redefine the monopolist to have
instantaneous felicity function:

u x( ) = x
1 −

1−
> 1

and to select the time path of output to maximise profits and utility:

u x t( )[ ]
0

∞

∫ e− rtdt

subject to the constraint, ˙ a = Aha a .  The Hamiltonian:

H = x
1 −

1−
e− rt + ˙ a 

has general solution: qa =
∂ x ∂a

x
0

∞

∫ e− r s −t( )ds.

Consider the consequences of this general solution for a monopolist who prefers risk, denoted

by < 0 .  Whilst Tobin's qa  is still a positive function of 
∂ x

∂a
 it is also a positive function

of x .  This new second term implies an accelerator effect in that higher levels of profit, x ,

in addition to the marginal profit gains, 
∂ x

∂a
, cause qa  to further increase. The adoption of

new technology, ˙ a , will therefore increase by a larger amount, via equation (4.4).
This model of Schumpeterian creative destruction, with or without the behavioral

extensions, contrasts with earlier approaches.  Romer 's (1990) model has ˙ a > 0  always,
which forces the relevant SS schedule to shift rightwards.  Whilst this process is endogenous,
it describes the adoption of new technology as mechanical.  The endogenous growth literature,
by defining constant returns to scale in the form of restricting ,  and  to unity, forces



the uninteresting result that qa = 1 always.  These models do not generally explicitly include
the possibility increasing returns to scale.  This outcome is usually excluded in economic
analysis because of the unappealing property that the mathematical solution is unbounded.  If

increasing returns to scale exist in the form of > 1  then 
∂2

x

∂a2 > 0 , which gives the locally

unstable saddlepath solution, TT, given in equation (4.12) and shown in Figure 1.  Values of a
above (below) a*  means that qa > 1  ( qa < 1) and so a will increase, ˙ a > 0  (decrease, ˙ a < 0 )
without bound. 16  This possibility is explored in the next sub-section.

4.3  Variable Returns to Scale: An Example

Production is hypothesised to demonstrate initially increasing returns to scale, which
subsequently diminish as production expands until decreasing returns to scale are realised.
This approach, common to textbook theories of the firm and to well-known rates of adoption
models, can be characterised by the Logistic and Gompertz functions. 17  By way of example,
replace the simple production function in equation (2.2) with the Logistic function, L.
Production of the intermediate capital good, x, is a function of adopted technology, a, and
human capital, hx , with parameters 1 , 2  and 3 :

x = L a,hx ;  1,  2 , 3( )
= 1

1 + 2e− 3a
hx (4.13)

where the initial value, x0 = 1

1+ 2

, the limiting value, lim
a→ ∞

x = 1  and the point of inflection

x I,  aI( )  is given by, x I = 1

2
hx  and a I =

ln 2

3

. 18

From equation (2.6), x  is a function of pxx, which is given by equation (2.3) as
px x = x .  Substituting and differentiating gives:

∂2
x

∂a2 =
∂2

∂x2 x( ) ∂2x

∂a2

= 2 −1( )x − 2 ∂2 x

∂a2 (4.14)

                                                
16 This result requires < r  in equation (4.12).  Equation (4.9) shows that this must be the case for

∂2
x ∂a2 > 0 .  Note that this requirement also allows the interesting possibility of a complex solution to

the locally unstable saddlepath solution, TT.  This would cause the unbounded behaviour of a and qa  to
exhibit increasing oscillations.

17 Vide:  Rogers and Shoemaker (1971).
18 The point of inflexion is found by setting, ∂2x ∂a2 = 1 2 3

2e 3a
2 − e 3 a( ) 2 + e 3a( )−3

hx = 0. The non-

trivial solution requires 2 = e 3 a  and solving gives a I = ln 2( ) 3 .  Substituting this result in equation

(4.13) gives x I = 1 2( )hx  as required.



Now 2 − 1( )x −2 <
> 0  for 0 < <

>1 so that:

∂2x

∂a2
>
< 0  iff  a<

>
ln 2

3

  and  x<
>

1

2
hx (4.15)

That is, there are increasing (decreasing) returns to scale before (after) the point of inflection
x I,  aI( ) .

If equations (4.1) and (4.4) are linearised in an appropriate neighborhood around
values a = ˆ a  and qa = ˆ q a , the new system of dynamic equations become:

˙ a 

˙ q a

 
 
 

 
 
 =

∂ ˙ a 

∂a ˆ a 

∂˙ a 

∂qa ˆ q a

−
∂2

x

∂a2
ˆ a 

r

 

 

 
 
 
 
 

 

 

 
 
 
 
 

a − ˆ a 

qa − ˆ q a

 

 
 

 

 
 (4.16)

The general solution is:
a − ˆ a = a − a0( )e t

qa − ˆ q a = qa − q0( )e t

with:

1,2 =
1

2
± 2 − 4( )

1
2[ ] (4.17)

and where:

= r +
∂ ˙ a 

∂a ˆ a 

(4.18)

= r
∂ ˙ a 

∂a ˆ a 

+
∂2

x

∂a2
ˆ a 

×
∂ ˙ a 

∂qa ˆ q a

(4.19)

Now consider the neighborhood to be in the increasing returns to scale range of the production
of the intermediate capital good, x.  That is, ˆ x < xI  and ˆ a < aI , which gives from equation

(4.15), 
∂2x

∂a2
ˆ a 

> 0 and therefore from equation (4.14), 
∂2

x

∂a2
ˆ a 

> 0 .  If the production of the final

good, y, also exhibits increasing returns to scale in the form of > 1 then equation (4.11)

shows 
∂˙ a 

∂qa ˆ q a

> 0.  These inequalities therefore describe the locally unstable saddlepath

solution TT, as shown in Figure 1.  
Selecting a neighborhood around ˜ a ,  ˜ q a( ) on the other side of the inflexion point, in the

Logistic function (4.13), that is ˜ x > xI  and ˜ a > aI , gives 
∂2x

∂a2
˜ a 

< 0  and 
∂2

x

∂a2
˜ a 

< 0  by



equations (4.15) and (4.14).  If > 0  then > 0  and the unstable solution prevails.

However, higher levels of new technology, a, will ultimately decrease 
∂2x

∂a2  and therefore

∂2
x

∂a2  to levels such that < 0  will give < 0  and the locally stable form of the saddlepath,

SS in Figure 1.
With this in mind, consider a relatively large set of n possible values of adopted

technologies, a, denoted ai{ } i=1

n
.  Each of these ai = ˆ a i{ }i =1

n
 can then be nominated in turn to

sequentially calculate the relevant linearised saddlepath in the relatively small non-
overlapping neighborhoods around each ai , defined as ˆ a i ±( ) .  For a larger number of smaller
neighborhoods the set becomes:

  
lim
n→ ∞

lim
→∞

ai = ˆ a i ±{ }i =1

n
= ai

∀i
U (4.20)

This set comprises three adjoint subsets:

  
ai = a j{ }U

∀i
U ak{ }U al{ } (4.21)

which each representing increasing, constant and decreasing returns to scale respectively for
the Logistic function:

a j;  
∂2x

∂a j
2 > 0, 

∂2
x

∂a j
2 > 0

 
 
 

  

 
 
 

  
,  ak; 

∂2x

∂ak
2 =

∂2
x

∂ak
2 = 0

 
 
 

 
 
 
,  al; 

∂2x

∂al
2 < 0, 

∂2
x

∂al
2 < 0

 
 
 

 
 
 

Applying equation (4.3) gives the values of Tobin's q for the three ranges and an
assumed continuous characterisation of this set is shown as VV in Figure 3.  This curve is
drawn with local instability around the steady state a0

*  in the first set and local stability
around a1

*  in the third set.  Curve VV must be concave to the a axis because the Logistic
production function for the intermediate capital good, x, given by equation (4.13)
demonstrates increasing returns which become decreasing after point B.  Growth is
characterised in this model for qa > 1  and the arrows show the dynamics of motion on VV
between points A and D.  The rate of adoption of technology is increasing between points A

and B since 
∂2

x

∂a2 > 0  giving > 0  in equation (4.17), a − ˆ a = a − a0( )e t , for the locally

linearised portion of VV around ˆ a , where a0
* < ˆ a < a* .

For ˜ a  occurring after the point B, that is where a* < ˜ a < a1
* , then 

∂2
x

∂a2 < 0  giving

< 0  in equation (4.19) and therefore < 0  in equation (4.17).  This ensures that the rate of
adoption of new technology will fall until point D is eventually reached.
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FIGURE 3.

This process of adoption can be illustrated by modifying the Logistic production
function of equation (4.13) to include both a short run variable technology factor of
production, a1, and a long run technology factor of production, a2 , which is assumed to be
fixed in the short run.  That is:

x = L a1 ,  a2
4 ,  hx( )

= 1

1 + 2e− 3a1
a2

4ha 4 > 0
(4.22)

The short run rate of adoption of new technology is unchanged from equation (4.4):

˙ a 1 = qa − 1( )ha a1 (4.23)

However, the adoption of technology in the long run is defined as:

˙ a 2 t( ) =
0 t < t

qa t( ) − 1[ ]ha t( )a2 t( ) t ≥ t

 
 
 

  
(4.24)

Equation (4.24) shows that a2 t( ) = a 2  for t < t  whilst it will be increasing for t ≥ t .  The
slope of VV is given by equation (4.14) such that an increase in a2  at time t may increase
∂2

x

∂a2  and therefore qa . 19  Given that the slope of the curve will become steeper and the

                                                
19 Differentiating equation (4.22) with respect to the variable technology, a1  holding a2  and ha  fixed in the

short run gives, ∂2x ∂a1
2 = 1 2 3

2e 3a1
2 − e 3a 1( ) 2 + e 3a 1( )− 3

a2
4 ha .  An increase in a2  will therefore

increase ∂2x ∂a1
2 , ∂2

x ∂a1
2  and therefore qa .



starting point is later in time reflecting a higher starting level of technology, a > a0
* , then the

new curve denoted WW must cut the initial curve VV from below.  This effect is also shown
in Figure 3.

MM
1

aa

qa

FIGURE 4.

M

M

x

a
FIGURE 5.

Indeed a family of possible curves may exist and a monopolist having adopted new
technology and moving towards point C along the curve VV will experience diminishing
returns and reduced marginal profits indicated by falling qa .  The existing monopolist or new
entrant, realising that the new production process characterised by WW exhibits increasing
returns to scale, will maximise profits by switching at (or near) point C to the new process
characterised by WW.  It is also important to note that the rate of adoption of this newer
process will be faster since WW > VV  at point C.  This switching to the new higher
technology path, which dominates the older technology in terms of relatively higher Tobin's q
and speed of adoption, characterises the process of creative destruction.



Maximising over all possible production technologies describes the possible envelopes
MM in Figures 4 and 5. These envelopes describe the intertemporal adoption of new
technology, which clearly resemble the spatial metaproduction function described by  Hyami
and Ruttan (1971).20  The characterised shape of this metaproduction function also bears
remarkable similarities with the stylized facts reported in Maddison (1991) and reproduced in
Figure 6.  The measure of productivity growth is GDP per man-hour in 1985 constant $US
for the period 1580-1989.  The shifts in productivity leadership from the Netherlands to the
U.K. during the period 1820-1840, and then to the USA around 1890, are noteworthy.21

Maddison (1991) also examines the catching up of Japan, particularly during the last four
decades.  The Japanese success in closing the gap, in terms of per capita GDP growth
reproduced in Figure 7, is remarkable.  The use of new technology, produced in the global
research sector as well as in Japan, seems to be driving this process.

FIGURE 6.—Changes in Productivity Leadership, 1580-1989
(GDP per man hour in 1985 $US)

Source:  Maddison, A. (1991), Dynamic Forces in Capitalist Development,
Oxford University Press, New York, p. 31.

                                                
20 Details are reported in Chaudhri and Wilson (1995).
21 Baumol et.al. (1988) examination of the US leadership corroborates this evidence for recent decades.



FIGURE 7.—Comparisons of Per Capita GDP Growth, 1890-1989
(Logarithm of GDP per capita in 1985 $US)

Source:  Maddison, A. (1991), Dynamic Forces in Capitalist Development,
Oxford University Press, New York, p. 31.

5.  CONCLUSIONS AND IMPLICATIONS

This paper develops a four-sector model of long run capitalist economic growth.  The
approach adopts Aghion and Howitt's (1992) suggestion to model economic growth in terms
of creative destruction, which explicitly incorporates technological change in physical and
human capital.  This is done by modeling endogenous growth in the form of Romer's (1990)
technological innovation in monopolistic capital goods production, where human capital and
non-rival, partially excludable, technology are inputs to production.  Abstracting from short
term concerns and business cycles gives a better theoretical approximation to the functioning
of the capitalist system and the drivers of long run economic growth. The model not only
incorporates Schumpeterian ideas of creative destruction as the guiding spirit of economic
development, it also accommodates the increasing returns ideas of Young (1928) and Schultz
(1990).

The contribution of this paper is the inclusion of variable returns to scale in capital
goods production.  An example characterises production as initially increasing returns to
scale, which subsequently diminish as production expands until decreasing returns to scale are
realised.  The profit maximising monopolist's behaviour is analysed in terms of a variable
Tobin's q, which derive possible saddlepath solutions.  These solutions explain the adoption
of new technology as the process of creative destruction, which drive long run economic
growth.  The set of saddlepath solutions are modelled to form a nonlinear class reflecting the
changing returns to scale. The rate of adoption of new technology is consequently variable
with important variations over time.  Finally, the class of solutions define an endogenously
evolving Hyami and Ruttan (1971) style metaproduction function. This specification
provides for stable long run growth with output and productivity growth alternatively
accelerating and decelerating in non-mechanical ways. The model stylizes Maddison's (1991)
historical evidence of shifting technological leadership in capitalist economic growth
processes during the last two centuries.
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