
University of Wollongong
Research Online

Department of Computing Science Working Paper
Series Faculty of Engineering and Information Sciences

1982

Project management by checkpoint control
P. J. McKerrow
University of Wollongong, phillip@uow.edu.au

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
McKerrow, P. J., Project management by checkpoint control, Department of Computing Science, University of Wollongong, Working
Paper 82-3, 1982, 10p.
http://ro.uow.edu.au/compsciwp/22

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/compsciwp
http://ro.uow.edu.au/compsciwp
http://ro.uow.edu.au/eis
http://ro.uow.edu.au/
http://ro.uow.edu.au/


PROJECT MANAGEMENT BY CHECKPOINT CONTROL

Phillip John McKerrow

Department of Computing Science,
The University of Wollongong,

Post Office Box 1144,
Wollongong, N.S.W. 2500

Australia.

ABSTRACT

Students majoring in computing science are
required to undertake a software proj~ct during
their third year of study. The aim of the project
course is to give students some "real-world"
experience at designing and implementing a reason­
ably complex piece of software. Rapidly increas­
ing student numbers has caused considerable super­
vision problems for academic staff.

A method of project management using check­
point control meetings and a rigorous design dis­
cipline was used in 1981. This method allowed the
staff to keep close contact with the students'
progress without consuming large amounts of time
while allowing students to develop individual and
creative solutions to problems.

Keywords: Project Management, Checkpoint Control,
Rigorous Design Discipline, Computing
Science, Supervision, Students, Project
Stages.

1. Introduction

Students majoring in Computing Science at The University of
Wollongong are required to undertake a software project during
their third year of study. Prior to this course the majority of
their assignments consist of short programs designed to teach
specific principles and algorithms. The aim of the project
course ;s to give students experience at designing and implement­
ing a reasonable size piece of software, typical of the jobs they
are likely to get on entering the workforce [1]. It provides



- 2 -

them with an opportunity to acquire essential software engineer­
ing skills in the areas of time management, design methodology
and idea communication.

For many students this is the first time they have to write
a program larger than four pages of code. Thus as part of the
course they are required to learn how to plan and execute a large
project and, due to the time constraints, do it right the first
time. This involves learning to think from a system design,
application and user point of view rather than from a computer
expert point of view.

Student numbers in computing science are increasing rapidly.
Supervision of these projects can consume a considerable amount
of staff time and pose complex evaluation problems. Therefore,
the continuance of project courses depends upon finding manage­
ment techniques that are efficient in staff time.

In previous years the students had all been excellent. The
1981 group included a broad spectrum of scholastic ability (table
1). An ad-hoc approach to project supervision had previously run
into problems. A method of project supervision that allowed the
following goals to be achieved was needed.

(1) Students should
program within
hours per week)
"bug free".

learn how to design and implement a large
severe time constraints (14 weeks at 12

that met the design requirements and was

(ii) The work done should be useful either to the student,
supervisor, department or employer in the future.

(iii) Students should be as independent and creative as possi­
ble.

(iv) A supervisor should be in complete touch with a project
without it consuming excessive time.

(v) The evaluation procedure should be common to all projects
and take into account both the effectiveness of the work
done and the completeness of the project.

(vi) In addition to writing and documenting the code the stu­
dent is required to hand in a project report and present a
seminar to his peers, both of professional standard.

2. Concepts of Checkpoint Control

In an attempt to meet these goals an amalgum of project
management methods [2] used successfully in industrial design
laboratories was implemented. Management by checkpoint control
consists of regular meetings between supervisor, student, and
other interested parties throughout the course of a project.
Checkpoint control differs from other management methods in the



- 3 -

very clear definition of the procedure at checkpoint meetings.

When a project is commenced an initial meeting is held at
which:

(i) the goals of the project are defined,

(ii) all known aspects are discussed,

(iii) possible approaches are brainstormed,

(iv) the project is split into several logical stages,

(v) goals are set for the first stage,

(vi) resources are allocated,

(vii) dead lines are established, and

(viii) the next meeting is arranged.

At subsequent checkpoint meetings the design or code is
walked through and the following topics are discussed:

(i) Progress since the last meeting.

(ii) Problems which have occurred and their solutions.

(iii) Reasons for failure to meet goals and corrective action to
be taken.

(iv) Goals to be achieved by the next checkpoint.

(v) Time and place of the next checkpoint meeting.

The regularity of checkpoint meetings varies from project to
project depending upon the ability and experience of the student.
A meeting must be held at the end of each major stage and it may
be necessary to meet more often. This method of project manage-
ment has the following advantages:

(i) The supervisor can keep close contact with the project
without it consuming large amounts of his time.

(ii) Due to lack of experience many students do not know how to
start a project. Checkpoint control overcomes this prob­
lem through its structured approach, thus saving students
time.

(iii) The student is free to develop his own ideas and to
express himself within the framework of specific goals.
As a result he is not frustrated by over supervision while
still getting regular feedback on his progress.



(iv)

- 4 -

Goals are set by the student
supervisor, increasing his
because he owns them.

in consultation with his
motivation to achieve them

(v) When a project starts to turn sour the supervisor is
rapidly alerted to the fact.

(vi) Supervisors can easily gauge the amount of help a student
needs and detect those students who cannot organise them­
selves.

3. Implementation of Checkpoint Control

The implementation of any project management scheme will
vary from project to project due to particular characteristics of
the project, the supervisor and the student. To maintain a com­
monality between projects, in order to simplify final marking, a
structured implementation of checkpoint control was developed.
This included formalising the concepts into s~rict guidelines for
the checkpoint control meetings and a comprehensive description
of the normal stages of a project.

In addition each student was required to hand in a progress
report when each stage was complete. This ,forced students to get
their thoughts onto paper in a coherent manner and simplified the
production of the final report. Also it helped to teach good
documentation techniques as well as providing a record of the
work done for final project evaluation.

4. Stages of ~ Project

As many of the students had not previously attempted a pro­
ject of this nature it was necessary to provide a project struc­
ture for them to work to. This gave a general indication of
where the checkpoints should be and placed a heavy emphasis on
design. Many students can code small tutorial problems directly
and their natural inclination is to attempt a project in the same
manner; normally resulting in disaster.

,

The design process deliberately flows from outputs, to algo­
rithms, to data structure to inputs [3] in order to force the
students to define clearly what his program is to do and then to
determine what is needed to do it. This process is not always
easy as the desired outputs may not be obvious. A group design­
ing a personal computer operating system took several weeks to
realise that the outputs are the results of the user commands and
thus the design should be commenced by defining these commands.

The amount of time spent working
the student but a guide was given by
submission of stage progress reports.
ject stages are outlined below.

on each stage was left to
setting final dates for the
The six recommended pro-



- 5 -

1. Project Commencement - Following the initial checkpoint
meeting the student has to:

(i) write a description of the project,

(ii) define the expected resuLts,

(iii) split the project into major stages,

(iv) allocate completion dates for each stage, and

(v) compile a list of relevant literature, software and
hardware.

2. System Design - define in concept a method of achieving
the desired resuLts.

(i) List the major sections and their underlying concepts.

(ii) Develop a block diagram of the system showing the major
parts and the desired data flow.

(iii) Write a general description of each section.

(iv) Specify the necessary hardware and software.

(v) Define in concept and then in detail the program outputs
incLuding displays, reports, files and instruction
sequences.

3. Detailed Design - fleshes out the system, starting with
a precise definition of the outputs and working progressively
toward the inputs.

(i) Complete the detaiLed design of the outputs. Specify
exactly the interface to the person or program receiving
these outputs (draw diagrams of displays).

(ii) Establish the aLgorithms needed to produce these outputs.

(iii) Define the data base needed by these aLgorithms.

(iv) Specify the inputs required from the user (or file etc.)
to provide the data for this data base. The interface
between the input source and the program must be defined
cLearly.

(v) Repeat the above steps several times until a clean design
is achieved. It may be necessary to implement some things
to check concepts.



- 6 -

(vi) Design program test procedures and test data sets for each
section.

4. Program Design - The distinction between program design
and detailed design is often fuzzy particularly if pseudo code is
used as a design tool. In many cases there is a direct
correspondence between the two. However in some systems, timing
and language constraints result in a program design significantly
different to the system design.

(i) Design the data base.

(ii) Split the program(s) into logical sections paying particu­
lar attention to data flow.

(iii) Design the main line.

(iv) Define and design common procedures.

(v) Design major procedures and sub-procedures

(vi) Draw a diagram to show the interconnection of all pro­
cedures.

1. Code and Debug Mainline - the main line is written and
tested using a set of dummy procedures. It can then be used as a
test bed for the rest of the code. As each procedure is written
it can be plugged into the mainline for testing.

6. Coding and Debugging - The rest of the code is written,
tested and debugged, using the previously defined test sets in
the following order:

(i) Data base.

(ii) Common procedures as they occur.

(iii) Output procedures.

(iv) Calculation algorithms.

(v) Input procedures.

Finally the whole system is checked to see if it meets the design
goals and produces the desired results.

5. Observations

At the completion of the project the staff members involved
were interviewed in an attempt to measure th~ success of project
management by checkpoint control. The following observations



- 7 -

were made:

(i) If a student has not written a similar program before then
he may need to experiment with a simple implementation to
get a feel for the complexity of the problem before
launching into the design.

(ii) At the start of the project many students were obviously
not aware of the importance of system design. They con­
sidered coding to be more important. Many students found
thinking about system concepts difficult and tended to
think in terms of code. As a result they confused
detailed design and program design; often overlooking
vital applications details.

(iii) The structured approach of having specific project stages
and regular checkpoint meetings identified a clear path
for the students to follow and consequently they had a
better idea about what to do and how to· do it.

(iv) Responsibility for completing the project was placed on
the stud~nts in a more organised way and as a result many
learned how to organise their own time.

(v) Time spent by staff supervising projects was 0.5 to 1 hour
per week per student irrespective of the type of project.
It took roughly the same amount of time to manage several
students doing the same project as several students doing
a joint project or several students doing different pro­
jects. Supervision time tended to be a function of the
complexity of the project and the quality of the student.

(vi) Several students rebelled against any form of rigorous
design discipline and tried to design by coding. After a
few weeks work they had burnt their fingers badly and
wanted to start again in accordance with the suggested
project stages. They did not have time to do so and had
to make their poor designs work. The major problem in
each case was that the system had not been modularised
cleanly.

(vii) Supervisors were able
traps and, when the
them to avoid them.
Traps included:

to detect students falling into
students accepted the advice, help

(a) Projects growing too large for the time available.

(b) Initial designs that were too complex and
many options. Those who designed well were
get a subset going to test the ideas before
menting all the extras.

had too
able to

imple-



Result Number of Students Level variation from other
Level at each level computing to project

Other Project no up down
Computi ng change

Fail 3 3 a 3 a
Pass 4 3 3 1 a
Credit 3 7 1 1 1
D 8 4 2 3 3
High D 5 6 3 a 2

Table 1. Distribution of scholastic ability in other
computing subjects and the project for the
twenty-three students who completed the
course. The level variation shows the
shift in student marks in the project·"
relative to other computing subjects.



- 8 -

Cc) Redesigning part way through to add a new "you
beaut" feature.

Cd) Getting bogged down at a particular stage and
ignoring deadlines.

Ce) Forgetting human engineering aspects and taking the
implementation simple route.

<f) Getting wrapped up in a project and loosing track
of time.

6. Results

The results in terms of student grades are shown in table 1.
All the students who received high distinctions for the project
readily accepted the guidelines and took responsibility for set­
ting and sticking to their own goaLs. It couLd be argued that
these students wouLd have done weLL any way but the LeveL varia­
tions show that those who faiLed the project 'had previousLy been
high achievers and those who had previousLy been poor students
improved their performance.

Examination of individuaL student results revealed that
those whose performance dropped were either unable to discipLine
themselves to a rigorous design procedure or, acting contrary to
their supervisors advice, feLL into one of the traps mentioned
above. In the main students who improved their performance were
forced to work according to the guidelines by their supervisors.

7. ConcLusion

Many students have remarked that they Learned more from
doing the software project than from any other course, making the
heavy work load worth while. Some saw it as an essentiaL pre­
requisite to obtaining employment. Some disputes arose over the
final result because in most courses the result is directly pro­
portional to the amount of work done where in the project the
effectiveness of the work done is more significant.

Management of the projects by checkpoint control allowed the
staff to keep in close contact with the progress of the projects
without it consuming large amounts of time. Student creativity
was encouraged and directed not frustrated.

Students, many of whom were not previously aware of the
importance of system design, learned how to design and implement
a significant piece of code and get it right the first time.
Those who rebelled against the structured design rules suffered
where those who willingly accepted checkpoint control did well.
Project reports and seminar presentations enabled the development
of communication skilLs.



- 9 -

8. Bibliography

1. Busenberg S.N., Wing C.T., An Academic Program Providing
Realistic Training in Software Engineering, Communications of the
ACM, Vol 22 N06, June 1979

2. Management Series, Electronic Des~gn, Hayden, 1977-78

3. Orr K. T., f1Structured System Development fl
, Yourdan Press.


	University of Wollongong
	Research Online
	1982

	Project management by checkpoint control
	P. J. McKerrow
	Recommended Citation





