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Adaptive Inference for Multi-Stage Survey Data
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Abstract

Two-stage sampling usually leads to higher variances for estimators of means and

regression coefficients, because of intra-cluster homogeneity. One way of allowing for

clustering in fitting a linear regression model is to use a linear mixed model with two

levels. If the estimated intra-cluster correlation is close to zero, it may be acceptable

to ignore clustering and use a single level model.

In this paper an adaptive strategy is evaluated for estimating the variances of

estimated regression coefficients. The strategy is based on testing the null hypothesis

that random effect variance component is zero. If this hypothesis is accepted the

estimated variances of estimated regression coefficients are extracted from the one-

level linear model. Otherwise, the estimated variance is based on the linear mixed

model, or, alternatively the Huber-White robust variance estimator is used.

A simulation study is used to show that the adaptive approach provides reasonably

correct inference in a simple case.

Key words: Adaptive estimation, Variance components, cluster sampling, bias,

multi-level models, Huber-White standard error

1 Introduction

Two-stage sampling is used in many surveys of social, health, economic and demographic

topics. Final population units are grouped into primary sampling units (PSUs). The first
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stage of selection is a sample of PSUs and the second stage is a sample of units within

selected PSUs. For example, PSUs might be schools and units might be students in schools,

or PSUs might be households and units might be people, or PSUs might be geographic areas

and units might be households, see for example (Goldstein, 2003; Snijders and Bosker, 1999;

Cochran, 1977; Kish, 1965).

Two-stage sampling is typically used because

• There is no sampling frame of final units, but a frame of PSUs (e.g. a list of suburbs)

is available.

• Cost efficiency; for example it is much cheaper to draw a two-stage sample of 100

students from 10 schools than draw a simple random sample of 100 students, as those

students might be dispersed over 100 schools (Snijders, 2001).

• Within-group correlations may be of interest in their own right. For instance, the

correlation between values for students in the same school might be of interest.

A complication of two-stage sampling is that values of interest may tend to be more

similar for units from the same PSU than for units from different PSUs. If so, this should be

reflected in the analysis procedure. One way of doing this is by fitting a multilevel model.

Multilevel models are generalization of regression models. Let yij be a dependent variable

of interest, and xij a vector of covariates for unit j in PSU i. The two-level linear mixed

model (LMM) (Goldstein, 2003) is given by

yij = β′xij + bi + eij, i = 1, 2, · · · , c, j = 1, 2, · · · ,mi (1)
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where c denotes the number of PSUs in the sample, mi denotes the number of observations

selected in PSU i, β is the vector of unknown regression coefficients, bi ∼ N(0, σ2
b ) is a PSU

specific random effect, and eij is assumed to be N(0, σ2
e). Therefore yij ∼ N(β′xij, σ

2
b + σ2

e),

with variance σ2
y = σ2

b + σ2
e . Variances of regression coefficient estimates can be estimated

by either standard likelihood theory based on model (1) (West et al., 2007), or by using

the robust Huber-White estimator (Huber, 1967; White, 1982). We have assumed that the

sampling design is ignorable (Skinner and Marcel, 2004), so that a simple LMM can be

applied to the sample. The issues associated with the effect of more complex sampling

designs on used models is discussed by Pfeffermann et al. (1998).

The intra-class correlation (ρ) is a measure of the association between the regression

residuals for members of the same PSU. It is the ratio of the population variance between

PSUs and the total variance. Consequently, it is given by the formula ρ =
σ2
b

σ2
b+σ2

e
(Kish,

1965).

In practice the intra-class correlation is often quite small. For example, if units within

PSUs are no more homogenous than units over all PSUs, then the intra-class correlation is

zero. On the other hand, if units from the same PSU have equal values then the intra-class

correlation is 1. Generally the intra-class correlation is positive, but in case of equal number

of observations in each PSU (Hox, 2002), it is usually less than 0.1 when PSUs are geographic

areas and final units are households in these areas (Verma et al., 1980). When PSUs are

households and final units are people in households it is between 0 and 0.2 (Clark and Steel,

2002). Values in the range 0.01-0.05 are possible.
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There are number of possible approaches for estimating the regression coefficients and

their variances when the intraclass correlation (ρ) is thought to be small or has been estimated

as a small value. One is to fit a linear mixed model regardless. Another is to fit a linear model

assuming independent observations. However, if the sample design is relatively clustered,

that is a large number of final units are selected from each PSU, the estimated variances

resulting from a linear mixed model can be a lot larger those obtained from a linear model

assuming independent observations, leading to wider confidence intervals. A third alternative

is to use an adaptive strategy based on testing the null hypothesis that the random effect

variance component, σ2
b , is zero. If the null hypothesis is accepted we use the linear model

for estimating the variances of the estimated regression coefficients β̂. On the other hand, if

the null hypothesis is rejected we use the estimated variance for β̂ either using the standard

likelihood theory variance estimator for the LMM or the Huber-White method.

This paper is divided into five sections. In Section 2 we will describe the linear mixed

model including an outline of the standard likelihood theory estimator of β and var(β̂) and

the Huber-White estimator of var(β̂). In Section 3 an adaptive strategy will be described.

In Section 4 a simulation study of the adaptive and other methods will be described. In

Section 5 we will draw conclusions.
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2 Fitting the Multilevel Model

2.1 The Model

Let X be the mi × p design matrix, which is assumed to be of rank p, Y = (y′1, · · · ,y′c) is

the complete set of n observations in the c PSUs, where yi = (yi1, · · · , yimi)′ is the observed

vector for the ith PSU.

Model (1) can also be written as

Y ∼ N(Xβ,V) (2)

where V is a block diagonal matrix, V = diag(Vi, i = 1, · · · , c), and

Vi = σ2
bJmi + σ2

eImi (3)

Jmi is an mi×mi matrix with all entries equal to 1, and Imi is the mi×mi identity matrix.

However, the variance components contained in Vi are usually not known. Therefore, they

are usually estimated by Restricted Maximum Likelihood (REML) giving the estimate V̂i.

REML was first introduced by Patterson and Thompson (1971) as a modification of

Maximum Likelihood. The REML method is often presented as a technique based on max-

imization of the likelihood of a set of linear combinations of the elements of the response

variable y, say k′y, where k′ is chosen so that k′y is free of fixed effects. One of the attractive

aspects of REML is that it takes into account the degrees of freedom in estimation of the

variance components by the use of the fixed effects part of the model, see for example Ver-

beke and Molenberghs (2000); Diggle et al. (1994); McCulloch and Searle (2001). There is

also no loss of information about the variance components when the inference is derived from

5



k′y rather than y. Sahai and Ojeda (2005) presented the REML estimates of the variance

components σ̂2
b , with σ̂2

b ≥ 0, and σ̂2
e to be the solutions of the following system of equations

n−c
σ̂2
e

+
∑c

i=1
λ̂i
mi
−

∑c
i=1

λ̂2
i

mi∑c
i=1 λ̂i

= (n−c)MSE

σ̂4
e

+
∑c

i=1
λ̂2
i

mi
(ȳi. − β̂)2∑c

i=1 λ̂i −
∑c
i=1 λ̂

2
i∑c

i=1 λ̂i
=

∑c
i=1 λ̂

2
i (ȳi. − β̂)2

β̂ = (
∑c

i=1 x′iV̂
−1

i xi)
−1
∑c

i=1 x′iV̂
−1

i yi

 (4)

where

MSA = 1
(c−1)

∑c
i=1 mi(ȳi. − ȳ..)2

MSE = 1
n−c
∑c

i=1

∑mi
j=1(yij − ȳi.)2

λ̂i = mi
σ̂2
e+miσ̂2

b

There is no explicit solution for this system of equations in general. While in the balanced

data case (mi = m for all i) (Sahai and Ojeda, 2004), these estimates reduced to

σ̂2
e = min(MSE, n−c

n−1
MSE + c−1

n−1
MSA)

σ̂2
b = 1

m
max(MSA−MSE, 0)

 (5)

The simple special case of model specified by 1 where the model includes just a grand mean

parameter will be used in the simulation study in Section 4. This model is given by defining

xij to be 1 for all i, j

yij = β + bi + eij, i = 1, 2, · · · , c ; j = 1, 2, · · · ,mi (6)

In this case, β̂ becomes

β̂ =

∑c
i=1 λ̂iȳi.∑c
i=1 λ̂i

(7)

This case is important in practice since often two stage surveys focus on estimation of means.

In the balanced case this reduces to

β̂ = ȳ.. (8)
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2.2 Likelihood Theory Estimator of var(β̂)

In this section, we will discuss the variances of the estimated regression coefficients and their

estimators. The estimated variance of β̂ given in equation (4) is given by

v̂ar(β̂) = (
∑c

i=1 xiV̂
−1

i xi)
−1

}
(9)

where V̂i = σ̂2
bJmi + σ̂

2
eImi . For the special case (6) of an intercept-only model, this simplifies

to

v̂ar(β̂) =

{
c∑
i=1

mi

σ̂2
e +miσ̂2

b

}−1

(10)

In the balanced data case, the variance estimator simplifies further to

v̂ar(β̂) =
1

c

[
σ̂2
b +

σ̂2
e

m

]
(11)

The (1− α)100%CI confidence interval for β̂ is given by

β̂ ± t(df,1−α
2

)ŝe(β̂) (12)

where ŝe(β̂) = (v̂ar(β̂))
1
2 and the degrees of freedom (df) defined by Faes et al. (2004) as

dfLMM = ne − 1

where ne is the effective sample size, which is defined by Kish (1965) as the ratio of the

sample size and the design effect (deff(β̂)). Kish (1965) also defined the design effect for

β̂ = ȳ by deff(β̂) = 1 + (m− 1)ρ, where m is the average number of observations per PSU

and ρ is the intraclass correlation. There is some debate over the appropriate degrees of

freedom in (12). The degrees of freedom defined here are not exact, other approaches have
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been suggested by Ruppert et al. (2003). For large samples this is a minor concern as the

degrees of freedom will be large.

2.3 Huber-White Estimator

The estimator v̂ar(β̂) in (9) will be approximately unbiased provided the variance model (3)

is correct. If this is not the case, v̂ar(β̂) will be biased and inference will be incorrect. An

alternative to ML or REML estimates of var(β̂) is the robust variance estimate approach

described by Liang and Zeger (1986), in the context of modeling longitudinal data using

generalized estimating equations (GEE). This approach can be applied to the analysis of

data collected using PSUs, where observations within PSUs might be correlated and the

observations in different PSUs are independent.

This approach can be referred to as robust or Huber-White variance estimation (Freed-

man, 2006). This approach will be used as an alternative approach to estimating var(β̂) in

this paper. The method yields asymptotically consistent covariance matrix estimates even

if the variances and covariances assumed in model specified by 2 are incorrect. It is still

necessary to assume that the observations from different PSUs are independent.

Equation 4 defines β̂ for the model specified in 2 and 3, the variance of this estimator is

given by equation 9. An alternative estimator of Vi is V̂
Hub

i = êiê
′
i, where êi = yi − xiβ̂.

V̂
Hub

i is approximately unbiased for Vi even if (3) does not apply.

E(V̂
Hub

i ) = E(êiê
′
i)

≈ E[(yi − xiβ)(yi − xiβ)′]

= Vi

(13)
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Note that

var(β̂) = var

(
(
∑c

i=1 x′iV̂
−1

i xi)
−1
∑c

i=1 x′iV̂
−1

i yi

)
≈ (

∑c
i=1 x′iV̂

−1

i xi)
−1(
∑c

i=1 x′iV̂
−1

i V−1
i V̂

−1

i xi)
−1(
∑c

i=1 x′iV̂
−1

i xi)
−1

(14)

One way to make v̂ar(β̂) robust to misspecification of the variance model is to substitute

the robust estimator V̂
Hub

i in (14) as follows

̂̂var(β̂) =

(∑c
i=1 x′iV̂

−1

i xi

)−1(∑c
i=1 x′iV̂

−1

i (V̂Hub−1
i V̂i)

−1x′i

)(∑c
i=1 x′iV̂

−1
i xi

)−1

(15)

When there is only an intercept in the model (xi = 1), (15) becomes

̂̂var(β̂) =
∑c
i=1 λ̂

2
i (ȳi.−β̂)2

(
∑c
i=1 λ̂i)

2
(16)

Derivation of 16 from 15

As V̂i = σ̂2
eImi + σ̂2

bJmi , therefore

c∑
i=1

x′iV̂
−1
i xi =

c∑
i=1

1′mi

[
1

σ̂2
e

(Imi)−
σ̂2
b

σ̂2
e(σ̂

2
e +miσ̂2

b )
Jmi

]
1mi

=
c∑
i=1

1′mi

[
1

σ̂2
e

(Imi)−
σ̂2
b

σ̂2
e(σ̂

2
e +miσ̂2

b )
(1mi1

′
mi

)

]
1mi

=
c∑
i=1

[
1

σ̂2
e

(1′miImi1mi)−
σ̂2
b

σ̂2
e(σ̂

2
e +miσ̂2

b )
1′mi(1mi1

′
mi

)1mi

]

9



But 1miImi = 1mi , Imi1
′
mi

= 1′mi and 1′mi1mi = mi

∴
c∑
i=1

x′iV̂
−1
i xi =

c∑
i=1

[
1

σ̂2
e

(1′mi1mi)−
σ̂2
b

σ̂2
e(σ̂

2
e +miσ̂2

b )
1′mi1mi1

′
mi

1mi

]
c∑
i=1

x′iV̂
−1
i xi =

c∑
i=1

[
mi

σ̂2
e

− m2
i σ̂

2
b

σ̂2
e(σ̂

2
e +miσ̂2

b )

]
· · ·

=
c∑
i=1

[
mi

σ̂2
e +miσ̂2

b

]

=
c∑
i=1

λ̂i

∴

(
c∑
i=1

x′iV̂
−1
i xi

)−1

=

(
c∑
i=1

λ̂i

)−1

(17)

∴
c∑
i=1

x′iV̂
−1
i êiê

′
iV̂
−1
i xi =

c∑
i=1

1′mi

{
1

σ̂2
e

(Imi)−
σ̂2
b

σ̂2
e(σ̂

2
e +miσ̂2

b )
(Jmi)

}
êiê
′
i

×

{
1

σ̂2
e

(Imi)−
σ̂2
b

σ̂2
e(σ̂

2
e +miσ̂2

b )
(Jmi)

}
1mi

=
c∑
i=1

1′mi

{
1

σ̂2
e

(Imi)−
σ̂2
b

σ̂2
e(σ̂

2
e +miσ̂2

b )
(1mi1

′
mi

)

}
êiê
′
i

×

{
1

σ̂2
e

(Imi)−
σ̂2
b

σ̂2
e(σ̂

2
e +miσ̂2

b )
(1mi1

′
mi

)

}
1mi

· · ·

=
c∑
i=1

{
1

σ̂2
e

(1′mi)−
miσ̂

2
b

σ̂2
e(σ̂

2
e +miσ̂2

b )
(1′mi)

}
êiê
′
i

×

{
1

σ̂2
e

(1mi)−
miσ̂

2
b

σ̂2
e(σ̂

2
e +miσ̂2

b )
(1mi)

}
· · ·

=
c∑
i=1

{
1

σ̂2
e +miσ̂2

b

}2

1′mi êiê
′
i1mi (18)
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But

1′mi êiê
′
i1mi = 1′mi(yi − xiβ̂)(yi − xiβ̂)′1mi

(1′miyi − 1′mi
1mi

β̂)(y′i1mi
− 1′mi

1mi
β̂)

· · ·

= (miȳi. −miβ̂)2

= m2
i (ȳi. − β̂)2 (19)

Therefore [
c∑
i=1

x′iV̂
−1
i êiê

′
iV̂
−1
i xi

]
=

c∑
i=1

{
1

σ̂2
e +miσ̂2

b

}2

m2
i (yij − β̂)2

=
c∑
i=1

{
mi

σ̂2
e +miσ̂2

b

}2

(yij − β̂)2

=
c∑
i=1

λ̂2
i (yij − β̂)2 (20)

Therefore, from (20) and (17) the estimated Huber-White variance of (β̂) is given by

v̂ar(β̂) =

(
c∑
i=1

λ̂i

)−2 c∑
i=1

λ̂2
i (yij − β̂)2

=

∑c
i=1 λ̂

2
i (yij − β̂)2(∑c
i=1 λ̂i

)2 (21)

where

β̂ =

∑c
i=1 λ̂iȳi.∑c
i=1 λ̂i

(22)

11



In the balanced data case, (i.e. mi = m), from equation (8) and since λ̂i is constant this

estimator becomes

̂̂var(β̂) = 1
c(c−1)

∑c
i=1(ȳi. − ȳ..)2 (23)

Derivation of 23 from 21

In this case λi = λ for all i, therefore

v̂ar(β̂) = v̂ar(ȳ..) (24)

=
1

c(c− 1)

c∑
i=1

(ȳi. − ȳ..)2

2.4 REML Likelihood Ratio Test (RLRT) For Testing H0 : σ2
b = 0

Suppose we want to test H0 : σ2
b = 0 vs. H0 : σ2

b > 0, the REML estimators can be used to

derive the likelihood ratio test (LRT) statistic for this test.

The problem of testing H0 : σ2
b = 0 using the likelihood ratio test for the large-sample is

discussed by Self and Liang (1987) and Stram and Lee (1994). Under H0 the true parameter

value is on the boundary of the parameter space, therefore the likelihood ratio test statistic

has a distribution that is essentially the mixtures of χ2 distributions under nonstandard

conditions assuming that response variables are iid (Self and Liang, 1987). This assumption

does not generally hold in linear mixed models. Stram and Lee (1994) used Self and Liang

(1987) results to prove that the asymptotic distribution of the likelihood ratio test for testing

H0 : σ2
b = 0 has an asymptotic 50:50 mixture of χ2 with 0 and 1 degrees of freedom under

H0 rather than the classical single χ2 if the data are iid under the null and alternative

hypotheses.
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The asymptotic distribution of LRT under the null hypothesis is a 50:50 mixture of χ2

(Freedman, 2006; Stram and Lee, 1994). As we are usually dealing with the unbalanced

nested design then the asymptotic distribution of the LRT statistic under the null when

testing a single variance component, i.e. when testing H0 : σ2
b = 0 vs H0 : σ2

b > 0, is

1
2
χ2

0 + 1
2
χ2

1 (Chernoff, 1954). The regression parameters were estimated over the parameter

space −∞ < β <∞, 0 ≤ σ2
e <∞ and 0 ≤ σ2

b <∞, but σ̂2
b may equal to zero.

In our case Visscher (2006) showed that the REML-based likelihood ratio test (RLRT)

is given by

−2log(LRT ) = (n− 1) log

(
n− c
n− 1

+
c− 1

n− 1
F

)
− (c− 1) log(F ) (25)

where F = MSA
MSE

and MSA and MSE are defined in (5). Formula (25) is working for all

values of F and that the value of −2log(LRT ) is zero if F ≤ 1. Equation (25) has been

used to test H0 : σ2
b = 0 against HA : σ2

b > 0 as well, which is used to define the adaptive

strategies.

It is desired in many problems to test the hypothesis that the parameter lies in part of

the parameter space Ω of dimension p, say Ω0, versus the alternative that this parameter lies

in the complement of Ω0, say Ω1. Suppose Ω0 ⊂ Ω is of dimension r and the parameter is an

interior point of Ω but it lies on the boundary of Ω0 and Ω1, therefore subject to regularity

conditions −2lnLRT follows the χ2 distribution with p − r degrees of freedom. Chernoff

(1954) derived the distribution of the likelihood ratio test when Ω0 and Ω1 have the same

dimension as Ω, with the parameter is an interior point in Ω and lies on the boundary of

Ω0 and Ω1. Unfortunately these regularity conditions are not satisfied in our case as our
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parameter lies on the boundary of the parameter space.

3 An Adaptive Strategy

In this paper, we consider two adaptive strategies. Both of them rely on the idea of testing

the variance component σ2
b in model (1).If we reject H0 : σ2

b = 0, we use the first adaptive

strategy which is utilizing the LMM-REML estimators of var(β̂) defined in equations (10)

and (11) in unbalanced and balanced data cases, respectively. On the other hand, if we

accept H0 the LM-REML estimator defined in equations (10) and (11) is employed but

σ2
b = 0 in this case which is equivalent to the standard linear model with independent errors.

This strategy is explained in Figure 1 below.

Flowchart explaining the

main study procedure

Test H0 : σ2
b = 0

using RLRT

ˆvarADM(β̂) = v̂arLM(β̂)ˆvarADM(β̂) = v̂arLMM(β̂)

Accept

Reject

Figure 1: Flowchart explaining the adaptive procedure using the estimated variance ex-

tracted from the LMM

where v̂arLM(β̂) is the estimator of varLM(β̂) using the LM strategy, v̂arLMM(β̂) is the

estimator of varLMM(β̂) using the LMM strategy and v̂arADM(β̂) is the adaptive estimator.

The second adaptive strategy, explained in Figure 2, is identical, except that v̂arHub(β̂)

is used instead of v̂arLMM(β̂) when H0 is rejected.
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Flowchart explaining the

main study procedure

Test H0 : σ2
b = 0

using RLRT

v̂arADH(β̂) = v̂arLM(β̂)v̂arADH(β̂) = v̂arHub(β̂)

Accept

Reject

Figure 2: Flowchart explaining the adaptive procedure using Huber-White estimator

where v̂arHub(β̂) is the estimator of varHub(β̂) using the Huber-White strategy.

The benefit of the adaptive strategy is that we use the simple linear model to derive

variance estimators, unless there is strong evidence that H0 : σ2
b > 0. This has benefit of

simplifying the model and may also give tighter confidence intervals. However, it is not

clear whether the adaptive approaches will give valid confidence intervals for β, because the

confidence intervals assume non-adaptive procedures.

4 Simulation Study

A simulation study was conducted to compare the adaptive and non-adaptive methods for

estimating var(β̂). Data were generated from model specified by 6, with mi = m and an

intercept only model, the values of ρ, m and c were varied. 1000 samples were generated in

each case.

This study is divided into three parts. The first was the estimation of the regression

coefficients β and the random effects variance component σ2
b as well as var(β̂). The estimated

15



regression coefficients β̂ and the estimators of var(β̂) were calculated for the LMM and

LM models using the lme and lm packages (Pinheiro and Bates, 2000) in the R statistical

environment (R Development Core Team, 2007).

The hypothesis H0 : σ2
b = 0 was tested as described in Section 2.4. The two adaptive

strategies (ADM) and (ADH) are defined as

v̂arADM(β̂) =

 v̂arLMM(β̂) if H0 is not retained

v̂arLM(β̂) if H0 is retained
(26)

v̂arADH(β̂) =

 v̂arHub(β̂) if H0 is not retained

v̂arLM(β̂) if H0 is retained
(27)

90% confidence intervals for β̂ are given by

(1− α)100%CI = β̂ ± t(df,1−α
2

)ŜE(β̂) (28)

where α = 0.1 and the degrees of freedom (df) are defined to be:

df =


n− 1 , using LM Est.

ne − 1 , using LMM Est.

c− 1 , using Huber-White Est.

(29)

Degrees of freedom for the first and second adaptive strategies (ADM) and (ADH) are defined

as

dfADM =

 n− 1 , if H0 accepted

ne − 1 , if H0 rejected
(30)

dfADH =

 c− 1 , if H0 accepted

ne − 1 , if H0 rejected
(31)

Tables 1 - 4 show the ratio of the mean estimated variance of β̂ using the four strategies

of estimation (ADM, ADH, LMM and Huber) to the true variance with ρ values 0, 0.025,

16



0.05 and 0.1. In all tables we used β = 0 and α = 0.1. They include the non-coverage

probabilities for testing H0 : β = 0 and the lengths of the confidence intervals of β as well as

the probability that H0 : σ2
b = 0 is rejected. Results on non-coverage and confidence interval

length are shown in graphical form in Figures 3 - 12. In these graphs we also include the

LM strategy of estimation so that the effect of completely ignoring the clustered nature of

the data can be examined.

The variance estimators are approximately unbiased as all ratios are approximately 1.

The only exception is the variance estimator using the LMM strategy, it tends to be biased

when we have 2 PSUs with all numbers of observations per PSU for all values of ρ. It, also

tends to be biased when we have 5 PSUs with 10 or fewer observations per PSU in case of

ρ = 0, 0.025 and 0.05. In case of ρ = 0.1 it tends to biased at m=2 and 5 and c = 5.

Non-coverage for β was close to the nominal rate of 10% when ρ = 0 for all methods.

For ρ 6= 0, Huber non-coverage was close to 10% in all cases. The LMM non-coverage

was close to 10% in most cases. However, when ρ was large (0.05 or 0.1) and m was large

(10 or more) and c was small (2 or 5), the LMM non-coverage was much larger. This may

be because of the difficulty in determining the appropriate degrees of freedom.

17
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Figure 3: confidence interval non-coverage using different variance estimation methods and

for various values of m and c, ρ=0

●

●

●

●

● ●

0 10 20 30 40 50

7
8

9
10

11

c =  2 

Observations from each PSU (m)

C
I n

on
−

co
ve

ra
ge

●

●

●

●

● ●

●

●

●

●

●

●

0 10 20 30 40 50

7
8

9
10

11

c =  5 

Observations from each PSU (m)

C
I n

on
−

co
ve

ra
ge

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

7
8

9
10

11

c =  10 

Observations from each PSU (m)

C
I n

on
−

co
ve

ra
ge

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

7
8

9
10

11

c =  25 

Observations from each PSU (m)

C
I n

on
−

co
ve

ra
ge

●

●

●

●

●

●

●

ADM
ADH
LM
LMM
Huber

Figure 4: confidence interval non-coverage using different variance estimation methods and

for various values of m and c, ρ=0.01
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Figure 5: confidence interval non-coverage using different variance estimation methods and

for various values of m and c, ρ=0.025
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Figure 6: confidence interval non-coverage using different variance estimation methods and

for various values of m and c, ρ=0.05
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Figure 7: confidence interval non-coverage using different variance estimation methods and

for various values of m and c, ρ=0.1
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Figure 8: confidence interval lengths using different variance estimation methods and for

various values of m and c, ρ=0
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Figure 9: confidence interval lengths using different variance estimation methods and for

various values of m and c, ρ=0.01
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Figure 10: confidence interval lengths using different variance estimation methods and for

various values of m and c, ρ=0.025
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Figure 11: confidence interval lengths using different variance estimation methods and for

various values of m and c, ρ=0.05
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Figure 12: confidence interval lengths using different variance estimation methods and for

various values of m and c, ρ=0.1
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We used the effective sample size as suggested by Faes et al. (2004). We also tried using

the sample size and the approach of Ruppert et al. (2003), but results were even worse.

Figure 3 shows that LM non-coverage was close to 10% when ρ = 0. It was very high

otherwise as shown by Figures 4 - 7. Hence, use of LMM without at least checkingH0 : σ2
b = 0

is not a strategy that should never be used.

Figure 8-12 show that confidence intervals using the LM strategy are the shortest, however

this strategy is not viable because of its high non-coverage when ρ 6= 0. The Huber based

approach gives the widest in general. The ADM and ADH confidence intervals are almost

always shorter than the LMM and Huber ones, respectively. When there were 2 and 5 PSUs

it is very clear that ADM and ADH are much shorter than LMM and Hub, respectively,

for all values of ρ 6= 0. In case where there were 25 PSUs these lengths become closer. For

example:

• for c = 2 and m = 10 with ρ = 0.05 the ADM and ADH confidence intervals lengths

are 0.935 and 1.392, respectively, while these lengths were 1.052 and 2.716 for LMM

and Huber, respectively;

• in the case of c = 25 and m = 5 and ρ = 0.025 ADM and LMM confidence intervals

lengths are 0.315 and 0.317, respectively, while the ADH and Huber are 0.317 and

0.325, respectively.

• in the case of c = 10 and m = 50 and ρ = 0.1 the ADM and ADH confidence intervals

lengths are 0.365 and 0.401, respectively, while the LMM and Huber are 0.365 and

0.402, respectively.
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5 Conclusion

1. Designs with few clusters and large sample sizes in each cluster appear to be non-

robust to intra-cluster correlation. In these designs, even a small intraclass correlation

will substantially inflate the variance of the mean, however the cluster-level variance

component is unlikely to be significant even if the intraclass correlation is as high as 0.1.

As a result, when the number of clusters (c) is 2 or 5, and the number of observations

per cluster (m) is 25, both of the adaptive estimators have higher than desirable non-

coverage, of the order of 15%. It appears that for these extreme designs, clustering

must be allowed for in variance estimates, even if the clustering is not statistically

significant.

2. In all other designs, the adaptive methods are reasonably reliable, with non-coverage

fairly close to the nominal 10%.

3. In comparing the Linear Mixed Model (LMM) with the adaptive version (ADM), we

find that:

The LMM tends to be too conservative with (non-coverage less than 10%) except for

the extreme designs mentioned in 1. This is presumably due to the difficulty in

defining the appropriate degrees of freedom for this method. In contrast, ADM

has narrower confidence intervals and has non-coverage closer to the nominal 10%.

The ADM confidence intervals are noticeably narrower for c equal to 2 and 5, but

there is not much to choose between ADM and LMM for c=25.
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4. In comparing the robust Huber-White approach with the adaptive version (ADH), we

find that:

Both the Huber and ADH approaches have non-coverage close to the nominal 10%

except in the extreme designs mentioned in 1.

The Huber method gives wide confidence intervals when c is small (2 or 5) even

though the non-coverage is close to the nominal 10%. This is because the degrees

of freedom for this method is equal to (c-1). ADH has much narrower confidence

intervals, because its degrees of freedom are equal to (n-1) rather than (c-1) if the

cluster-level variance component is not significant.

5. This leads to the following recommendations:

Designs with fewer than 10 clusters, and a large sample size in each cluster should be

avoided, even if the intra-cluster correlation is believed to be low.

Provided this advice is followed, clustering can be ignored if the cluster-level variance

effect is insignificant. This gives close to correct coverage, while giving shorter

confidence intervals (at least slightly).

6. Future research will focus on whether different criteria (other than significance for

the cluster-level variance component) give better adaptive confidence intervals, and on

unbalanced designs and non-normal data.
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