University of Wollongong

Research Online

Department of Computing Science Working Faculty of Engineering and Information
Paper Series Sciences
1982

A pascal implementation of a display system for pascal programs

Reinhold Friedrich Hille
University of Wollongong

T. F. Higginbotham
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation

Hille, Reinhold Friedrich and Higginbotham, T. F., A pascal implementation of a display system for pascal
programs, Department of Computing Science, University of Wollongong, Working Paper 82-2, 1982, 11p.
https://ro.uow.edu.au/compsciwp/21

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages

A PASCAL IMPLEMENTATION OF
A DISPLAY SYSTEM FOR PASCAL PROGRAMS

R.F. Hille*
and
T.F. Higginbotham *

ABSTRACT

A description is given of the design and implementation of a Pascal
program for the stepwise visible execution of other Pascal programs.
This system operates at the source code level by inserting additional
statements into the user program. This additionat code causes the
stepwise execution of the user program, as well as the display of the
statement currently executed together with variables whose values have
just changed. This system is intended as both, a teaching aid and a
debugging aid. It enables the user to investigate the dynamic proper—
ties of his program.

Keywaords: debugging. Pascal. visible program execution.

CR Categories: 1.5, 4.4

*Department of Computing Sdenoce, The University of Woliongong, Post Office Bax 1144, Wallongong,
NSW. 2500, AUSTRALIA

A PASCAL IMPLEMENTATION OF
A DISPLAY SYSTEM FOR PASCAL PRGRAMS

R.F. Hille
and
T.F. Higginbotham

University of Wollongong
Post Office Box 1144
Wollongong. N.SW. 2500
AUSTRALIA

Keywords: debugging. Pascal. visible program execution.
CR Categorles: 1.5, 4.4

1. Introduction

First year students of computing science at this university learn to program in the
teaching language Pascal, using the department’s computer, a Perkin—-Elmer 3220, run-
ning under UNIX, version 7. Under this version of UNIX, we have a Pascal interpreter
and a " pretty printer” catled pxp which can be used to format Pascal programs and aiso
to produce an execution profile. What we do not have is a Pascal debugging system.
We have found ourseives spending an inordinately large amount of time helping our
students to debug programs.

in order to help beginning students to understand fully the dynamic aspects of their
Pascal programs, we usually encouraged them to insert additional write statements, so
that they can see after execution what happened to the variabies. i.e. the state of the
program.

Such a procedure has some shortcomings. Often it is not immediately obvious, from
which part of the program the output comes, or too much information appears on the
screen in some disorganised fashion, or finally, inexperienced programmers (normally
first year students come undsr that category) may destroy the control structure of their
programs by inserting the additional statements carelessly.

We believe that beginning students would benefit greatly from a system which makes
the execution of their programs visible on the terminal screen and gives them control
over the speed of execution by allowing them to step through their programs. Qur pur-
pose is to provide the student user with a display system which will accept any pro-
gram of any size. For this reason, our system cannot show the entire program at once,
but only the line of code currentiy executed. Such a system deliberately ignores the
static aspects of a program and concentrates on its dynamic features, thereby aliowing
the student to test his program while seing every detaii of its execution on the screen.

We decided to develop a display system which takes the user’'s Pascal program as
input and transforms it into another Pascal program containing additional statements,
which will have the effect of diplaying the action of the original program on the termi-
nal screen.

To be effective. our system should do the following:

-2 -

1. Display on the terminai screen the current source statement if it either refiects
the control structure of the user program (that is, contains one of the keywords
indicating this), or assigns a new vaiue to one of the variables, or reads the value
of one of the variables.

2. Display on the screen the name and current value of any variable that has just
been changed in an assignment statement.

3. Display on the screen any read statement. together with its line number, that is
about to be executed, so that, if reading takes place from standard input, the user
has the opportunity to decide what action to take. Output statements shouid also
be displayed. so that the user can follow the meaning of the output by seing tha
arguments of "write”.

4. . Hait execution after each display (except for read statements) and wait for the
user to type elther a newline character or a space followed by the newline charac-
ter, depending on the state of the environment (see the next section about impie-
mentation).

5. Display statements together with their line numbers to enable the user to refer to
a listing of his source code.

The most straightforward way to do this is 10 operate at the source code level, that is,
develop a program which inspects the source code line by line and inserts additional
statements into the user program. The code to be inserted depends on the nature of
the current statement. We decided to write this system in Pascal. the source code of
the user programs, because we wanted to give the Interested student the opportunity
to understand the system. At this stage of their education, Pascal Is the only tanguage
that our first year students could be expected to know.

2. Design

Our design follows as much as possible the description of standard pascal given by
Jensen and Wirth [1. The only deviation has to do with the breaking up of programs
into lines of code. The details are given in the following description It is quite likely
that the user does not want to display the entire program, but only wants to trace
through part of it. Therefore, we implemented the commands

{trace on) or (*trace on*)

{trace off} or (*trace off*).

which can be placed around that portion of the program whose execution is to be
displayed. These commands must be Inserted by the user as additional comment lines.
They must be on separate iines in order to be recognised properly. The command
"trace on" causes our dispiay system to insert the required additional code until either
the command "trace off” is encountered or the user program ends. When the trace
flag is off, our system simply coples the user program without change. except for addi-
tional keywords * begin® and "end”.

In order to avoid the overhead of a scan for tokens. one line of source code is pro-
cessed at a time. When an opening comment bracket is found at the beginning of a
line, a flag is set. suppressing the copying of any code to the new program file until a
closing bracket is found. After any opening comment bracket a scan is made for the
words “trace on” or "trace off". When the words "trace on" are seen the insertion of
additional code is enabled, otherwise the input lines are simply copied, apart from the
insertion of "begin" and "end" in certain places (see the description of cases below).

-3-

Because each line is processed separately. the Pascal statements of the source code
must be on separate lines. For example, the guarded statement

if <condition> then <statement> ;
must be written as

if <condition> then
<statement> ;

in the following we describe the operation of the main part of our system. The action
taken depends on the presence of certain keywords at the beginning of the current
line, or on the presence of " =" in the current line.

2.1. Keyword " if

A "write" statement is inserted into the source code which causes display of the
current line together with its line number. After that we insert the statement "if not
eof then readin.”, which will cause execution to halt until some input has come from
the terminal. This may be a newline character or any other character.

After these two lines the actual input line is copied. Because the "if" statement may
be guarding another "if" or one of the loops that are possibie in Pascal, the procedure
must call itself recursively at this point to process the next input line. If the next line
is "begin”. then it must be copied and a repeated recursive call must be made at this
point. untii the keyword "end” is found. I[f there was no keyword "begin" on the line
following the "if", then it must be inserted. because the following single statement
may be expanded into a compound statement. After the recursive call to process the
single statement the keyword "end" is inserted. This will be followed by a semicolon
only if the previous statement had a semicoion.

The line containing “if" is dispiayed before the test so that the user still sees the
reference to the test even if only the alternative is executed.

2.2. Keyword "else”

This case receives the same treatment as the one above, except that the current line is
displayed only when execution of the "else” block begins.

For example, the source program may contain the lines:

if condition then
variable1:=expression

else
variable2:=expression2;

After processing. this would ook like:

writein(xxxx {f condition then’;

readin:

if condition then

begin
varlable1:=expressiont.
writelnCxxxx variable 1=expressionl.);
writein(variable1 ='variablel);
readin;

end

else

begin
writein(xxxx else’;
readin;
variable2=expression2:
writein(xxxx variable2=expression2;?;
writeln(variabie2 ='variable2);
readin:

end.

Here, "xxxx" stands for the line number of the original source code, to be shown on the
screen. Note that the keyword "else” may be followed by another "if". in this way a
number of aiternatives may be strung together, as is iilustrated below:

if condition1 then
statement1

else if condition2 then
statement2

else if condition | then
statement i

else
statement n

In this case the user must ensure that "else if condition then" Iis written on one line
and not as follows:

else
if condition then.

Since our program inspects one line at a time without look~ahead to the following line.
it woulid insert after the "else" the keyword "begin®, thereby altering the meaning of
the original construct.

2.3. "While" ioop

The head of a "while" loop is displayed before its execution begins, so that the user
has a reference even if the loop is not entered at ali. The body of the ioop is enclosed
in "begin" and "end" if they are not already present and then the same recursive
scheme is used as in the case of the "if" statement. The difference here is that the
display code for the head of the loop is Inserted again at the end of the loop body, thus
ensuring a display at every turn. Also. the statement "readin.” is piaced immediately
after the keyword *begin", again to halt execution at that point. Care must be taken
when the "while” loop tests for end of line. [n that case the user must type a charac-
ter other than "newline" so that eoln does not return “true”. thus preventing execution
of the loop.

2.4. “For® loop

This case is treated in a fashion similarly to that of the "while" loop except that the
display code is inserted inside the loop at the beginning, followed by the display of the
name of the loop variable together with its current value.

2.5. Keywords “repeat” and "until”

tn the case of the line "repeat” the display code is inserted after the current line,
whereas the line "until <condition> " must be preceded by the display code. Execution
is halted after the dispiay.

2.6. Keywords "read" and "readin®

Lines beginning with these keywords are preceded by the display code. to enable the
user to decide what input to type. '

2.7. Assignment statement

An assignment statement is displayed after its execution. followed by the name of the
variable on the left as well as its current value. Again, execution haits after the display.

2.8. Keyword “function”

This case requires some special attention, because in Pascal the return statement
takes the form of an assignment to the name of the function. if we treated this like an
ordinary assignment statement. then the line

“writeinCname =’.,name)."

would imply a function call. To handle this case. we must use a temporary variable
which will take the value to be returned. We used the name “ffff* for the temporary
variable, whose form is (we hope) unlikely to appear in students’ Pascal programs.
This variable will then be substituted for the function name in such assignment state—
ments and an additional statement will be inserted. assigning the value of the tem-
porary variable to the function name. Function declarations may be nested to any
depth.

Procedures do not require special treatment. Also, the fact that control is in the body
of a function or procedure will be evident from the iine numbers appearing in the
display.

2.9. Case statement

The display code is inserted immediately before the head of the case statement. It's
effect wiil bé to send the output

Xxxx case <variable name> of
variable = <integenr

to the terminal. if a fabel is followed by a single statement. the keywords “ begin" and
"end" are placed before and after it. respectively. because that statement may be
expanded into a compound statement. Labels with the statements following then are
processed until the keyword "end” is encountered. indicating the end of the case
statement.

Any one of the cases described in the sub headings above may be nested to any depth
within any other of the cases. The only limit is imposed by the size of the runtime
stack provided by the operating system, which will limit the depth of recursion of our
procedure " processline”. :

3. Implementation

A number of considerations have led us to implement the system as a UNIX shell pro-
gram. Firstly. the name of the user program can then be supplied as an argument to
our system, which is not possible for Pascal programs. Furthermore, it is useful to
check whether the user program supplied exists at all, and if so. whether it compiles
without error. Only when these conditions are met, will the user program be copied to
a file named "DDsource”. Our program then makes a copy of "DDsource” with the
additional code inserted, and writes it to a file called "DDmonitor". Unfortunately, Pas—
cal does not permit file names with the suffix ".p". which is required for the compiler.
Therefore, we move the file " DDmonitor" to "DDmonitor.p" before invoking comptiation
and execution.

After that. the shell program will remove from the user’s directory all files created by
our system. However, it may be required to leave the Pascal object file resulting from
the compilation of the program containing the display code, so that the user may exe~
cute it again if he wishes, without having to go through the entire process again.

The code of the UNiX shell program is given in the figure betow:

if test —r Obj
then
rm obj
fi :
if test —r $1
then
pi —i $1 > DDlisting
if test —r obj
then
cp $1 DDsource
px display.o
echo "

PASCAL DISPLAY:
new source file created
mv DDmonitor DDmonitor.p
pi DDmonitor.p
px
eise
echo ”
PASCAL DISPLAY:
program contains errors,
listing follows.
sleep 2
p DDlisting
fi
rm DDlisting DDsource DDmonitor DDmonitor.p
else
echo "
PASCAL DISPLAY:
can‘t find $1

fi

Figure 1: the UNIX shell file

The names of the files created by our system carry the subscript DD. so that it is highly
unlikely that the user has a file with such a name in his directory. This precaution is
necessary as execution takes place in the user’s directory. First. any existing Pascal
object file "“obj" is removed to enabie us to check whether the user program actually
compites. which is done by trying to produce executable P-code. There is an additional
test to ensure that the file of the name supplied as an argument exists and is readable.

Because of the length of our program (some 900 lines of Pascal). we decided not to
include the code here (it is available upon request from R.F. Hille. Department of Com-
puting Science. the University of Wollongong. P.O. Box 1144, Wollongong. N.SW. 2500).
Instead. we describe the algorithm.

The main program consists of a loop of two statements only, namely:

while not eof(source) do
begin
getline:
processline
end.

The procedure "getiing" simply loads the next input line into the buffer, whereas the
recursive procedure “processline” does the checking and inserting of display code.
The algorithm of " processline” is iliustrated by the example of one of the cases shown
in the next figure:

procedure processline
{The flags and the line buffer are global variables)

begin
check for comment.
check for keyword at the beginning of the line;
if commentfiag then
look for "trace on/oft"
and set tracefiag accordingly:
check for end of comment;
else
case keyword of
df :
if traceflag then
echo the current tine;
insert readin statement:
copy the current line and get the next;
if that line is " begin"
copy it;
while the current line is not "end"
get next line; ‘
processline:
else
insert "begin”:
processline;
insert "end";
if tine ended in "."
insert ".";

relse :

{For the other cases see the section on designl}

Figure 2: algorithm “processline”.

]0

4. Usage and Limitations

Any section of the user program that is to be displayed during execution, must be pre-
ceded by the comment tline {trace on} and fotlowed by the comment iine (trace off}.
Every Pascal statement must be on a separate line.

Redirection of standard input and output is not possible when the display is on,
because that would interfere with the display and the stepwise execution. Execution
will halt after each display until the user types either <newline> or <space> followed
by <newline> . To use our display system, one types the line:

dispiay <program name.p>

if no file of the given name exists in the user’s directory, an error message will be
printed. |f the program supplied does not compile, its listing with error messages from
the Pascal compiler will appear on the screen. Otherwise "display" will be executed
and on completion an appropriate message is printed. Thereafter, the newly generated
program will be compiled and executed.

The user may exit from loops by typing EOT. but a ciean exit will result only from
“while" toops which check for end-of-file. otherwise execution will be aborted. In the
case of "while not eoln do” the user should type <space> followed by <newline> to
avoid immediate exit from the (oop.

Procedure names cannot be passed as parameters. This limitation concurs with that
given by Joy et al. [2] in their description of the Berkeley Pascal compiler.

The user must not have files with the names "DDsource”. "DDmonitor", "DDmonitor.p”.
“DDlisting” in his directory. as these would be overwrittén. No variable with the name
"ffff" must be declared in a function of the user program.

5. Conclusion

We have developed a system that enables the user to step through his Pascal program.
Any statement that refiects the dynamic aspecis of the program, i.e. a control state—
ment or a statement which changes the value of some variabie, or an input/output
statement, is displayed on the screen together with its line number to enable the user
to follow the action with the aid of a listing.

Originally our intention had been only to provide some simple debugging aid. How-
ever, as the system evolved. it became clear to us that it was necessary to go ail the
way and turn this into a display system which can handle ali cases. Our only limitations
are that we require Pascal statements to be on separate lines and that procedure
names cannot be passed as parameters. We hope that our system will help students to
understand the dynamic aspects of programming.

References

(1] Jensen, K., Wirth, N. (1975) "PASCAL User Manual and Report”, Springer, New
York. Heidelberg. Berlin

(2] Joy. WN. Graham, SL., and Haley, C.B. (1977) UNIX Pascal User’s Manual, Version
1.0

	A pascal implementation of a display system for pascal programs
	Recommended Citation

	tmp.1283474891.pdf.Ed1p9

