
University of Wollongong
Research Online

Applied Statistics Education and Research
Collaboration (ASEARC) - Conference Papers Faculty of Engineering and Information Sciences

2011

Assessing Poisson and Logistic Regression Models
Using Smooth Tests
Paul Rippon
University of Newcastle

John Rayner
University of Newcastle

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Publication Details
Rippon, Paul; and Rayner, John, Assessing Poisson and Logistic Regression Models Using Smooth Tests, Proceedings of the Fourth
Annual ASEARC Conference, 17-18 February 2011, University of Western Sydney, Paramatta, Australia.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/asearc
http://ro.uow.edu.au/asearc
http://ro.uow.edu.au/eis
http://ro.uow.edu.au/
http://ro.uow.edu.au/


Assessing Poisson and Logistic Regression Models Using Smooth Tests

Abstract
The smooth testing approach described in [2] has been used to develop a test of the distributional assumption
for generalized linear models. Application of the test to help assess Poisson and logistic regression models is
discussed. Power is compared to other common tests.

Keywords
generalized linear models, goodness of fit, logistic regression, Poisson regression

Publication Details
Rippon, Paul; and Rayner, John, Assessing Poisson and Logistic Regression Models Using Smooth Tests,
Proceedings of the Fourth Annual ASEARC Conference, 17-18 February 2011, University of Western Sydney,
Paramatta, Australia.

This conference paper is available at Research Online: http://ro.uow.edu.au/asearc/21

http://ro.uow.edu.au/asearc/21


Assessing Poisson and Logistic Regression Models Using Smooth Tests

Paul Rippon, J.C.W. Rayner

The University of Newcastle, Callaghan, NSW, 2308, AUSTRALIA

Abstract

The smooth testing approach described in [2] has been used to develop a test of the distributional assumption for
generalized linear models. Application of the test to help assess Poisson and logistic regression models is discussed.
Power is compared to other common tests.

Key words: generalized linear models, goodness of fit, logistic regression, Poisson regression

1. Introduction

The concept of smooth testing originally proposed in
[1] has been developed in [2] to provide goodness of fit
tests for a wide range of distributions. In [3], these ideas
have been applied to the generalized linear modelling
framework, where the variables are no longer identically
distributed, to derive a test of the distributional assump-
tion. Section 2 describes the test, Section 3 comments
on its application and Section 4 discusses the results
of simulation studies examining the power of this test
when applied to Poisson and logistic regression.

2. A Smooth Test of the Distributional Assumption
in Generalized Linear Models

The generalized linear modelling structure comprises
a linear combination of predictor variables related via a
link function to the mean of the response distribution
selected from the exponential family of distributions.
In commonly used notation, independent response vari-
ables, Y1, . . . ,Yn, are distributed with density function

f (y j; θ j) = exp
[
y jθ j − b(θ j)

a(φ j)
+ c(y j, φ j)

]
from the exponential family with canonical parameters
θ j to be estimated and dispersion parameters φ j assumed
to be known; a, b and c are known functions. Using g(·)
to represent the link function:

g(µ j) = η j = xT
j β = x j1β1 + . . . + x jpβp

where µ j = E[Y j] = b′(θ j) for j = 1, . . . , n. To simplify
subscripting, an explicit intercept term, β0, is not shown.

There is no loss of generality as β1 can become an in-
tercept term by setting all x j1 = 1 in the first column of
X.

To test the distributional assumption, the assumed re-
sponse variable density, f (y j; θ j), is embedded within a
more complex alternative density function

fk(y j; τ, θ j) = C(τ, θ j) exp

 k∑
i=1

τihi(y j; θ j)

 f (y j; θ j).

This structure allows for ‘smooth’ departures from the
assumed distribution controlled by the vector parame-
ter, τ = [τ1, . . . , τk]T acting on the elements of the set,
{hi(y; θ)}, of polynomials up to order k which are or-
thonormal on the assumed distribution. The normaliz-
ing constant, C(τ, θ j), simply ensures that fk(y j; τ, θ j) is
correctly scaled to provide a valid probability density
function.

When τ = 0, this smooth alternative collapses to the
original response variable distribution. Thus a test of
H0 : τ = 0 against HA : τ , 0 can reasonably be
considered a test of the distributional assumption in a
generalized linear model.

In [3], a score test statistic has been derived that can
be expressed as a sum of squares of several contributing
components:

Ŝ k =
V̂2

1

ω̂2 + V̂2
2 + . . . + V̂2

k

where

V̂i =
1
√

n

n∑
j=1

hi(y j; θ̂ j).

The ith component involves the sum over the data of
the ith order polynomial from the orthonormal sequence
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used in the construction of the smooth alternative distri-
bution. The first component also contains a term

ω2 = 1 −
1T H1

n

which is related to the hat matrix, H, obtained from the
model estimation process.

Large values of Ŝ k provide evidence against H0.
Asymptotically, the components V̂2

1/ω̂
2, V̂2

2 , etc can
each be expected to follow the χ2

(1) distribution and Ŝ k

the χ2
(k) distribution. In practice this has not proved a

good enough approximation for common sample sizes
and so a parametric bootstrap process is recommended
to estimate p-values.

3. Applying the Smooth Test

In deriving this test of the distributional assumption,
the linear predictor and the link function are assumed
to be correctly specified. If this is not true then a large
value of the test statistic may be caused by a mismatch
between the data and these other components of the gen-
eralized linear model rather than an inappropriate re-
sponse distribution. Similar issues arise with other tests
that are used to assess generalized linear models. For
example, the well-known deviance statistic is derived
as a likelihood ratio test statistic comparing the fitted
model with a saturated model having a linear predic-
tor with as many parameters as there are covariate pat-
terns. This provides the best possible fit to the observed
data – assuming that the specified response distribution
and link function are correct. If this is not true, then a
large value of the deviance statistic may indicate a prob-
lem with the assumed distribution or link function rather
than the linear predictor. Similarly, a model that “fails”
a goodness-of-link test may really have a problem with
the assumed distribution or linear predictor and not the
link function.

Can we ever truly diagnose the problem with a poorly
fitting model? Clearly all such tests need to be carefully
interpreted. There are many different ways that a model
can be misspecified, some of which are very difficult
to distinguish from each other. The smooth testing ap-
proach is not a panacea. In addition to providing a re-
liable test of the distributional assumption however, the
individual components can be considered as test statis-
tics in their own right. This can provide useful diag-
nostic information about the nature of any lack of fit
detected.
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Figure 1: Power to detect a misspecified linear predictor in simulated
logistic regression data.

4. Power Study

4.1. Logistic Regression

Figure 1 shows the results of a simulation study for
logistic regression with a misspecified linear predic-
tor. In this example, the fitted model was

log
(

π

1 − π

)
= β0 + β1x1

but the true model used to simulate the data was

log
(

π

1 − π

)
= β0 + β1x1 + β2x2.

A fixed covariate pattern was used for each sim-
ulation with 25 groups corresponding to x1 tak-
ing values −1,−0.5, 0, 0.5, 1 and x2 taking values
−1.2,−0.7,−0.2, 0.3, 0.8. There were m = 30 trials in
each group. These two models coincide when β2 = 0.
The misspecification increases as β2 increases (horizon-
tal axis).

5000 simulations were conducted for β2 = 0 to char-
acterize the null distribution of each test statistic and
1000 simulations for each of the other β2 values to char-
acterize the alternative distributions. The α = 5% crit-
ical value from the null distribution was used to define
the rejection region and thus determine the probability
of the null hypothesis being rejected (power to detect the
misspecification) which is plotted on the vertical axis.

Three test statistics have been considered here: the
deviance statistic, the smooth test statistic of order 3
and a link test statistic (see Appendix A). For all statis-
tics used, the powers were based on simulated distribu-
tions and not on approximate sampling distributions. In
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Figure 2: Power to detect a misspecified link function in simulated
logistic regression data.

this first example, the deviance performs best in detect-
ing this particular kind of misspecification of the linear
predictor. But the smooth test still performs reasonably
well and the link test is essentially useless here. The per-
formance of the Ŝ k statistic is a compromise between
the performance of the individual components which
can also be considered separately. In this case: the
first component is almost exactly matching the perfor-
mance of the goodness of link test; the second compo-
nent has good power and drives the performance of the
overall test statistic and the third component is not par-
ticularly useful. The components correspond roughly
to moments and so the second component is indicating
that the variance in the data is not well modelled. This
makes sense. A covariate is missing and so the stochas-
tic part of the model is trying to cope with additional
variation that should really have been explained by the
linear predictor.

Figure 2 shows the results for a misspecified link
function where the fitted model was

π(η) =
eη

1 + eη
log

(
π

1 − π

)
= η = β0 + β1x1

but the data was simulated using a generalization of the
logit link function (see Appendix B):

π(η) =
eh(η;a)

1 + eh(η;a) . (1)

The parameter a plotted along the horizontal axis con-
trols the amount of misspecification with zero again rep-
resenting no misspecification. Other simulation details
are the same as in the first example.

Unsurprisingly, it is the goodness of link test that
performs best here as this is the kind of problem it is
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Figure 3: Power to detect a misspecified response distribution in sim-
ulated logistic regression data.

designed to detect. However, the smooth test still per-
forms well. Looking at the individual components, the
first component is again matching the performance of
the goodness of link test and is driving the performance
of the overall test statistic in detecting this kind of mis-
specified model. The first component is correctly indi-
cating that the problem is in how the mean of the data
is being modelled. The second and third components
aren’t useful in this case.

Figure 3 shows the results for a misspecified re-
sponse distribution where a binomial distribution is
specified when fitting the model but the data was sim-
ulated using a beta-binomial distribution where the
responses Y j are B(m j, π

∗
j) for π∗j independently dis-

tributed as beta random variables on (0, 1) with E[π∗j] =

π j and Var(π∗j) = τπ j(1 − π j).
Again the parameter plotted along the horizontal axis,

τ in this case, controls the amount of misspecification
with zero representing no misspecification. The de-
viance test performs best in detecting this particular type
of misspecification, with the smooth test again perform-
ing reasonably well and the goodness of link test poorly.
The story with the components is again similar with the
first component matching the performance of the good-
ness of link test and the second component indicating
correctly that the variance is not being modelled cor-
rectly in this example.

4.2. Poisson Regression

In Figure 4, the simulation scenario is the same as for
Figure 1 except that the linear predictor is set to log µ
where Y j ∼ P(µ j). The performance of the smooth test
statistic and components in detecting this type of mis-
specified linear predictor in Poisson regression can be
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Figure 4: Power to detect a misspecified linear predictor distribution
in simulated Poisson regression data.
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Figure 5: Power to detect a misspecified response distribution in sim-
ulated Poisson regression data.

seen to be very similar to that already discussed for lo-
gistic regression.

In Figure 5, a Poisson distribution is specified when
fitting the model but the data was simulated using a neg-
ative binomial distribution with log µ j = η j and variance
µ j + τµ2

j . As in the similar logistic regression example,
the deviance is more powerful in detecting the misspeci-
fication but the smooth test performs reasonably and the
second component correctly indicates that the problem
is in how the variance of the data is being modelled.

5. Conclusions

A smooth test for assessing the distributional assump-
tion in generalized linear models has been derived and
applied to Poisson and logistic regression models fitted
to simulated data. While not always the most powerful

test, it appears to perform quite well in detecting lack of
fit even when the misspecification is in the link function
or the linear predictor rather than the response distribu-
tion. Interpretation of the components provides addi-
tional diagnostic information.

A. Goodness of Link Test

There are a number of tests described in the literature
for testing the adequacy of the link function in a gen-
eralized linear model. Many of these are specific to a
particular link function. The goodness of link test used
in this paper is more generally applicable and is equiva-
lent to the linktest function provided in STATA [4].

The η̂ = Xβ̂ term from the fitted model and a η̂2 term
are used as the predictors of the original response vari-
ables in a new model. The η̂ term contains all the ex-
planatory information of the original model. If there is
a misspecified link the relationship between η̂ and g(y)
will be non-linear and the η̂2 term is likely to be sig-
nificant. The difference in deviance between these two
models has been used as the link test statistic in this
study.

B. Generalized Logit Function

Expressed as an inverse link function, a generaliza-
tion of the logit function is described by [5] in the same
form as Eq. (1) but using a function h(η;α1, α2) where
the two shape parameters, α1 and α2, separately control
the left and right tails. α1 = α2 gives a symmetric prob-
ability curve π(η) with the logistic model as the special
case α1 = α2 = 0. The function h(η; a) used in Eq. 1
corresponds to a = −α1 = α2. This gives an asymmetric
probability curve that according to [5] corresponds to a
Box-Cox power transform.
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