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Semiparametric Regression During 2003—2007
D. RUPPERT, M.P. WAND and Raymond J. CARROLL

Semiparametric regression is a fusion between parametric regression and nonparametric
regression and the title of a book that we published on the topic in early 2003. We review
developments in the field during the five year period since the book was written. We find
semiparametric regression to be a vibrant field with substantial involvement and activity,
continual enhancement and widespread application.
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1 Introduction

In 2003 we published a book (Ruppert, Wand and Carroll, 2003) which mapped out a
new general approach to flexible regression analysis, in the face of increasingly large and
complex problems in which it is finding application. We titled the book Semiparametric
Regression since this emerging field represents a fusion between traditional parametric
regression analysis (e.g. Cook and Weisberg, 1982; Draper and Smith, 1998) and newer
nonparametric regression methods (e.g. Wahba, 1990; Hastie and Tibshirani, 1990; Green
and Silverman, 1994). Two prominent features of our book are:

e Keeping the nonparametric regression part relatively simple, using low-rank pe-
nalized splines;

¢ Utilizing the mixed model representation of penalized splines.

These bring several benefits. Firstly, longitudinal and spatial effects are easily incorpo-
rated. Secondly, fitting and inference can be performed within the established frame-
works of maximum likelihood and best prediction. Established mixed model software in
R and SAS can aid implementation. If a Bayesian approach is used then the infrastructure
of Bayesian inference can be called upon. This includes the BUGS software project (e.g.
Lunn et al. 2000). The Bayesian/BUGS route is particularly attractive in non-standard
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situations, such as when the data are overdispersed or incomplete. An overarching ben-
efit is extendability: the modularity of the mixed model-based penalized spline approach
allows ‘twists’, such as missing data, to be incorporated in a straightforward manner.

It should be stressed that while we are the three researchers who put Semiparamet-
ric Regression together, it is really a synthesis of contributions by dozens of researchers in
several branches of Statistics: parametric and nonparametric regression, longitudinal and
spatial data analysis, mixed and hierarchical Bayesian models, Expectation-Maximization
(EM) and Markov Chain Monte Carlo (MCMC) algorithms. It should also be acknowl-
edged that the Semiparametric Regression book is not the first publication to utilize mixed
model representations of curve fitting. Early contributions of this type include Wahba
(1978), Green (1985), Thompson (1985), Speed (1991), Verbyla (1994), Donnelly, Laird and
Ware (1995), O’Connell and Wolfinger (1997) and Wang (1998). Nevertheless, Semipara-
metric Regression is the first book-length treatment of the topic and its publication 5 years
ago constitutes some sort of ‘line in the sand” for this exciting area of research.

A great deal of penalized splines (especially smoothing splines) research does not
make use of their mixed model representation. For example, Wood (2006a) and the
accompanying R package mgcv (Wood, 2008) mainly uses generalized cross-validation
(GCV) and a version of Akaike’s Information Criterion (AIC). There is also an enormous
literature on flexible regression analysis that does not involve penalized splines. Exam-
ples include regression splines (e.g. Stone et al. 1997), local polynomials (e.g. Fan and
Gijbels, 1995) and wavelets (e.g. Ogden, 1996). Ruppert et al. (2003) discuss each of these
choices but promote the mixed model-based penalized spline approach to semiparamet-
ric regression; for reasons summarized in the first paragraph. Largely because of time
and space limitations, we will stay mainly with this approach throughout the review.

Although Semiparametric Regression was released in April 2003, the final drafts were
written in late 2002. Hence it contains a survey of the literature up until the end of 2002
(roughly). In this review we revisit the field 5 years later and summarize the state of the
field as of the end of 2007. We are pleased to report that semiparametric regression is
a thriving area of research with contributions to its theory, methodology and software
being continually made by research teams around the World. Especially pleasing is the
rate at which semiparametric regression is being used in applications. While surveying
the area over 2003-2007 we learned about applications in several fascinating and diverse
areas, including on-line auctions, genomics, air pollution, agricultural soil and cosmol-

ogy.

1.1 Summary of mixed model-based penalized spline approach

The frequentist version of the Ruppert et al. (2003) approach to semiparametric regression
involves the mean structure being of general form

E(Y|u) :g(XIB+ZU)> u ~ (OaG) (1)

Here g is a scalar ‘link” function, and evaluated element-wise for vector arguments. For
a general random vector v, v ~ (g, X)) is shorthand for E(v) = p and Cov(v) = X. The
fixed effects term, X3, handles covariates that enter the model linearly while the ran-
dom effects component Zu, and corresponding covariance matrix G, handles non-linear
effects through spline basis functions, but may also incorporate random subject effects
and spatial correlation structure in longitudinal and spatial contexts. There will often be
other parameters arising, for example, in the variance structure (e.g. R = Cov(y|u)) but
we will ignore this in the current discussion.

Most commonly (1) is embedded in a fully specified probabilistic model. This allows



fitting and inference to be achieved through the paradigms:

Maximum Likelihood (ML) for 3;
Restricted Maximum Likelihood (REML) for G; (2)
Best Prediction (BP) for u.

The last one of these is simply u = E(uly). Depending on the form of the model (e.g. nor-

mal versus Poisson) execution of (2) can range from easy exact calculation using standard

mixed model software (e.g. 1me () in the R language; R Development Core Team, 2008)

to difficult approximation via computationally intensive algorithms such as MCMC.
The hierarchical Bayesian version of (1) takes the form

y|8,u] = fi(y; XB + Zu); [u|G] = fo(u; G)
3)
B] = f3(B; Ag); [G] = fu(G; Ag)

where Ag and Ag are hyper-parameters, fi,..., f4 are fixed conditional density func-
tions and [v|w] denotes the conditional density of v given w. Inference is based on pos-
teriors for parameters of interest; in particular

[Bly], [u]y] and [Gly].

In semiparametric regression it is very rare that analytical solutions for these posteriors
exist and approximation methods need to be employed. MCMC approximation via the
BUGS software (e.g. Lunn et al. 2000) often provides satisfactory solutions.

In the interests of conciseness, we will not give specific details or examples of (1)
and (3). These can be found in the Ruppert et al. (2003) book; but also in recent journal
articles such as Wand (2003), Ngo & Wand (2004), Gurrin, Scurrah & Hazelton (2006),
Crainiceanu, Ruppert & Wand (2005) and Zhao, Staudenmayer, Coull & Wand (2006).

1.2 Layout of Review

The rapidity with which semiparametric regression is growing as a field means that a
concise and informative review of the last five years is quite challenging. For instance,
we estimate that more than three hundred papers in 2003-2007 are connected with the
area — most of which we read or skimmed in preparing this review. After surveying the
literature we decided on the following layout for the remainder of the article:

Section 2: Advancement of Primitives

By primitives we mean the ‘nuts and bolts” of semiparametric regression.
Examples include spline basis specification, computing and asymptotic
theory. Much of Ruppert et al. (2003) is concerned with the primitives of
semiparametric regression. However, some have undergone noticeable
refinement in the past five years. Section 2 summarizes these develop-
ments.

Section 3: Advancement of Models and Methods

During 2003-2007 semiparametric regression models have continually
become more sophisticated in response to the complexities of contempo-
rary data sets and scientific questions. Section 3 reviews these advance-
ments.

Section 4: Applications

Semiparametric regression is very much an applications-oriented branch
of Statistics. In Section 4 we highlight several case studies which have
benefited from the semiparametric regression paradigm.



1.3 Overlooked literature

The production of this review article has involved an immense amount of retrieval and
reading over a relatively short time period. While we have tried hard to peruse all rele-
vant contributions it is certain that some have been inadvertently overlooked. We wel-
come any omissions being drawn to our attention. Also, we point out that the end of 2007
cut-off for inclusion in this review is slightly fuzzy. For example, some relevant papers
that we have known about for some time turned out to be 2008 papers. These are still
included.

2 Advancement of Primitives

In this section we summarize 2003-2007 research on the primitives of semiparametric
regression, with emphasis on important advancement.

2.1 Asymptotic theory

Hall & Opsomer (2005) is the first paper to study the asymptotic theory of penalized
splines. They use a white noise model that is known to be asymptotically equivalent to
the nonparametric regression model (Brown & Low, 1996; Brown, Cai, Low & Zhang,
2002). They also use an idealized version of a penalized spline where there is a contin-
uum of knots, that is, a knot at every point in some interval. In this framework, they
find asymptotic expressions for the bias and the stochastic part of the penalized spline
estimator. These expressions are infinite series with terms depending on the eigenvalues
and eigenvectors of a certain functional operator. They show that the mean integrated
squared error is O(nAY/(?P+2) - \), where n is the sample size, p is the degree of the spline
and ) is the penalty parameter. Therefore, if \ is a constant multiple of n2(P+1)/(2r+3),
then the mean integrated squared error is O(n?P*+1/(2+3)) ‘which the optimal rate for
functions with p + 1 square-integrable derivatives (Stone, 1982).

Penalized spline asymptotics can be divided into two cases, depending on the rate
at which the number of knots K increases with the sample size n. “Small-K” asymp-
totics are similar to those of ordinary least squares regression splines, that is, splines fit
by least squares without a penalty. “Large-K” asymptotics are similar to that of smooth-
ing splines. The bias of a penalized spline has two components, the approximation (or
modeling) bias and the shrinkage (or smoothing) bias. Approximation bias is the bias
of an ordinary least squares regression spline and is due solely to the approximation of
the regression function by a spline. Shrinkage bias is the difference between the bias of
the penalized spline and the approximation bias and so is the additional bias due to the
penalty. Under large-K asymptotics, the approximation bias is negligible compared to
the shrinkage bias. Hall and Opsomer’s (2005) framework is an extreme case of large-
K asymptotics. Under small-K asymptotics, the approximation bias converges to zero
at the same rate or more slowly than the smoothing bias. The approximation bias is
controlled by K, and under small-K asymptotics K is a smoothing parameter. Under
large- K asymptotics, the approximation bias is negligible (or exactly zero in Hall & Op-
somer’s case), the exact value of K has no effect on the asymptotic distribution (provided
only that K grows fast enough to be in the large-K case), and the penalty parameter A\ is
the only smoothing parameter.

We believe that large-K asymptotics are the most relevant to current practice. The
original penalized spline methodology proposed by Eilers & Marx (1996) as well as the
approach taken by Ruppert, Wand, and Carroll (2003) assume that the number of knots is
sufficiently large that approximation bias is negligible compared to smoothing bias. Nu-
merical evidence in Ruppert (2002) supports this assumption, as does the current prac-
tice of using the data to carefully select the penalty parameter while using some rule of



thumb applied to the sample size to select the number of knots. Moreover, under small-
K asymptotics, one needs to use a data-based method to select K. One might also need
to be careful about the locations as well as the number of knots. These issues have not
been investigated, except in the case of pure regression splines with no roughness penalty
where both the number and locations of the knots are chosen (Smith & Kohn, 1996; Deni-
son, Mallick & Smith, 1998; Dimatteo, Genovese & Kass, 2001) and the hybrid adaptive
splines of Luo & Wahba (1997) that use both adaptive knot selection and a roughness
penalty.

Li & Ruppert (2008) study large-K asymptotics. They study Eilers and Marx’s (1996)
P-splines, that is, they use B-splines and difference penalties on the spline coefficients.
They have obtained simple, explicit expressions for the asymptotic bias and variance, so
the asymptotic distributions of P-splines can be compared with that of kernel regression,
local polynomial regression, and smoothing splines. Their results are restricted to the
cases of zero-degree or linear splines and a first or second order difference penalty. We
say that a penalty is of ¢th order if the penalty is on the gth derivative (O-splines) or the
gth finite difference (P-splines). O-splines (Wand & Ormerod, 2008) use the same penalty
as used by smoothing splines, but are similar to the P-splines of Eilers & Marx (1996) in
that a reduced set of knots is used.

In a nutshell, Li & Ruppert found that P-splines with a gth order penalty are asymp-
totically equivalent to Nadaraya-Watson kernel regression estimators with the equiva-
lent kernel found by Silverman (1984) for smoothing splines with a gth order penalty.
The asymptotic distribution does not depend on the degree p, but the minimum rate at
which K must increase does depend on p and the rate is slower if higher degree splines
are used. First consider the case where the z’s are equally-spaced on a finite interval.
For first-order penalties, the equivalent kernel in the interior is the double-exponential
kernel, which is second order. This is the equivalent kernel for smoothing splines with a
first-order penalty (Silverman, 1984). If the penalty parameter ) is chosen at the optimal
rate, then the equivalent bandwidth h satisfies A ~ {Khn~'/°}2. The asymptotic bias at
an interior point z is B(z) = h%f?)(z), the asymptotic variance is V(z) = 4~ 'h~1o%(x)
where ¢2(z) is conditional noise variance at z, and n%/5{f(z) — f(z)} — N{B(z),V(z)}
in distribution as n — oco. In the boundary regions, which consists of the points within
a multiple of n~/® of the left or right boundaries, the equivalent kernel is of first-order.
At the boundaries themselves, the equivalent kernel is an exponential function. If the
penalty parameter is chosen to be optimal for the interior, then in the boundary region
bias dominates and the convergence rate is O(n /%), the same as for a Nadaraya-Watson
kernel estimator.

For second-order penalties, Li & Ruppert find that the equivalent kernel in the interior
is fourth-order and proportional to exp(—|z|){cos(z) + sin(|z|)}, which is the equivalent
kernel for cubic smoothing splines (Silverman, 1984), which also have a second-order
penalty. The rate of convergence in the interior is n=%/°, which is the same as for a
Nadaraya-Watson kernel estimator with fourth-order kernel. In the boundary region,
the equivalent kernel is only second-order and the rate of convergence is slower.

The results so far assume equally-spaced knots. Li & Ruppert also study unequally-
spaced knots. In this case, the asymptotic bias depends on derivatives of the design
density, which means that penalized splines are not “design-adaptive” in the sense of
Fan (1992).

Penalized splines have slower convergence at the boundaries than in the interior,
whereas local polynomial regression with odd degree polynomials has the same rate of
convergence at the boundaries as in the interior. This might seem like an advantage of
local polynomial smoothing compared to penalized splines. However, if we compare
the widely-used local linear regression smoother with penalized splines with the typi-
cal second-order penalty, then what we find is that the local polynomial and penalized
spline smoothers have the same boundary rate of convergence. In the interior, the penal-
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ized spline has a faster rate of convergence. Thus, as typically implemented in practice,
penalized splines suffer no disadvantage in rate of convergence relative to local linear
estimators and, in fact, have an advantage in the interior region.

Kauermann, Krivobokova & Fahrmeir (2007) study small- K asymptotics for general-
ized spline modeling, that is, with possibly non-Gaussian responses and a link function
relating the expected response to the spline. They put an upper bound on the rate at
which the smoothing parameter increases and K is required to grow at a fixed rate, rather
than faster than this rate as in Li & Ruppert (2008). The framework is the generalized
linear mixed model, and the Laplace approximation is used to integrate out the random
effects, so the estimation method is penalized quasi-likelihood (Breslow & Clayton, 1993).
The authors obtain rates of convergence for the mean squared error and expressions for
the asymptotic bias and variance.

Kauermann (2005) is a comparison of the REML and C), methods of selecting the
amount of smoothing for univariate penalized splines. Both asymptotic and finite-sample
simulation results are presented. The asymptotics assume that K is fixed. One general
conclusion is that REML tends to under-smooth in that REML leads to less smoothing
than optimal for minimizing mean squared error. In contrast, C), targets the MSE-optimal
amount of smoothing. However, a more detailed look at Kauermann’s results show that
REML and C;, have very different behaviors and which one smooth most depends on the
underlying regression function, the number of knots, the sample size, and the random
sample itself. One advantage of REML can be seen in Kauermann'’s results: the REML
choice of the amount of smoothing is less, and often far less, variable compared to that of
Cp.

As described more fully in Section 3.1, Bithlmann & Yu (2003) derive asymptotics for
boosting in a nonparametric regression context.

2.2 Bayesian semiparametric regression

Ruppert et al. (2003) devoted a single chapter to the Bayesian variety of semiparamet-
ric regression. However, Bayesian semiparametric regression is progressively becoming
more prevalent, and could eventually challenge the frequentist version in terms of popu-
larity. Reasons include (1) the attractiveness of hierarchical Bayesian models for quantify-
ing multiple sources of variability, (2) models becoming more sophisticated (e.g. dealing
with complications such as missingness and measurement error) to the point that stan-
dard (likelihood-based) mixed model software cannot be used, (3) continual improve-
ment of Monte Carlo methods for Bayesian inference, and (4) continual improvement of
the BUGS computing environment (Lunn et al. 2000) for MCMC sampling from posterior
distributions of interest. We expand on aspect (4) in Section 2.6.

Recent Bayesian modeling research has also impacted upon Bayesian semiparametric
regression since 2002. A prominent example is Gelman (2006) which advised on non-
informative prior distribution specification for variance parameters and, in particular,
argues against the inverse Gamma priors used in Ruppert et al. (2003).

With robustness in mind, Jullion & Lambert (2007) study prior specification for Bayes-
ian P-splines models. Advanced Bayesian hierarchical modeling is used, including the
use of Dirichlet-based mixture priors.

Several other Bayesian semiparametric regression contributions, involving new mod-
els and methodology, are described in Section 3.

2.3 Computer Science interface

The foreword of a recent special issue of Statistical Science proclaimed the “the dissolv-
ing of the frontier between Statistics and Computer Science” (Casella and Robert, 2004).



In 2006 Statistica Sinica had a special issue titled Challenges in Statistical Machine Learn-
ing. Hastie, Tibshirani and Friedman’s cross-disciplinary book The Elements of Statistical
Learning has had colossal impact since its publication in 2001. In keeping with this zeit-
geist, strong connections between semiparametric regression and contemporary Com-
puter Science are becoming apparent.

Most of the connections are concerned with methodology for classification (or su-
pervised learning in the Computer Science world) and the sub-field of Computer Science
known as Machine Learning. Support vector machines (e.g. Moguerza & Mufioz, 2006)
and other kernel machines share many attributes and issues with nonparametric re-
gression (e.g. Hastie & Zhu, 2006). Wahba’s (2006) comment on Moguerza & Mufioz
(2006) describes recent convergence between support vector machine and regularization
research. Pearce and Wand (2006) showed how penalized splines and semiparametric re-
gression structure such as additive models can be embedded within the kernel machine
framework.

Boosting (Schapire, 1990) is another innovation from Machine Learning that is now
benefiting semiparametric regression. For example, Bithlmann & Yu (2003) used smooth-
ing spline theory and simulations to explain the interplay between the number of boost-
ing iterations and the ‘weakness” of the smoother. Tutz & Reithinger (2007) applied
their lessons to semiparametric mixed models and derived an alternative fitting algo-
rithm called BoostMixed. Further details on boosting and its impact on semiparametric
regression is given in Section 3.1.

Another area on the Computer Science interface where we see great potential for ben-
efits to semiparametric regression is graphical models (e.g. Jordan, 2004). Directed acyclic
graphs have become a common way of representing hierarchical Bayesian models and,
indeed, comprise the architecture on which BUGS is built (Cowell et al., 1999). Figure 1 is a
directed acyclic graph representation of model (4), described in Section 2.6. Nodes of the
graph correspond to the components of the model, while arrows convey “parent-child’
relationships of the hierarchical structure.

Figure 1: Directed acyclic graph representation of model (4). The shaded node corresponds to the
observed data.

Suppose we add the complication that the z; in (4) are subject to measurement error
and that we instead observe w; = z; + z; where the z; are now modeled to be from a
N(pz,02) distribution and the contaminating variable 2; is from a known fixed distribu-
tion. Then an appropriate hierarchical Bayesian model is that represented by Figure 2, a
more complex graph with four additional edges and nodes.

MCMC is currently the most common mechanism for approximation of posteriors in
the models depicted in Figures 1 and 2. The graphical models setting allows for graph-
theoretic structure, such as Markov blankets, to be exploited in the design and implementa-



Figure 2: Directed acyclic graph representation of model (4), but with the predictor subject to
measurement error. Shaded nodes correspond to the observed data.

tion of MCMC algorithms (Jordan, 2004). An emerging alternative to MCMC is variational
approximation (e.g. Jordan, Ghahramani, Jaakkola and Saul, 1999). Joint work between the
second author and J.T. Ormerod is investigating variational approximations that are spe-
cific to semiparametric regression analysis.

2.4 Monte Carlo methods

Since the early 1990s Markov Chain Monte Carlo (MCMC) methods have been a mainstay
of Bayesian inference. This is reflected in the Bayesian sections of Ruppert et al. (2003)
where MCMC, especially Gibbs sampling and simple random walk Metropolis-Hastings
schemes, are described in detail. However, in the intervening years, we have noticed the
emergence of new Monte Carlo methods. Some of these are more elaborate versions of
MCMC, while others fall outside of the Markov chain paradigm.

Staying first within the MCMC family we note that specifically tailored Metropolis-
Hastings schemes are developed by Baladandayuthapani et al. (2005). Paciorek & Schervish
(2006), Gryparis et al. (2007) and Baladandayuthapani et al. (2008). As mentioned in Sec-
tion 2.6, the BayesX software package makes use of elaborate MCMC schemes. In each
case, the goal is improved mixing for the complex semiparametric regression model at
hand.

The single component adaptive Metropolis algorithm of Haario, Saksman & Tammi-
nen (2005) is a recent modification of the random walk Metropolis-Hastings algorithm
that adapts according to what it has learnt from previous sampled iterates. The resulting
chain is not Markovian, although Haario et al. (2005) prove that it does lead to samples
from the correct posterior distributions. The adaptation aspect means that fiddly tun-
ing runs are not required. Nott (2006) successfully applied Haario et al.’s algorithm to a
semiparametric regression setting.

Quasi-Monte Carlo is a vibrant research area in the general problem of high-dimensional
numerical integration via importance sampling. It differs from ordinary Monte Carlo in-
tegral approximation in that random samples are replaced by cleverly chosen determin-
istic ones. While much of Quasi-Monte Carlo research is outside of Statistics, Hickernell,
Lemieux & Owen (2005) provides a recent survey for a statistical audience. Kuo, Dun-
smuir, Sloan, Wand & Womersley (2008) apply state-of-the art quasi-Monte Carlo algo-
rithms to a class of statistical problems that encompass some important semiparametric
regression models.

Sequential Monte Carlo samplers are a generalization of importance sampling that
produce weighted samples from the target distribution by sampling sequentially from a



slowly evolving set of distributions. Del Moral, Doucet & Jasra (2006) is the main refer-
ence for this emerging methodology. Fan, Leslie and Wand (2006) represents early work
on application of sequential Monte Carlo samplers to Bayesian semiparametric regres-
sion. Further research in this direction is under way.

Other recent developments in Monte Carlo methods that lend themselves to semi-
parametric regression applications include slice sampling with ‘stepping out” (Neal, 2003)
and approximate Bayesian computation (e.g. Beaumont et al. 2002; Marjoram et al. 2003;
Sisson et al. 2007).

2.5 Multivariate smoothing

In principle, all smoothing techniques can be extended to the multivariate case. In prac-
tice, though, this extension is a delicate art because of the additional complications that
high-dimensional domains bring. Chapter 13 of Ruppert et al. (2003) summarised bivari-
ate smoothing approaches based on kriging and splines, including low-rank extensions.
General multivariate extensions were briefly described. We now summarize interesting
new work in this direction from the last few years.

Wood (2003) develops an approach to low-rank thin plate spline smoothing that cir-
cumvents the knot placement issue. His basis reduction is based on a ‘worst possible
change’ criterion. For small data sets, implementation involves standard linear algebra
manipulations, while Lanczos iteration is suggested for larger sample sizes. In Wood
(2006c) the same author opts for tensor products as a means of extending penalized
splines smoothing to the multivariate situation. Scale invariance is the main mechanism
for achieving this extension in an attractive way. An advantage is this version of mul-
tivariate smoothing is that each direction has its own smoothing parameter. Particular
attention is also paid to the cogent incorporation of random effect structure for general-
ized additive mixed modeling.

Fahrmeir, Kneib & Lang (2004) show that common geostatistical approaches to bivari-
ate smoothing, including those in Ruppert ef al. (2003), have a representation in terms of
stationary Gaussian random fields. They then point out that Gaussian random fields
can be approximated by Markov random fields and that the latter has computational ad-
vantages. Markov random fields are also a common vehicle for Bayesian smoothing of
spatial count data. Hence, the Markov random field approach to bivariate smoothing has
the advantage of being in concert with that used for spatial count data. Kneib & Fahrmeir
(2006) also use the Markov random field approach to bivariate smoothing and relate it to
mixed models.

Currie, Durban & Eilers (2006) and Eilers, Currie & Durban (2006) treat the special
case of smoothing on multidimensional grids. They develop an arithmetic that results
higher computation speed and lower storage requirements.

Paciorek (2007a,b) investigates the use of the spectral representation of stationary
Gaussian process structure (Wikle, 2002) in semiparametric regression contexts. He iden-
tifies advantages for large sample sizes and MCMC mixing in the generalized response
situation.

The problem of complicated domains in bivariate smoothing is addressed by Wang &
Ranalli (2007). Motivated by a study on mercury concentrations in estuaries, Euclidean
‘as crow files” distance is replaced by a geodesic ‘as fish swims” distance. This distance
depends on the intrinsic structure of the domain and needs to be estimated. A procedure
based on shortest path theory and Floyd’s algorithm (Floyd, 1962) is described.

2.6 Software

Semiparametric regression research is now being conducted at a time of rapid change
in computing technology. In particular, the Internet age now facilitates fast and conve-



nient dissemination of code. Software for semiparametric regression is continually being

added to the Comprehensive R Archive Network (CRAN) (http://cran.r-project.orq)
allowing free widespread use for anyone who ‘speaks” R (R Development Core Team,

2008). Developments in commercial packages are also afoot. For example, SAS (SAS In-

stitute, Incorporated, 2007) added PROC GAM for generalized additive model analyses in

2000.

Generalized additive model analysis in R is now well-served by the packages gam
(Hastie, 2006), mgcv (Wood, 2008) and VGAM (Yee, 2008). The mgcv package is accom-
panied by the book Wood (2006a), which contains numerous illustrations of its use. It
also provides for automatic selection of degrees of freedom values via GCV. The VGAM
package distinguishes itself by facilitating the ‘vector” extension of generalized additive
models (Yee & Wild, 1996) and now provides for quantile regression (Yee, 2004). Additive
semiparametric quantile regression is also available in R’s quant reg package (Koenker,
2008).

In Ruppert et al. (2003) we mentioned SemiPar as a suite of S-PLUS functions to
accompany the book’s mixed model-based methodology. It has evolved into a package
on CRAN (Wand et al. 2007). Other packages with direct links to semiparametric regression
include AdapFit (Krivobokova, 2007) on spatial adaptive smoothing and polspline
(Kooperberg, 2007) on regression spline fitting.

BayesX is a public domain software package that supports Bayesian semiparametric
regression analysis using MCMC. It is housed in the Department of Statistics, University
of Munich, Germany, and its current Internet address is www . stat . uni-muenchen.de/
“bayesx/. Brezger, Kneib & Lang (2005) provides an overview of the capabilities of
BayesX. They also demonstrate superior mixing and speed of their MCMC implementa-
tions in comparison to WinBUGS.

Several other software modules indirectly benefit semiparametric regression analysis
through their support of related methodology such as geostatistics, kernel machines and
mixed models. While they exist in a variety of forms, we will mainly confine discussion
to those available on CRAN.

The geostatistical packages fields (Nychka, 2007), geoR (Ribeiro & Diggle, 2008),
geoRglm (Christensen & Ribeiro, 2008) and spectralGP (Paciorek, 2007a, 2007b) each
support bivariate smoothing. There is also some support for smoothing in higher dimen-
sions. For example, the Tps () function of fields allows thin plate spline smoothing of
arbitrary dimension.

As we explain later in Section 3.2 kernel machines have fundamental connections
with semiparametric regression. The R packages e1071 (Dimitriadou et al. 2008) and
kernlab (Karatzoglou et al. 2007) support kernel machine fitting, including support vec-
tor machines.

As discussed in Ruppert et al. (2003) and demonstrated by Ngo & Wand (2004), mixed
model software can be very useful for semiparametric regression analysis. A key fea-
ture is the support of general random effects design matrices (Zhao et al. 2006). The
SAS procedure PROC MIXED and the R package nlme (Pinheiro et al. 2008), each sup-
port general design matrices. The function g1lmmPQL () in the package MASS (Venables
& Ripley, 2008) has structure similar to that of 1me () and 1me4 () and facilitates gen-
eralized response semiparametric regression analyses via penalized quasi-likelihood. In
IlmeSplines (Ball, 2008) mixed model-based splines are the main focus. Exact likeli-
hood ratio tests for semiparametric regression analysis, as discussed in Section 3.6, is
supported by the R package RLRs1im (Scheipl, 2007).

As we discussed in Section 2.2, practical Bayesian inference has benefited enormously
from the BUGS software project (Lunn et al., 2000). The employment of BUGS is currently
the fastest way to get hierarchical Bayesian models fitted — or at least proto-typed. Rup-
pert et al. (2003) and Crainiceanu, Ruppert & Wand (2005) demonstrate the use of BUGS
for Bayesian semiparametric regression analysis. A brief example, which incorporates
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the variance component prior recommendations of Gelman (2006), is the Bayesian logis-
tic nonparametric regression model

logit{ P(y; = 1[w)} = Bo + Brzi + T4y zk(w:) = (XB + Zu)i;  [uloy] ~ N(0,031)

[180761] ~ N(07 O%I)v [Uu] == #ﬁ?ﬂq%y Oy > 0
4)
where the data are (x;,y;) € R x {0,1}, 1 < ¢ < n, the 2, are a spline basis as described in
Section 2.7, and oz and A are hyper-parameters. Figure 1 provides a graphical represen-

tation of this model. Implementation in BUGS involves the model specification code:

model

{
for(i in 1:n)
{
logit (mu[i]) <- betalO + betalxx[i] + inprod(ull,z[i,])
y[i] 7 dbern(mulil])

for (k in 1:K)

ulk] © dnorm(0, taul)
}
betal0 = dnorm (0, tauBeta) ; betal ~ dnorm(0,tauBeta)
numerU ~ dnorm(0,1) ; denomU =~ dnorm(0,taud)
taul <- pow (numerU/denomU, 2)

}

where tauBeta and taua are the reciprocals of the hyper-parameters a% and A?. WinBUGS,
the most popular version BUGS, can generate samples from posteriors of interest from the
above code via a graphical user interface. However, a major breakthrough for efficient
and well-managed analyses is the R package BRugs (Thomas, O'Hara, Ligges and Sturtz,
2006; Ligges et al. 2007), which was first released in 2005, and its predecessor R2WinBUGS
(Sturtz, Ligges and Gelman, 2005; Sturtz et al. 2007), first released in 2004. These pack-
ages allow for a single R script to (1) set up the data, spline basis functions, and various
tweaking factors; (2) call BUGS with a specific model script; and then (3) produce sum-
maries of interest using the vast graphical capabilities of R. These important facets are
not available if WinBUGS is used alone. Crainiceanu et al. (2005) illustrated this approach
with R2WinBUGS. However, our most recent Bayesian semiparametric regression work
(as yet unpublished) has employed BRugs.

2.7 Univariate spline bases

All commonly used penalized spline models for a smooth real-valued function f spline
can be expressed in the form

K
flwsp,z) = Po+ ...+ BprP + ) upzp(z)

k=1

where p is the degree of the polynomial component and {z(-) : k = 1,..., K} is a set of
spline basis functions for handling departures from pth degree polynomials. The spline
coefficients u = (u1,...,uk) are subject to penalization. In the mixed model represen-
tation u is usually taken to be random according to N (0, G) for some G. Already it is
clear that there are a lot of options for spline bases and the penalization. Without loss
of generality, we can take G = 21 since this just involves a linear transformation of the
zs. There is also a lot to be said for taking the polynomial to be linear — for example, if
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tests for linearity are of interest. So, while p > 1 may sometimes be desirable, the p = 1
canonical form

K
fw;2) = Bo+ Bz + ) _wpzr(z), u~ N(0,070), (5)
k=1

is useful for sorting out the various spline basis options. In addition, (5) is convenient
for implementation since it corresponds to the standard mixed model structure (with
x1,..., T, being data on the x variable):

X,B =+ Zu, u~ N(O, 051), where X = [1 wi]lgign and Z = [zk(xi)]lgign.
1<k<K

Ruppert et al. (2003, Chapter 2) survey options and strategies for K and the z;’s up to
about 2002. However, there have been some interesting developments since then. Currie
and Durbéan (2002) show how the Eilers and Marx (1996) P-splines can be expressed in
mixed model forms such as (5). Welham, Cullis, Kenward and Thompson (2007) produce
a useful exposition on how the various versions of penalized splines are connected to
each other. In a similar vein to (5) they propose ‘A general model for polynomial splines’
that includes several options under one umbrella. A large-scale simulation comparison
study shows no clear winner across all settings. Some practical advice about penalty
choice and order of differencing is offered. The ‘minimum worst possible change” ap-
proach of Wood (2003), described in Section 2.5 for multivariate smoothing, also yields
univariate low-rank spline bases as a special case.

Wand and Ormerod (2008) studied the low-rank approximation of smoothing splines,
introduced by O’Sullivan (1986). The name O-splines is suggested for this exact counter-
part of P-splines. Results for exact computation of the z; are derived that allow imple-
mentation in R with only a few lines of code. A simulation study shows O-splines and
P-splines to be quite close in the interior, but the latter to have better extrapolation behav-
ior, and also very close to smoothing splines even for K < n. Given the well-established
good properties of smoothing splines, such as natural boundary behavior and asymptotic
optimality (Nussbaum, 1985), the evidence points towards O-splines as the better option
in comparison with P-splines, and as an excellent default for univariate spline bases in
semiparametric regression analysis.

3 Advancement of Models and Methods

After reviewing the semiparametric regression literature from the past five years we then
categorized the various contributions according to broad themes, with regarding to ad-
vancement of models and methods. The following subsections emerged, and are pre-
sented alphabetically.

3.1 Boosting

Boosting began within the field of machine learning during the 1990s. Early references
are Schapire (1990), Freund (1995) and Freund & Schapire (1996). Far-reaching statistical
connections, involving gradient descent methods and additive models, were discovered
by Breiman (1998) and Friedman, Hastie & Tibshirani (2000). These acted as catalysts
for a great deal of statistical research on boosting, including its interplay with smoothing
techniques. Section 2.1 of Tutz & Binder (2006) describes the evolution from boosting
as a means to improve classification procedures to a powerful tool for semiparametric
regression analysis. We now describe some of these developments.

Bithlmann & Yu (2003) provides an excellent introduction to the main ideas of boost-
ing, by working with linear smoothers and the simplest version of boosting, known as
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Ly boosting. Let y be the response vector and y be the vector of fitted values obtained
from a linear smoother (e.g. penalized spline, kernel-based local linear) with smoothing
parameter A\. Then the smoother matrix S is given by y = S,y. The Ly boosting fit
at iteration m is one with fitted values 7y, = I — (I — S,)™"!. The case m = 1 cor-
responds to the ‘twicing” methodology of Tukey (1977). Boosting, in general, involves
repeated fitting of ‘weak’” classification or regression procedures. Biihlmann & Yu use
asymptotics to explain a new type of bias-variance trade-off that arises from the inter-
play between m and A. A very interesting result is that, for optimal values of m, the
optimal smoothing parameter is larger than for the ordinary (m = 0) case. This is con-
sistent with the boosting ‘folklore” which says that iteration of weak procedures leads to
better performance. For linear smoothers, ‘weakness’ can also be achieved by replacing
Sby Sy, =vS,, 0 < v <1 Bihlmann & Yu (2003) provide simulations results that
show very small v can be optimal and quite large m can be optimal. One example has
(v,m) = (0.01,1691) as the optimal configuration, showing how slow convergence in
boosting can be.

Tutz & Reithinger (2007) integrated the ideas of boosting with semiparametric mixed
models based on penalized splines. Their BoostMixed algorithm works with weak ver-
sions of the smoothers, obtained by inflation of the smoothing parameters. Versions of
AIC and BIC are used as stopping criteria. Lietenstorfer & Tutz (2007a) use boosting for
knot selection in a regression spline approach to smoothing.

The fitting of generalized additive models via likelihood-based boosting is developed
by Tutz & Binder (2006), resulting in their GAMBoost algorithm. Advantages are found in
the case of very many predictors. Binder & Tutz (2008) use a large-scale simulation study
to show that GAMBoost compares favorably with other methods for fitting generalized
additive models where there are many candidate predictors.

A comprehensive account of the statistical aspects of boosting is provided by Biihimann
& Hothorn (2007) and accompanying discussion. Important contributions include con-
nections to smoothing splines and the lasso, asymptotic theory, degrees of freedom and
implementation in the R computing environment.

As discussed in Section 3.16, monotone smoothing with boosting is developed in Tutz
& Leitenstorfer (2007). Leitenstorfer & Tutz (2007b) apply this methodology to air pollu-
tion data.

3.2 Connections with kernel machines

Given data (x;,4;) € X xR, 1 < i < n, and a convex loss function £, kernel machine
estimation of f = argmin  E{L(y, g(x)} involves modeling f to be of the form f(x) =
b+ >, ¢ K (x,%;), where the kernel K (s, t) is a symmetric positive definite bivariate
function, and obtaining the coefficients according to

min {£(y, 10 + Ke) + Ac Kc}. (6)
,C

Here y and c are the vectors containing the y; and ¢;, A > 0 is the regularization pa-
rameter, K = [K(x;,x;)] is the Gram matrix and 1 is a vector of ones of length n. There
are several ways by which (6) can be derived; including reproducing kernel Hilbert space
projection theory (e.g. Kimeldorf & Wahba, 1971), best linear prediction of stationary spa-
tial processes (e.g. Stein, 1999), maximum a posterior estimation in Gaussian processes
(e.g. Rasmussen & Williams, 2006) and Tikhonov regularization of ill-posed problems
(Tarantola, 2005). Support vector machines (e.g. Cristianini & Shawe-Taylor, 2000) are a
special type of kernel machine, in which y; € {—1,1} and £L(a,b) = > (1 — a;b;)+.

Hastie & Zhu (2006) show that kernel machine methods, such as support vector ma-
chines for classification, are no different in substance from many statistical methods in-
volving penalization. Their second section provides some revealing connections via the
use of spectral decomposition of the Gram matrix of kernel machines.
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Pearce & Wand (2006) elucidate connections between the penalized spline and kernel
machine literatures. Particular attention is paid to support vector machines. Computa-
tional aspects of the resulting penalized spline support vector classifiers are studied by
Ormerod, Wand and Koch (2008).

Takeuchi, Le, Sears & Smola (2006) exemplifies research from the machine learning
community on nonparametric regression problems. They tackle the nonparametric quan-
tile regression problem using kernel machines. Included are solutions to the quantile
crossing problem and incorporation of monotonicity constraints.

Gianola, Fernando & Stella (2006) combine the ideas of linear mixed models and ker-
nel machines to predict total genetic value for quantitative traits. Random effects are used
for genetic effects, while kernel machines are used for expression of single-nucleotide
polymorphisms. Liu, Lin & Ghosh (2007) derived similar models, with kernel machines
used to handle interactions between expression of several genes. They conclude with
some interesting commentary on further opportunities for the use of kernel machine
methodology in biostatistical research.

3.3 Epidemiological aspects

Epidemiological applications featured regularly throughout our (Ruppert et al. 2003) book,
and epidemiologists were one of our target audiences. We now revisit the interplay be-
tween semiparametric regression and epidemiology five years on.

Kim, Carroll & Cohen (2003) take a penalized spline/mixed model approach to gen-
eralized additive model analysis in matched case-control studies. They develop an ap-
proximate cross-validation scheme to choose the smoothing parameters and explored
both Monte Carlo EM and Bayesian approaches to fitting.

The methodology of Carroll, Ruppert, Crainiceanu, Tosteson & Karagas (2004) (see
Section 3.10) is applied to the OPEN (Observing Protein and ENergy intake) nutritional
epidemiological study. Doubly labeled water, a biomarker for nutrient intake, is used as
a instrument in a nonparametric regression measurement error model that relates true
protein intake with that reported via a food frequency questionnaire.

Dominici, McDermott & Hastie (2004) work with smoothing spline-based Poisson ad-
ditive models to assess the effect of particulate matter air pollution on mortality. The data
are daily time series with smooth function components to account for seasonal and me-
teorological effects. Improved inferential techniques leads to strong evidence of associa-
tion between short-term exposure to particulate matter less than 10 microns in diameter
(PMjp) and mortality.

Congdon (2006), MacNab (2007) and MacNab & Gustafson (2007) use semiparametric
regression techniques in spatial epidemiological analyses. The first applies the method-
ology to spatial count data on lip cancer in Scotland and suicide data in London. The sec-
ond and third of these apply the methodology to spatial count data on adverse medical
events to hospitalized children, youth and elderly patients in British Columbia, Canada.
Temporal and spatial trends within 84 local health areas are estimated and assessed.

The papers Figueiras, Roca-Pardinas & Cadarso-Suarez (2005), Cadarso-Suarez, Roca-
Pardinas & Figueiras (2006) and Roca-Pardinas, Cadarso-Suarez, Nacher & Acuna (2006)
are motivated by Spanish epidemiological studies and make use of semiparametric re-
gression methodology in various ways. For example, Figueiras et al. (2005) uses a Poisson
to assess the effect of black smoke on mortality in Vigo, Spain.

3.4 Functional data analysis

Functional data analysis is a relatively new branch of Statistics and has the good fortune
of a well-written pair of books, Ramsay & Silverman (1996, 2002) providing a solid foun-
dation. It is sometimes referred to colloquially as ‘curves as data’” and, from the outset,
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has had strong connections with nonparametric regression techniques. Functional data
analysis is also a close relative of longitudinal data analysis. It is not surprising that some
recent work in functional data analysis makes use of modern semiparametric regression
methodology.

Cardot, Ferraty & Sarda (2003) consider functional linear models, where the predic-
tor is a random function. They consider approaches involving penalized B-splines and
smooth principal components regression and establish L, rates of convergence for each.

Coull & Staudenmayer (2004) take a linear mixed model approach to self-modeling
regression for multiple response curve data. An Expectation-Conditional Maximization
algorithm (Meng & Rubin, 1993) is developed for fitting and inference. Application is
made to data on the respiratory effects of residual oil fly ash inhalation in humans.

Motivated by functional data on particulate matter exposure and heart-rate variabil-
ity, Harezlak, Coull, Laird, Magari & Christiani (2006) extends historical functional linear
models (Malfait & Ramsay, 2003) in the direction of mixed model-based splines with
REML smoothing parameter selection. L; penalties, with AIC smoothing parameters
selection, are considered as well.

Qin & Guo (2006) build periodicity into functional mixed-effects models to better
model the circadian rhythms of cortisol concentrations. They develop a state space rep-
resentation of periodic splines and use Kalman filtering for estimation.

Morris, Vannucci, Brown & Carroll (2003) make the initial step of wavelet-based non-
parametric modeling on hierarchical data, using Bayesian fitting methods. Morris & Car-
roll (2006) introduce the notion of wavelet-based functional mixed model. Regularization
and smoothing are done within the Bayesian paradigm, with easy-to-use code available
atodin.mdacc.tmc.edu/~ jeffmo/papers_files/wfmm_supplement .html. Their
methods are applied to functional mixed models data of the MGMT DNA repair enzyme
in a colon carcinogenesis experiment. Morris, Arroyo, Coull, Ryan, Herrick & Gort-
maker (2006) extend this method to allow for missing response data and apply it to an
accelerometer profile study. Morris, Brown, Herrick, Baggerly & Coombes (2007) use the
wavelet-based functional mixed model to analyze mass spectronomy data. Antoniadis
& Sapatinas (2007) also work with wavelet-based functional mixed models. Recent work
on likelihood ratio testing for penalized splines (e.g. Crainiceanu et al. 2005; see Sec-
tion 3.6) is employed. Risk bounds are established and the methodology is applied to
stepping-cycle data from an orthosis study.

Marx & Eilers (2005) extend their earlier work on penalized signal regression (Marx
& Eilers, 1999) to two-dimensional signal regressors. Their example of such a regres-
sor involves digitizations along the emission wavelength axis of curves arising from a
sugar processing experiment. The second dimension arises from these digitizations be-
ing done at several excitation levels. The prediction of ash content and color is of interest.
The regression fitting and modeling involves tensor product extensions of P-splines and
cross-validation. These leads to an estimated coefficient surface, and an image of ‘t-like’
statistics over the wavelength/excitation plane. In Marx & Eilers (2002) and Eilers &
Marx (2003) the authors apply their general approach to other chemometrics data sets,
with some tailoring to the problems at hand.

Reiss & Ogden (2007) also treat the signal regression problem. They start by point-
ing out that there two main approaches to dealing with the multicollinearity problem:
smoothing (e.g. Marx & Eilers, 1999) and component selection (e.g. Massy, 1965). They
develop functional versions of principal component regression and partial least squares,
which combine these two approaches. Selection of the smoothing parameter is studied in
depth. Both GCV and REML are considered, the latter arising from a linear mixed model
representation of their procedures. Their simulation results show good performance of
REML.

Yao & Lee (2006) treat the functional principal component analysis problem (e.g.
Ramsay & Silverman, 1997, Chapter 8) using an iterative penalized spline procedure that
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addresses within-subject correlation in functional data. Consistency results are estab-
lished and application is made to yeast cell cycle gene expression data. Zhou, Huang
& Carroll (2008) use a novel low-rank principal components approach to address joint
modeling of bivariate functional data, and show that a seemingly unrelated regression
phenomenon exists.

Baladandayuthapani, Mallick, Hong, Lupton, Turner & Carroll (2008) develop an
elaborate hierarchical functional data analytic model for data arising from a colon car-
cinogenesis study. It is tailored to suit the colonic crypt structure of rats. Bayesian repre-
sentations of penalized splines are used to model signals as a function of distance within
a crypt, while the Matérn covariance family is used to model correlation of signals be-
tween the crypts.

3.5 Geoadditive models

Geoadditive models combine the ideas of geostatistics and additive models. An example
of an geoadditive model is

E(birthweight;,) = fi(no.prenatal visits;)+ f2(cigarettes per day,)
+f3(longitude;, latitude;)

Kammann & Wand (2003) show how linear mixed models could be used for geoaddi-
tive model fitting and inference. However, several other papers (e.g. Wood, 2003) have
treated the same structure in other ways.

Extensions of geoadditive models in the direction of generalized responses are con-
tained in Fahrmeir & Echavarria (2006) and Zhao, Staudenmayer, Coull & Wand (2006).
Zhao et al. (2006) deal with exponential family models, whilst Fahrmeir & Echavarria
(2006) treat over-dispersed and zero-inflated count data. Each use a Bayesian mixed
model framework, with fitting via MCMC, and provide applications.

The extension of geoadditive models to survival data has seen considerable research
in the last five years. Hennerfeind, Brezger & Fahrmeir (2006) develop geoadditive sur-
vival models for both geographical point data and count data. They take a Bayesian P-
spline approach and use Gaussian and Markov random fields for the spatial components.
Kneib & Fahrmeir (2007) lays out the mathematics underpinning geoadditive hazard re-
gression models. Kneib (2006) extends these models to handle interval censored data.
Adebayo & Fahrmeir (2005) develop a geoadditive discrete-time survival model and use
it to analyze child mortality data. Ganguli & Wand (2006) also deal with geo-referenced
survival data, and use the low-rank radial smoothers of Kammann & Wand (2003).

Geoadditive models have also been adapted to model space-time data. Fahrmeir,
Kneib & Lang (2004) and Kneib & Fahrmeir (2006) use low-dimensional smooths involv-
ing time and age to model forest health data, in conjunction with Gaussian and Markov
random fields for the spatial effects. Gryparis, Coull, Schwartz & Suh (2007) also involves
space-time data, but their geoadditive model is an elaborate one that includes latent vari-
able structure for multiple exposures from mobile particulate matter.

Geoadditive models with missing data covariate data is studied by French & Wand
(2004). Chen & Ibrahim (2006) extend that work to geoadditive models that allow for
specification of the covariate distribution and the missing data mechanism.

Other work that contains extensions of geoadditive models includes Lang, Adebayo,
Fahrmeir & Steiner (2003), on seemingly unrelated regression, Lang & Brezger (2004) on
spatial adaptation and Augustin, Lang, Musio & von Wilpert (2007) on ordered categori-
cal responses.
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3.6 Inference

In its early years, smoothing techniques were developed with little regard to related infer-
ential questions such as linearity versus non-linearity of a particular covariate effect. This
is especially noticeable in the early kernel smoothing literature. In recent years, however,
this situation has been redressed and these is now quite a large literature on inference
in smoothing contexts. The mixed model approach representation of smoothing splines
and penalized splines offers a particularly attractive framework for this endeavor. This is
because the well-established tools of likelihood-based and Bayesian inference are readily
available. While there is a great deal of research on inference for other approaches to
smoothing since 2002, we confine discussion mainly to smoothers based on mixed mod-
els.

A significant portion of the 2003-2007 literature involves likelihood ratio tests for
testing departures from linear models. This boils down to tests on variance components
being different from zero. The classical reference for tests of this type, in which the null
value of the parameter is on the boundary of its space, are Self & Liang (1987) and Stram
& Lee (1994). However, their theory assumes that independence under the null and al-
ternative hypotheses. This is not the case for many mixed model scenarios, including
penalized splines and several recent papers by C. Crainiceanu and co-authors are con-
cerned with rectifying this situation. The main smoothing paper from this body of work
is Crainiceanu, Ruppert, Claeskens & Wand (2005). It builds upon Crainiceanu & Rup-
pert (2004a), where exact distribution theory for the likelihood ratio statistic in Gaussian
linear mixed models is obtained. Crainiceanu et al. (2005) also obtain confidence intervals
for the smoothing parameter by inverting likelihood ratio tests. Claeskens (2004) contains
asymptotic results for this setting, but with the number of knots increasing with the sam-
ple size and certain restrictions on the design matrices that are not satisfied by standard
penalized spline models. Crainiceanu and Ruppert (2004b) develop likelihood ratio and
restricted likelihood ratio tests of goodness-of-fit of nonlinear regression models. Liu &
Wang (2004) review various versions of linearity tests based on Bayesian representations
of smoothing splines and conduct a simulation study to assess their frequentist proper-
ties.

The exact distribution theory used in the papers of the previous paragraph applies
only to the situation where there is a single variance component. Extensions to models
with multiple covariance components is conducted by Crainiceanu & Ruppert (2004c)
and Greven, Crainiceanu, Kuechenhoff & Peters (2008). Remedies to the null distribution
problem include use of the parametric bootstrap and approximation of the likelihood
ratio statistic by a product of independent x? and Bernoulli random variables. Greven
et al. (2008) demonstrate good performance of the second approach. Greven et al. (2008)
also propose an approximation to the null distribution of the restricted likelihood ratio
statistic using an idea similar to pseudo-likelihood estimation. Crainiceanu, Ruppert,
Claeskens and Wand (2005) show via simulation studies that the power properties of the
likelihood ratio tests compare favorably those of competing tests.

In the context of least-squares kernel machines, Liu, Lin & Ghosh (2007) develop a
score test for non-linearity that relies on a mixed model representation. Sattherwaite’s
approximation is used to obtain approximate p-values.

Extension of likelihood ratio tests in the generalized response setting is challenging
due to the presence of intractable integrals in the likelihoods. Lin (1997) and Lin & Zhang
(1999) developed score tests for GLMM settings, the latter reference including general-
ized additive models through the mixed model representation of smoothing splines. This
general approach has since been extended to additive mixed models (Zhang & Lin, 2003),
varying coefficient models for longitudinal data (Zhang, 2004) and proportional hazards
models (Lin, Zhang & Davidian, 2006).

Wood (2006b) develops approximate Bayesian confidence intervals (see Section 6.4
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of Ruppert et al. and references given there) for the estimated functions in generalized
additive models. He takes advantage of the low-rank aspect of penalized splines so that
the distribution theory involves the relatively small random vector of spline basis coef-
ficients. The generalized case is dealt with by using a weight matrix approximation in
the ridge regression expression. It is also explained how inference for functionals of the
coefficient vector can be made without time-consuming bootstrap replications. This inno-
vative paper finishes off with proposals on how to avoid MCMC in the ‘fully Bayesian’
case, in which variability due to smoothing parameter choice variance components is
taken into account.

The Bayesian mixed model approach to semiparametric regression has immediate
benefits regarding inference. For example, non-linearity versus linearity of covariate ef-
fects can be assessed through the posterior distributions of variance components. They
are several new papers on Bayesian on semiparametric regression, scattered throughout
Section 3 of this review article.

Lastly, we mention contribution spline-based approaches to the scale-space approach
to feature significance, sometimes known as ‘SiZer’ (Chaudhuri & Marron, 1999), and
summarized in Section 6.9 of Ruppert et al.. Ganguli & Wand (2004) facilitates feature
significance for bivariate smoothing, or geostatistics, by developing the appropriate the-
ory for low-rank thin plate splines. Marron & Zhang (2005) develop the requisite theory
for a (full-rank) smoothing spline version of SiZer.

3.7 Latent variable models

Latent variable modeling is a growth area in Statistics in general, and has had some inter-
play with semiparametric regression in the last five years. The introduction of Skrondal
& Rabe-Hesketh (2004) defines a latent variable as a random variable whose realizations
are hidden from the analyst and gives, as examples of their utility, data measured with er-
ror, hypothetical constructs and latent responses underlying categorical variables. Mixed
models play a prominent role in latent variable modeling so, for this reason alone, have
common ground with contemporary smoothing techniques.

Tutz & Scholz (2004) use the principle of maximum random utility to link multi-category
responses to latent utilities. They allow for dependence on covariates via additive and
varying coefficient structure, aided by penalized splines. Fahrmeir & Raach (2007) de-
velop Bayesian semiparametric latent variable models, including those that allow spatial
effects to be incorporated. They involve measurement models for mixed continuous, bi-
nary and ordinal responses. For example, the discrete value of ordinal responses are
assumed to be generated through a threshold mechanism.

Elliott (2007) uses smoothing splines and their mixed model representation to build
flexibility into latent cluster models. These relate underlying ‘clusters” of variability to
measures of interest. Application is made to data on depression levels for patients recov-
ering from myocardial infarction.

Gryparis, Coull, Schwartz & Suh (2007), described more fully in Section 3.5, has a
latent variables aspect for handling multiple exposures.

3.8 Longitudinal data analysis

Mixed models have been a staple of longitudinal data analysis for the last 25 years. This
partnership has resulted in a high volume of mixed model methodology and software
development over the same time period. The mixed model approach to penalized spline
smoothing not only allows one to take advantage of these developments, but means that
longitudinal structure is easy to incorporate. Nowadays, a single linear mixed model can
be used to perform an elaborate longitudinal data analysis that incorporates nonpara-
metric estimation of several smooth functions (e.g. Zhao et al., 2006).
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An component of recent semiparametric longitudinal data analytic research has been
concerned with marginally specified models such as (7). We review this research in Sec-
tion 3.9. The models covered in this subsection differ in that that are defined condition-
ally.

Ghidey, Lesaffre & Eilers (2004) develop the penalized Gaussian mixture linear mixed
model. It involves function estimation via spline basis functions that are Gaussian densi-
ties and random effects modeled as mixtures of normal distributions. Particular attention
is paid to two-dimensional random effects structure.

Durbén, Harezlak, Wand & Carroll (2005) describe mixed models models for fitting
subject-specific curves to longitudinal data. Models of this general type have been de-
veloped by several other authors (e.g. Donnelly, Laird & Ware, 1995; Verbyla et al. 1999).
The low-rank spline approach of Durbén et al. (2005) is particularly simple and has the
ability to handle very large sample sizes with standard mixed model software (code is in-
cluded in an appendix). Harezlak, Ryan, Giedd & Lange (2005) fit similar models to data
from accelerated longitudinal designs where subjects enter the study at different points of
their growth trajectory and are observed over a relatively short time period. Application
is made to longitudinal magnetic resonance imaging data from an ongoing developmen-
tal study. Smith & Wand (2008) focus on the variance calculations required for inference
in semiparametric mixed models. They describe streamlined algorithms that yield two
orders of magnitude improvements over naive variance calculations.

Welham et al. (2006) and Zhang et al. (2007), as detailed in Section 3.16, deals with
semiparametric longitudinal models under periodicity constraints. Zhao et al. (2006),
discussed in Section 3.13, provides quite a general treatment of Bayesian generalized
response models that include longitudinal models as a special case.

The likelihood ratio methodology of Crainiceanu & Ruppert (2004) and Greven et al.
(2008) (Section 3.6), for models variance components, is applied to inference in longi-
tudinal settings. Qu & Li (2006) develop quadratic inference functions for fitting and
inference in varying coefficient models for longitudinal data.

Harezlak, Naumova & Laird (2007) devise a bump hunting test for longitudinal data,
based on the subject-specific curves model of Durbén et al. (2005).

Finally, we note that more extensive reviews of this subsection’s general topic are
provided by five chapters under the heading Nonparametric and Semiparametric Methods for
Longitudinal Data in Fitzmaurice, Davidian, Verbeke & Molenberghs (2008). The chapters
are authored by X. Lin & R.J. Carroll, H.-G. Miiller, S.J. Welham and B.A. Brumback, L.
Brumback & M.]. Lindstrom.

3.9 Marginal longitudinal models

Research on the marginal longitudinal nonparametric regression model (see (7) below)
continues at a steady rate. Early contributions to this setting include Zeger & Diggle
(1994) and Lin & Carroll (2000). While most early involved kernel smoothing, more re-
cent research involves spline smoothing. Marginal models differ from the conditionally
specified models of Section 3.8 in that they do not model the within-subject correlation
or the error process.

The simplest setup is as follows. For 1 < i < m subjects we observe 1 < j < n
(n < m) responses y;; and predictors z;;. (Somewhat annoyingly, the m and n notation
alternates in the literature between their roles given here and the reversal; i.e. that where
n is the number of subjects and m is the number of measurements. In this paper we stick
with the notation used by Diggle, Heagarty, Liang & Zeger (2002) and Ruppert, Wand
& Carroll (2003).) Let y; be the vector of responses for the ith subject and x; be defined
similarly. The marginal longitudinal nonparametric regression model is then

E(yijlxi) = f(zi3),  Cov(yilx;)) =%, 1<i<m,1<j<n 7)
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for some smooth function f and n x n covariance matrix ¥. A noteworthy, somewhat
paradoxical, result is that ordinary kernel smoothers are more efficient if so-called work-
ing independence is assumed (Lin & Carroll, 2001). Wang (2003) develops a more elab-
orate kernel smoothing strategy that escapes from this paradox and is uniformly more
efficient.

Welsh, Lin & Carroll (2002) use equivalent kernel theory to demonstrate that penal-
ized spline estimators are non-local compared with kernel smoothers. This means that
the “legality” of working independence justified by Lin & Carroll (2000) for ordinary ker-
nel smoothers does not apply to penalized splines. Lin, Wang, Welsh & Carroll (2004)
brings together earlier papers by the authors on (7). Theoretical results include asymp-
totic equivalence between the Wang (2003) kernel estimator and a smoothing spline-
based estimator, and optimality of these two approaches.

Other contributions to theory and methodology for (7), but primarily within the ker-
nel smoothing realm, include Carroll, Hall, Apanasovich & Lin (2004), Chen & Jin (2005),
Hu, Wang & Carroll (2004), Wang, Carroll & Lin (2005) and Lin & Carroll (2006). Inter-
estingly, there is little use of low-rank spline modeling in this context. Linton, Mammen,
Lin & Carroll (2003) and Carroll et al.(2004) discuss a two-stage approach that estimates
¥ from the residuals of an unweighted fit and then computes a penalized spline estima-
tor, finding good efficiency. But to the best of our knowledge the low-rank spline mixed
model approach has not been implemented in this context. Current research on this ap-
proach, led by the second and third authors, is under way.

3.10 Measurement error models and deconvolution

Carroll, Ruppert, Stefanski & Crainiceanu (2006) provides a recent and comprehensive
review of non-linear measurement error models. In their preface to this second edition
the authors point out that, in 11 years since the book’s first edition, semiparametric re-
gression and Bayesian computation via MCMC have grown enormously. These threads
run through much of the contemporary research on nonlinear measurement error mod-
els. Chapters 9, 12 and 13 of Carroll ef al. (2006) summarize most of the relevant literature.
We now supplement those with some recent literature that is closest to the Ruppert, Wand
& Carroll (2003) genre.

Carroll, Ruppert, Crainiceanu, Tosteson & Karagas (2004) study non-linear and non-
parametric regression when there is covariate measurement error and an instrumental
variable is available. They consider several approaches to estimation and, in a simula-
tion study, a Bayesian spline estimator similar to the one in Berry, Carroll, and Ruppert
(2002) is the most effective.

Ganguli, Staudenmayer & Wand (2005) studied additive model fitting and inference
when measurement error is present in one or more predictors. They use a maximum
likelihood approach and advocate use of the Monte Carlo EM algorithm for fitting and
inference.

The periodicity-constrained functional mixed models of Zhang, Lin & Sowers (2007)
(see Section 3.16) handle measurement error in the predictor, follicle stimulating hor-
mone, via a two-stage approach.

Ma & Carroll (2006) show how to estimate nonparametric functions in semiparamet-
ric models while making no assumptions about the distribution of the variables mea-
sured with error.

Mallick, Hoffman & Carroll (2002) use a Bayesian approach to fitting nonparamet-
ric functions when the measurement errors are mixtures of Berkson and classical types.
They use a Direchlet process to estimate the distribution of the mismeasured covariate
essentially nonparametrically. Their method is applied to the Nevada Test Site radiation
study. Carroll, Delaigle & Hall (2008) use a deconvolution approach in the same context.
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Liang, Wu & Carroll (2003) develop mixed effects varying coefficient measurement
error models, applying the methods to AIDS data.

Ruppert, Nettleton & Hwang (2007) use penalized B-splines to tackle a deconvolution
or inverse problem that arises in multiple testing. Suppose we have n tests with the ith
hypothesis being Hy; : §; = 0. Here 6; > 0 might be the non-centrality parameter of a
t-test. The problem is to estimate the distribution of ¢;, but we do not observe §;, only the
p-values. To estimate the distribution of §;, Ruppert et al. estimate the proportion, 7, of
true null hypotheses and G, the distribution of J; under the alternative hypothesis. This
problem is novel in that the distribution of §; has a discrete component coming from the
null hypothesis and a continuous component due to the alternative. An estimate of 7 is
needed to estimate the false discovery rate (Benjamini and Hochberg, 1995). Ruppert et
al. show that an estimate of G can be used to estimate the expected discovery rate (the
probability an effect is declared significant given that the null is false), the true negative
rate (the probability that an effect is declared nonsignificant and the null is true), and
the true positive rate (the probability that an effect is declared significant and the null is
false). Ruppert et al. model the density of G as a convex combination of B-splines, each
normalized to be a density. Because a convex combination is used, the spline coefficients
are constrained to be non-negative and sum to 1. Ruppert et al. develop a constrained
and penalized least-squares algorithm based on quadratic programming and apply this
estimator to a simulation study and to a case study of gene expression in barley.

Staudenmayer, Ruppert, & Buonaccorsi (2008) study density estimation in the pres-
ence of heteroskedastic measurement error. They show that deconvolution methods that
assume homoskedasticity over (under) correct in regions where the measurement error
variance is smaller (greater) than average. Their solution to this problem is to model
both the underlying density and the variance function as splines. Estimation is done by
MCMC with constraints to ensure that both functions are non-negative and the density
estimate integrates to 1. They use Hampel’s (1974) influence function to find an equiv-
alent kernel for their density estimator. They apply their estimator to a case study of
estimates of plasma beta-carotene f rom the placebo arm of a clinical trial on the preven-
tion of recurrences of skin cancer.

3.11 Missing data

Because of space and time limitations, a missing data chapter was missing from Rup-
pert et al. (2003). However, many contemporary methods for handling missing data use
likelihood-based or Bayesian inference that is in keeping with our semiparametric re-
gression methodology. While there has been a modest amount of work in this direction,
which we now summarise, our feeling is that there is still room for more such research.

French & Wand (2004) develop a likelihood-based model for missing covariate data in
geoadditive model (Kammann & Wand, 2003) analyses. Monte Carlo EM and a version
of penalized likelihood is used for fitting and inference. An application involving relative
cancer mapping, with missingness in smoking status, is presented.

Chen & Ibrahim (2006) develop likelihood-based semiparametric regression models,
including those with bivariate smoothing, for specifying the covariate distribution and
the missing data mechanism. The EM algorithm is recommended for fitting, and appli-
cation is made to data from a melanoma clinical trial.

Bivariate smoothing is also considered by Geraci & Bottai (2006). They treat the in-
corporation of auxiliary data when there are non-ignorable missing responses. Mixed
model-based low-rank kriging is used for bivariate smoothing, and Monte Carlo EM for
fitting. Application is made to mapping of phytoplankton data.

Penalized splines are used in a missing data situation with clustering by Yuan & Little
(2007). Several missing data mechanisms are entertained. Hierarchical Bayesian models
are used and Gibbs sampling employed for fitting. Application is made to a childhood

21



obesity study.

3.12 Model selection

In Ruppert, Wand & Carroll (2003) we noted (Section 8.6) that model selection for semi-
parametric regression was still in its infancy, and provided a handful of references — par-
ticularly in the special case of additive models with several candidate predictors. There
have been a few developments since 2003 on this problem.

Wager, Vaida & Kauermann (2007) use the mixed model representation of penalized
spline semiparametric regression models and versions of AIC to obtain a model selec-
tion algorithm for the continuous response case. The smoothing parameters of the fitted
models are estimated from the data using (restricted) maximum likelihood.

Avalos, Grandvalet & Ambroise (2007) work with smoothing splines and the lasso
(Tibshirani, 1996) to choose among additive models. The lasso has the feature of annihi-
lating coefficients rather than shrinking them, resulting in better parsimony. An approx-
imation of the generalized cross-validation is used for smoothing parameter selection.
Vandenhende, Eilers, Ledent & Renard (2007) make use of penalized splines, GCV and
the lasso to sift through candidate biomarkers in drug development applications.

Model selection via boosting is studied by Tutz & Binder (2006), Tutz & Reithinger
(2007) and Binder & Tutz (2008). Further details are given in Section 3.1.

Hens, Aerts & Molenberghs (2006) is on model selection for incomplete and design-
based samples based on a weighted AIC. While it is mainly concerned with parametric
regression model, the approach is extendable to semiparametric regression.

3.13 Non-Gaussian response models

Fitting and inference for semiparametric regression models when the response is non-
Gaussian usually entails an extra layer of complexity due to the non-explicit forms that
arise. Research on this front roughly parallels that of generalized linear mixed models,
where analytic approximations and MCMC are the main combatants.

The Wood (2006a) book is a contemporary account of generalized additive model fit-
ting and analysis — accompanied by the R package mgcv (Wood, 2008). Generalized addi-
tive mixed models are also treated. Smoothing parameter selection is achieved through
generalized cross-validation, AIC and penalized quasi-likelihood. Zhao, Staudenmayer,
Coull & Wand (2006) work with a general form of the generalized linear mixed model that
includes most exponential family semiparametric regression models as a special case.
They adopt a Bayesian approach and describe MCMC fitting and inference using BUGS
(e.g. Lunn et al. 2000) software. Skaug & Fournier (2006) investigate the use of automatic
differentiation in a general GLMM framework. A semiparametric regression example is
included.

The past five years has seen several extensions of semiparametric regression beyond
the one-parameter exponential family situation. Nott (2006) works with the double ex-
ponential family (Efron, 1986) and shows it to be a good vehicle for handling both mean
and variance functions. He calls upon the Single Component Adaptive Metropolis algo-
rithm of Haario, Saksman & Tamminen (2005) to perform fitting. Branscum, Johnson &
Thurmond (2007) extend the Bayesian semiparametric regression approach to responses
from the Beta family of distributions. The paper revolves around two applications on
household expenditure and foot-and-mouth disease. Houseman, Coull & Shine (2006)
and Skaug & Fournier (2006) each include models with negative binomial responses.
Tutz (2003) and Tutz & Scholz (2004) develop semiparametric regression models for, re-
spectively, ordinal and multinomial responses.

Another area of recent activity for non-Gaussian semiparametric regression is model-
ing of sample extremes. Chavez-Demoulin & Davison (2005) develop smoothing spline-

22



based generalized additive models for exceedances-above-threshold data. The penalized
likelihood corresponds to the generalized Pareto distribution because of its role as a limit-
ing distribution in this context. Yee & Stephenson (2007) work with sample maxima data
and the generalized extreme value distribution and develop vector generalized additive
models in this context.

Several other papers, published since 2003, deal with semiparametric regression with
non-Gaussian response —but are discussed elsewhere in this review article. Non-Gaussian
spatial models are dealt with by Fahrmeir & Echavarria (2006), Augustin, Lang, Musio
& von Wilpert (2007), Paciorek (2007c) and Crainiceanu, Diggle & Rowlingson (2008)
Zhang & Lin (2003) and Zhang (2004) describe hypothesis testing for variance compo-
nents in GLMM smoothing contexts. Tutz & Binder (2006) and Binder & Tutz (2008)
provide boosting-type procedures for fitting generalized additive models.

3.14 Quantile regression

There have been a few new approaches to semiparametric regression that target quan-
tiles, rather than means and variances. None of these use mixed models or hierarchical
Bayesian approaches.

Yee (2004) embeds the LMS (i.e. A, i1, 0) quantile regression method of Cole & Green
(1992) in the vector generalized additive models (VGAM) framework. An improve-
ment to the LMS method, based on the Yeo-Johnson transformation is developed. Non-
Gaussian responses, such as those from the Gamma family, are also treated.

Bollaerts, Eilers & Aerts (2006) and Takeuchi, Le, Sears & Smola (2006) each use the
ideas of constrained smoothing and “pinball” loss functions to impose non-crossing in
quantile regression. Bollaerts et al. (2006) uses P-splines, making it more in keeping with
traditional semiparametric regression. Takeuchi et al. use the kernel machine approach
which, as mentioned in Sections 2.3 and 3.2, is becoming increasingly intertwined with
semiparametric regression research.

Choudhary (2007) used Bayesian penalized splines to estimate a quantile function for
the problem of assessing agreement between two measurement methods.

3.15 Sample survey aspects

An interesting development in recent survey sampling estimation research, led by EJ.
Breidt and J.D. Opsomer, is the incorporation of nonparametric regression methodology.
An early reference is Breidt & Opsomer (2000) on the use of local polynomial regression.
However, some more recent contributions have used penalized splines. The first of these
is Breidt, Claeskens & Opsomer (2005) where it is stated that, unlike for local polynomial
regression, the theory for penalized splines closely follows the established survey linear
regression theory. Breidt et al. (2005) is concerned with the incorporation of auxiliary
covariate information in the design-based estimation of finite population totals in com-
plex surveys. Theorems on design root-n consistency of the penalized spline regression
estimator are provided.

The previous article uses the fixed-penalty formulation of the penalized spline and
primarily considers inference with respect to the sampling design, as is most commonly
done in survey estimation. Other work uses the penalized spline’s mixed-model repre-
sentation to develop model-based estimators for survey data. Zheng and Little (2003)
estimate a finite population total by predicting the unobserved part of the population
based on a model for the relationship between the variable of interest and the inclusion
probabilities. This is extended to the two-stage sampling context in Zheng and Little
(2004), and further incorporates a random item response model in Yuan and Little (2007).
Opsomer, Claeskens, Ranalli, Kauermann & Breidt (2008) consider spline-based small
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area estimation, a type of modeling widely used for survey estimation problems but re-
lying almost exclusively on linear mean model specifications (Rao, 2003). Opsomer et al.
(2008) combine univariate and bivariate penalized splines with the commonly used small
area random effects model, and they establish a theorem on the predicted mean squared
error properties of the resulting REML- based predictor of the small area means.

Opsomer, Breidt, Moisen & Kauermann (2007) is at the applied end of the spectrum.
They describe how design-based estimation of quantities, such as forested area or total
wood volume over large regions, can be enhanced through the incorporation of geo-
graphic auxiliary information such as elevation and slope and of satellite-derived mea-
surements. Generalized additive models are used to incorporate the auxiliary variables.

A recent review article (Breidt and Opsomer, 2008) on nonparametric and semipara-
metric estimation methods in complex surveys discusses these methodological develop-
ments in more detail, and provides further information on the design-based and model-
based modes of inference for surveys.

3.16 Smoothing under constraints

Another area of semiparametric regression that has seen vigorous activity during 2003-
2007 is smoothing subject to constraints. The predominant types of constraints in this
work are monotonicity, periodicity and quantile non-crossing.

Bollaerts, Eilers & van Mechelen (2006) explained how to build several shape con-
straints into univariate and multivariate P-spline quantile regression. Ghosh (2007) focus
on monotonicity in the binary response regression problem, making use of mixed models
and the pooled adjacent violators algorithm, geared towards biomarker evaluation. Tutz
& Leitenstorfer (2007) take a boosting approach to enforcing monotonicity. They arrive
at two algorithms: MonBoost for continuous responses and GMonBoost for generalized
responses.

Driven by data from longitudinal studies, Welham, Cullis, Kenward & Thompson
(2006) and Zhang, Lin & Sowers (2007) impose periodicity constraints on their fitting
curves. Welham et al. (2006) use the notion of L-splines (e.g. Kimeldorf & Wahba, 1971;
Ansley, Kohn & Wong, 1993) in the penalized spline/mixed model set-up, using specif-
ically designed differential operators that annihilate sine and cosine functions. Zhang et
al. (2007) work with smoothing splines, and also account for measurement error, in work
motivated by a hormone study. Eilers, Gampe, Marx & Rau (2008) build periodicity-type
constraints into models for data from seasonal incidence tables.

The quantile regression articles of Bollaerts et al. (2006) and Takeuchi et al. (2006),
outlined in Section 3.14, allow for the imposition of monotonicity.

Other constrained smoothing research includes Eilers (2005), in which unimodality is
the focus, and Gluhovsky & Vengerov (2007) in which penalized splines are used to do
multivariate constrained extrapolation.

3.17 Spatial adaptivity

Each of the main smoothing techniques (e.g. local polynomials, smoothing splines, wavelets)
have an accompanying literature on methods by which improved spatial adaptivity can

be achieved. The idea is to perform differing amounts of smoothing at different locations
and better recover spatially heterogeneous signals. Chapter 17 of Ruppert, Wand & Car-
roll (2003) describes spatially adaptive extensions of penalized splines. However, there
has been some further work in this area.

Lang & Brezger (2004) develop spatially adaptive Bayesian penalized splines for uni-
variate and bivariate smoothing by allowing smoothing parameters to be locally adap-
tive. Baladandayuthapani, Mallick & Carroll (2005) take a different approach that in-
volves incorporation of a penalized spline estimate of the variance function into the
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penalty. Extension is made to additive models. Crainiceanu, Ruppert, Carroll, Joshi &
Goodner (2007) develop a Bayesian approach to spatially-adaptive penalized splines in
the presence of heteroscedastic errors. They combine three spline models: one for the re-
gression function, a second for the logarithm of the locally varying penalty on the regres-
sion function, and a third for the logarithm of the variance function. The authors also gen-
eralize their model to multivariate smoothing using low-rank thin-plate splines. In Bal-
adandayuthapani ef al. (2005) and Crainiceanu et al. (2007), special Metropolis-Hastings
schemes are developed for implementation. Particular attention paid to improved mix-
ing via innocuous model modifications.

Krivobokova, Crainiceanu & Kauermann (2008) use similar models to those used by
Baladandayuthapani et al. (2005) and Crainiceanu et al. (2007). However, they use Laplace
approximation rather MCMC and thereby obtain big speed improvements. Non-normal
response is also treated. An R package named AdaptFit accompanies the paper.

Leitenstorfer & Tutz (2007a) also achieve spatial adaptive via model selection on the
knots and a version of boosting.

Paciorek & Schervish (2006) introduce a new class of non-stationary covariance func-
tions for spatial smoothing via Gaussian processes. Non-stationarity essentially equates
to spatial adaptivity.

3.18 Spatial and other high-dimensional data

Section 2.5 covers advancement of fundamental principles for multivariate smoothing.
In this section we review new semiparametric regression models and methodology that
have a multivariate smoothing component. Excluded, however, are geoadditive models,
which are treated in Section 3.5.

Wager, Coull & Lange (2004) develop an approach labeled “mixed model intensity
kriging” based on inhomogeneous Poisson spatial processes. A low-rank version of krig-
ing is achieved through Voronoi tessellation of the plane. Application is made to spatial
data arising from brain imaging studies.

Sain, Jagtap, Mearns & Nychka (2006) develop a new multivariate spatial model, uti-
lizing splines and mixed models, for soil water profiles. A particularly novel aspect is
bivariate smoothing of the soil-texture triangle — where the relative proportions of sand,
silt and clay are plotted.

Brezger, Fahrmeir & Hennerfeind (2007) use the ideas of Bayesian semiparametric re-
gression in the analysis of functional magnetic resonance imaging data. Space-varying
coefficient models are developed, with the goal of improving upon the voxel-by-voxel
approaches of earlier fMRI papers. Heim, Fahrmeir, Eilers & Marx (2007) apply the same
class of models to diffusion tensor images, also arising from magnetic resonance tech-
niques. Penalized splines are used at all stages of a three-step cascade of data processing:
voxel-wise regression, smoothing and interpolation.

Dean, Nathoo & Nielsen (2007) use penalized splines as a component of multi-state
models for longitudinal panel count data, where the processes corresponding to different
subjects may be spatially correlated. Application is made to weevil infestation in white
spruce trees.

Crainiceanu, Diggle & Rowlingson (2008) use the binary response version of penal-
ized bivariate splines binary response to model Loa loa prevalence in tropical Africa. A
Bayesian/MCMC approach to fitting and inference is adopted. A fast method for ap-
proximate predictive inference, based on a calibration model, is developed.

Apanasovich et al. (2008) investigate low-rank spline smoothing in a spatial context.
They use penalized regression splines and develop a novel method for smoothing param-
eter selection that overcomes the well-known biases of cross-validation with correlated
data. Li et al. (2007) show how to estimate a correlation function in longitudinal and
spatial data. Both papers give applications to colon carcinogenesis experiments.
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Several other papers involving spatial data appear elsewhere in this review: Lang &
Brezger (2004) and Crainiceanu et al. (2007) (Section 3.17), Eilers et al. (2008) (Section 3.16),
Geraci & Bottai (2006) (Section 3.11), Jank & Shmueli (2007) (Section 3.20) and Currie et
al. (2004) (Section 3.19)

3.19 Survival analysis

The extension of parametric survival models for survival data to accommodate non-
linear covariate and geographical effects continues to be a vibrant area of semiparametric
regression research.

Cai, Hyndman & Wand (2002) show how Poisson mixed models and penalized splines
facilitate natural and convenient hazard function estimators. Cai & Betensky (2003) ex-
tended this approach to hazard regression with interval censored survival data. Time-
varying coefficient models of this general type are developed by Tutz & Binder (2004),
Lambert & Eilers (2005), Kauermann & Khomski (2006) and Brown, Kauermann & Ford
(2007).

A variety of methods for fitting, inference and smoothing parameter type are pro-
posed. For example, Lambert & Eilers (2005) call upon the Langevin-Hastings algorithm,
while Brown et al. (2007) develop a hybrid smoothing parameter selector, based on AIC
and penalized quasi-likelihood.

Lin, Zhang & Davidian (2006) work with mixed model and spline-based extensions of
the proportional hazard model. Score-test tests for the proportional hazards assumption
and covariate effects are developed.

Namata et al. (2007) develop GLMM-based methodology for current status data, geared
towards an infectious diseases application.

Another interesting development is the integration of penalized spline smoothing
into actuarial science — as exemplified by Currie, Durban & Eilers (2004). In this case, the
data take the form of mortality tables. The raw mortality table data used here, obtained
from a United Kingdom insurance and pensions database, takes the form of two 53 x
90 matrices corresponding to the calendar years 1947-1999 and males between 11 and
100 years of age. One matrix is number of deaths; the other is number of years lived.
The raw hazards matrix is the ratio of the first matrix to the second. Univariate and
bivariate penalized spline smoothing is applied to the raw hazards to arrive at forecasts
of mortality rates up to 2050.

As detailed in Section 3.5 geoadditive models for survival data are developed by Ade-
bayo & Fahrmeir (2005), Hennerfeind, Brezger & Fahrmeir (2006), Kneib (2006), Kneib &
Fahrmeir (2007) and Ganguli & Wand (2006).

3.20 Temporal data

The use of smoothing techniques in the analysis of temporal (time series) data has flour-
ished in the past two decades - see, for example, Fan & Yao (2003). However, most of this
work has involved local polynomial kernel smoothing. The permeation of these ideas to
spline-based semiparametric regression is still quite mild.

Houseman, Coull & Shine (2006) develop negative binomial time series models for
modeling enterococcus counts in Boston Harbor, utilizing penalized splines and mixed
model representations. Jank & Shmueli (2007) use the same general approach to model
concurrency of events in on-line auctions.

General correlation structures for mixed model-based smoothing are considered by
Durbén & Currie (2003) and Krivobokova & Kauermann (2007). The latter reference con-
tains asymptotic theory for the smoothing parameter chosen via AIC and REML, and
application to finance time series data.
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As discussed in Section 3.5 Fahrmeir, Kneib & Lang (2004) and Kneib & Fahrmeir
(2006) use geoadditive models to handle temporal and spatial effects.

As mentioned in Section 3.3, Dominici et al. (2004) use and modify generalized addi-
tive model technology for air pollution time series data. Gryparis et al. (2007), discussed
in Sections 3.5 and 3.7, has a temporal data aspect.

3.21 Miscellanea

A few 2003-2007 papers involving semiparametric regression do not fall into any of the
categories corresponding to the previous subsections.

Yee & Hastie (2003) extends reduced-rank regression (e.g. Izenman, 1975) to the class
of vector generalized linear models. While this work is mainly parametric, some non-
linear modeling based on regression splines is used.

Yu & Ruppert (2004) build on their earlier work (Yu & Ruppert, 2002) on partially
linear single-index models using penalized splines. In particular, they remove the as-
sumption of compactness and establish root-n consistency of the regression coefficients.

Wood (2004) is a rare instance of a semiparametric regression contribution that delves
deeply into numerical issues. For example, pivoted QR decomposition is used to make
GCV parameter choice in generalized additive (mixed) models more stable and efficient.
Later releases of the author’s R package, mgcv (Wood, 2008), make use of this methodol-
ogy.

Banerjee, Maiti & Mukhopadhyay (2006) use penalized splines to build classification
rules for the pathological state of prostate cancer patients. In Choudhary & Ng (2006), pe-
nalized spline estimates of both mean and variance functions are employed assess agree-
ment between two methods of measurement.

Piepho & Ogutu (2007) explains how simple state-space models can be expressed as
linear mixed models. Estimation via REML as an alternative to the Kalman filter is inves-
tigated and some advantages are found. It is also explained how smoothing is achieved
via integration of state-space components and how the class of covariance structures for
modeling serial correlation is broadened via state-space representations.

Lee & Oh (2007) develop robust of semiparametric regression procedures based on
M-type penalized spline smoothers. Extension is made to additive mixed models, with a
robust modification of REML for variance component estimation.

Eilers (2007) uses the discrete Whittaker smoother in meta-analysis. His approach
includes nonparametric estimation of the latent distribution of event probabilities in con-
trol and treatment groups, and a smoothed EM algorithm with improved convergence to
maximum likelihood estimates of the parameters in the latent distribution model.

3.22 Review articles

A few articles have reviewed aspects of semiparametric regression in the last few years.
We briefly mention some of them here.

Tutz (2004) reviews semiparametric mixed models in the case of generalized responses.
Generalized linear mixed models are shown to play a central role. Maximum likelihood
is the main fitting tool. Techniques for dealing with the intractable integrals, such as
Gauss-Hermite quadrature and the EM algorithm are described. Similar structures, al-
though within the Bayesian framework and MCMC are treated by Zhao et al. (2006).

Brezger & Lang (2006) reviews Bayesian penalized spline approaches to generalized
additive models. Pointers to implementation in the authors’ Baye sX package is included.

In Section 3.8 we mentioned the five-chapter component of Fitzmaurice et al. (2008).
Together, these provide a detailed account of recent semiparametric regression research
involving longitudinal data.
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Finally, we mention two books from the last few years that have strong semiparamet-
ric regression themes. Wood (2006a) presents a thorough account of generalized additive
models, with emphasis on implementation in R. Wu & Zhang (2006) focuses on semipara-
metric regression for longitudinal data, with emphasis on mixed model approaches.

4 Applications

Ruppert et al. (2003) emphasize the modularity of low-rank spline smoothers; a spline
can be embedded as a nonparametric module into a larger model with parametric com-
ponents. This type of use of such splines in applications has become more and more
sophisticated, as the following selection of applied papers show.

4.1 Blood lead exposure on intellectual impairment

Canfield et al. (2003) present an interesting application of semiparametric modeling to an
important health problem. The authors study the intellectual impairment in children due
to blood lead concentrations below 10 pg per deciliter, the “level of concern” as defined
by by the Centers for Disease Control and the World Health Organization. They mea-
sured blood lead concentration in 172 children at 6, 12, 18, 24, 36, 48, and 60 months of
age and modeled longitudinal effects with a mixed model. Maternal intelligence quotient
(IQ), quality of the home environment, and other potential confounders are adjusted lin-
early. Preliminary data analysis suggest that the dose-response curve for IQ might be
steeper, that is, IQ decreases more rapidly, in the 0-10 pg per deciliter range compared
to blood lead concentrations above 10 ug per deciliter. To model the nonlinear dose-
response, the authors used a penalized spline. This semiparametric analysis corroborates
the preliminary finding that IQ declines more rapidly with blood lead concentration at
low doses compared to dose above 10 ug per deciliter. This result is in disagreement
with the previous belief that 10 ug per deciliter is the “level of concern,” and the authors
suggest that considerably more children are adversely affected by lead exposure than
previously believed.

4.2 Spatial and temporal distribution of particulate air pollution

Gryparis, Coull, Schwartz & Suh (2007) model the spatial and temporal distribution of
particulate air pollution in the greater Boston area. Data are available mostly from three
Boston area monitoring studies, and there are two surrogates of mobile source pollu-
tion, black carbon (BC) and elemental carbon. The authors use a semiparametric latent
variable model for combining these multiple surrogates for a common mobile source of
pollution. The measurement error model is
yij = 9(Ai,mij) + €ij,

where y;; is a vector of measurements at location i and day j, g is a known function, A;
is an unknown matrix of factor loadings, 7;; is a latent variable and 5%‘ is an error vector.
The loadings matrix A; is modeled as having a linear regression on known covariates.
Interest centers on the latent variable 7;;, and a geoadditive model is used to express 7;; as
the sum of a linear function of certain covariates, univariate functions of other covariates,
a bivariate function of longitude and latitude, and error. As is typical of factor models,
constraints are needed to achieve identifiability. The model is fit separately to summer
and winter data. The authors performed a Bayesian analysis and use a Gibbs sampler
with Metropolis-Hastings steps. The geoadditive model facilitates visual presentation of
the results. There is an obvious nonlinear Day of the Year effect on particulate pollution.

Maps of median predicted log-BC show the distribution of mobile source pollution in the
greater Boston area during the summer and winter seasons.
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4.3 Time series of enterococcus counts in a harbor

There are relatively few models for non-stationary time series of counts, so, when study-
ing time series of this type, Houseman, Coull, and Shine (2006) use semiparametric re-
gression methods to develop a new type of model that was particularly suited for their
application, enterococcus counts in Boston Harbor. The aim of their research was to un-
derstand the effects of changes in sewage treatment that were initiated to improve water
quality. The authors assume that counts, y;, are observed on a finite set of time points
in an interval 7, and they depend on random effects @Q; and fixed covariate effects 1
so that y:|Q: is Poisson(Qu+). Here the @Q; are independent Gamma with shape and
rate parameters both o~! and induce overdispersion, while ;; models covariate effects
and time effects. Specifically, y; = exp{x] B + f(t)} where x! 3 is a parametric model
for covariate effects, and f(t) is a nonparametric penalized spline model for possibly
non-stationary time trends. Because the covariates are time dependent, this semipara-
metric model is non-identifiable without constraints that are carefully explained by the
authors. The time-varying covariates includes four variables that characterized sewage
flows, temperature, tide height, salinity, and a sinusoidal seasonal effect. This model is
tit separately at each spatial location. Then the authors use a geoadditive fit (Kammann
& Wand, 2003) to create a spatial summary of the effects of major interest, those of flows
from the Nut Island and Deer Island Treatment Plants.

4.4 Concurrency of events in on-line auctions

On-line auctioning is a relatively new and rich source of challenging statistical problems.
Jank & Shmueli (2007) investigate concurrency in on-line auctions. They define concur-
rency as the effect upon an event of the same or similar events at or near the same time.
On the on-line auction web-site eBay there can be hundreds of simultaneous auctions for
similar items and, in addition, eBay makes available information on auctions that have
closed in the last 15 days. It is expected that both types of information will affect the final
price of an item being auctioned. To study these effects, Jank & Shmueli use the model

Yr = gac(xe) + gsc(xt) + gre(Xeg—1)) + &t

where y; is the log-price of an item sold at time ¢, x; is covariate information available
at time ¢, and x;.(;_1) is covariate information over the time period from ¢ — 1 to ¢. Time
is modeled continuously since a auction can close at any time. The three components of
the model are: gac, the “auction component”; gsc, the “spatial component”; and grc, the
“temporal component”. In their example, they use the prices of laptop computers. The
auction component is modeled linearly, but the other components are modeling non-
parametrically. “Spatial” refers to a feature space where distance measures similarly be-
tween laptops in terms of their features, e.g., screen size, memory size, and presence of
a DvD drive. Therefore, Jank & Shmueli estimate gsc using a radial penalized spline in
7-dimensional space. The temporal component requires a more complex model than the
other two components. The covariates are the prices from time ¢ — 1 to ¢ and the features
of those laptops. Various functions of the prices, e.g., mean, median, minimum, maxi-
mum, and slope of the time trend, are computed for laptops most similar, least similar,
and of average similarity to the laptop sold at time ¢. The result is 18 time-lag variables
which are reduced to three principal components. The temporal component is an addi-
tive spline model in these principal components. Jank & Shmueli (2007) test their model
on a hold-out sample of 30% of the laptops sold, with the remaining 70% used to train
the model. They compared the performance of their model with that of linear paramet-
ric models and totally nonparametric models that use regression trees. They find that
the nonparametric models outperforms the linear models, but that their semiparametric
model outperforms the nonparametric models.
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4.5 Genomic-assisted prediction of genetic value

Gianola, Fernando & Stella (2006) use a semiparametric model for the genetic value of
single nucleotide polymorphisms (SNP) and other genetic markers. Let y; be a mea-
surement, such as height of a plant or milk production of a cow, and let x; be a vector
of dummy genetic marker variables, e.g., the indicators of the presence of SNP or mi-
crosatellite covariates. Gianola et al. use the model

yi =w, B+z]u+g(x;) +ei, (8)

where w; and z; are known incidence vectors, 3 is a vector of nuisance location effects, u
is a ¢ x 1 vector of additive genetic effects of ¢ individuals, which are modeled as random
effects, and g is an unknown function. Gianola et al. present several estimation methods
for this model. One of these methods converts (8) into a mixed model by using a type
of radial basis function model for g(x). Specifically, they follow Mallick, Ghosh & Ghosh
(2005) and use a reproducing kernel, mixed model that assumes that

9(x) =Y ajexp{—|x —x[*/h}

=1

where the a; are iid N(0,02) and h is a non-negative smoothing parameter. Gianola et
al.’s model has n knots, one at each x;, but it should be possible to use only a subset of
these knots, say, chosen by a space-filling design. The authors use a simulation experi-
ment to compare the reproducing kernel mixed model method with a parametric mixed
model approach. They find that the two estimators have nearly equal performance when
the parametric model holds and that the semiparametric method outperforms the para-
metric method when the linear model does not hold.

4.6 Carbon sequestration in agricultural soils

Sequestration of carbon in soils has the potential to reduce greenhouse gases. This was
the motivation for a study by Breidt, Hsu, and Ogle (2007) who use a semiparametric
mixed model to compare carbon sequestering under no-till and traditional tillage. Their
main conclusion is that more carbon is sequestered under no-tillage than under tradi-
tional tillage, especially in wet climates but also in dry climates. Their data come from
soil cores. A core is divided into increments, e.g., from 0 to 15cm depth, and total car-
bon is measured in each increment. They use 63 paired (no-till versus traditional tillage)
studies, with 211 increments in total. The boundaries of the increments varied from study
to study, making increment-wise comparisons impossible. Therefore, the authors used a
varying coefficient penalized spline model for the concentration of carbon as a function
of depth, so that the total carbon in any increment is the integral of this function over
the increment. These “instantaneous” carbon sequestration functions can be estimated
from the increment data and then compared between the two types of tillage. A vary-
ing coefficient model of the instantaneous function is needed to accommodate the effects
of covariates such as soil type, climate factors, and the number of years since change to
no-till. More specially, the model for difference between no-till and traditional tillage in
carbon concentration at soil depth ¢ in the ith study is

g (t)wie )

M=

(=1

where «y(t) is a spline, wy; is the value of the /th covariate in the ith study, and g is the
number of covariates. Several choices of covariates are considered and the final choice
was to use the indicator of wet climate and the number of years since the change in soil
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management. Two models are considered for covariance function within a core. The first
has ii.d. random intercepts, which implies a correlation matrix with compound sym-
metry. The second, which uses a non-homogeneous Ornstein-Uhlenbeck model, allowed
heteroscedasticity and a more general type of correlation. The second model fit signifi-
cantly better than the first and is used by the authors. By plotting the fitted models given
by (9) for different values of the covariates, the authors show the effects of no-tillage.
Under no-tillage, there is more sequestered carbon in the upper soil layers and less in
the lower layers compared to traditional tillage, but the former effect is dominant so that
overall more carbon is sequestered under no-tillage. This suggests that a change to no-
till, which has a number of other advantages, also has the beneficial effect of reducing the
amount of COs in the atmosphere.

4.7 Time series of air pollution and mortality

In studies of the effects of air pollution on mortality, confounders that are unmeasured,
and perhaps even unknown, can bias the estimates. To circumvent this problem, analysts
often include in the model a smooth function f(¢) of time (¢) to capture the effects of
confounders that vary smoothly in time. An example, the Milan study of air pollution
and mortality, can be found in Ruppert et al. (2003). The technique of including f(¢) in
the model is given careful study by Peng, Dominici & Louis (2006). An issue of primary
concern is selecting the degrees of freedom for estimation of f(t). Peng et al. find that
the estimator of f(¢) should be undersmoothed to reduce the bias in the estimate of the
effect of pollution, which is modeled linearly with coefficient 3. This finding agrees with
asymptotic theory for partially linear models (Rice, 1986; Speckman, 1988). The authors
find that the method for selecting the degrees of freedom for f(t) that is most accurate for
estimating (3 is to use GCV to find the degrees of freedom that best predicts the pollution
series. Then ones estimates f(¢) with the same degrees of freedom. The function f(t)
can be estimated by either an ordinary least squares fit with a natural cubic spline basis
or by a penalized spline. The later requires more degrees of freedom for F(t) to achieve
approximate unbiasedness of 3. Peng et al. include an interesting example, a 100-city
study of the effect of suspended particulate matter on mortality. Data are available from
1987 to 2000. They use an over-dispersed Poisson model with a log link for the daily
number of deaths. Known confounders are accounted for explicitly: there are age-specific
intercepts, a day of week effect, and smooth functions of temperature and dewpoint.
Particulate matter enters the model linearly and the estimate of its coefficient 3 is studied
as the degrees of freedom for f(t) varies. The ordinary least squares natural cubic spline
needs about 9 degrees of freedom per year before 3 stabilizes. For the penalized spline,
about 15 degrees of freedom are needed.

4.8 The cosmic microwave background

Genovese, Miller, Nichol, Arjunwadkar & Wasserman (2004) address an important prob-
lem in cosmology. They study the peaks in the temperature power spectrum of the cosmic
microwave background radiation. Let y, be the estimated spectrum at multipole index ¢.
The model is yy = f(x() + ¢, where xy = ¢/ max(¢). A parametric model for f has three
peaks and the existence of the third (rightmost) peak would provide the clearest support
for the existence of dark matter. The response y, is highly heteroscedastic with its vari-
ance increasing rapidly in /. This complicates inference, especially for higher values of
x, which is precisely where the third peak should be located. Genovese et al. estimate
f by a truncated cosine expansion. To construct a uniform confidence set, they extend
the methodology of Beran and Diimbgen (1998) to accommodate the heteroscedasticity.
The result is a 900-dimensional confidence ball which is, of course, difficult to visualize.
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To explore the ball, they create targeted “probes” which are functionals of interest. Us-
ing the probes they can, for example, find 95% confidence intervals for the heights and
widths of the first two peaks. The nonparametric fit is compared with the so-called Con-
cordance model, which maximizes the joint likelihood under the parametric model of
five independent data sets. The nonparametric fit does not have the third peak though
the Concordance model does, since the third peak is an intrinsic part of the parametric
model. The lack of the third peak in the nonparametric fit does not mean that the third
peak does not exist. Rather, more precise data would be needed in order to establish
its existence. This paper is noteworthy both for addressing a very interesting scientific
question and for its novel use of simultaneous inference.

4.9 Needle losses of Norway spruces

Augustin, Lang, Musio & von Wilpert (2007) study needle loss which is an indicator of
tree vitality. They work with survey data on Norway spruces (Picea abies) in the south-
western region of Germany. One novel aspect of the paper is that the response is ordered
categorical. The categories are healthy, intermediate, or damaged, defined, respectively,
as less than 10%, 10-25%, or more than 25% needle loss. Augustin et al. use a geoadditive
model for a latent continuous variable U such that

U=nfi(z1)+ -+ fp(zp) +fspat(01702) +WT’7+€

where z1,...,zp are continuous covariates, (ci, c2) is spatial location, w is a vector of
covariates that enter linearly, and € is N(0,1). The categorical response is a discretized
version of U with cutoffs §; < #2. Univariate P-splines are used to model fi, ..., fp and
a tensor product of B-splines to model fspat. Including fqpat in the model accommodates
unknown covariates, but also acts as a partial surrogate for known covariates and re-
duces the size of their effects. The analysis is Bayesian using MCMC. One important
problem is prediction of needle loss at locations not covered by the surveys. The model
can be used for prediction, but a complication is that some covariates are also unknown
at these locations. To circumvent this problem, the authors use a spatial model for these
covariates and draw multiple imputations from their posterior distributions.

4.10 Capture-recapture studies

Mark-recapture studies are a common means of assessing animal abundances and sur-
vival probabilities. Frequently, survival probabilities depend on covariates. For example,
Gimenez, Crainiceanu, Barbraud, Jenouvrier & Morgan (2006) have a case study where
the survival probabilities of snow petrels nesting at Petrels Island, Terre Adélie, depend
upon the Southern Oscillation Index (SOI). SOI is negatively related to temperature and
can be used as an index of overall climate condition. Gimenez et al. (2006) assume that
there are I 4 1 sampling occasions at times t1, . .., t74+1. They define ¢; to be the probabil-
ity that an animal survives to time ¢, given that it is alive at time ¢;. The data consist of
the number of animals captured, marked, and released at each sampling occasion and the
number marked at time ¢; and recaptured for the first time at ¢;. The authors begin with
the Cormack-Jolly-Seber model, which has among its parameters ¢1, ..., ¢;. Then they
use a semiparametric model with a logit link function for the dependence of ¢; upon
covariates. The nonparametric dependencies are modeled by splines. They propose a
Bayesian analysis with computations by MCMC. In the snow petrel case study, they use
WinBUGS. They find that survival probabilities of snow petrels decrease, possibly in a
nonlinear way, with increasing values of the SOI. The estimated rate of decrease is high
at low values of the SOI but diminishes at higher values of the SOI. Because the data
are sparse, there is too much uncertainty to conclude that the effect of SOI is nonlinear.
However, Gimenez et al. note that a nonlinear effect of SOl is biologically plausible; lower
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values of SOI might increase access to prey but prey abundance may increase with higher
values of SOI (Loeb et al., 1997).
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