
University of Wollongong
Research Online

Department of Computing Science Working Paper
Series Faculty of Engineering and Information Sciences

1978

SLMP: Source Library Maintenance Package
implementation notes
Ian Almond
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
Almond, Ian, SLMP: Source Library Maintenance Package implementation notes, Department of Computing Science, University of
Wollongong, Working Paper 78-9, 1978, 15p.
http://ro.uow.edu.au/compsciwp/6

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/compsciwp
http://ro.uow.edu.au/compsciwp
http://ro.uow.edu.au/eis
http://ro.uow.edu.au/
http://ro.uow.edu.au/

SLMP

Source Library Maintenance Package

Implementation Notes

Ian Almond-----

University of Wollongong

ih~~ is a Source ~lDrary Maintenance ~ackage writ­
ten to enable a group of #source decks# or programs to
be stored on a corrmon library and provide a system for
maintaining a record of all modifications made to each
program. It is designed to be used 8S a UNIX command
which will accept from the standard input a set of com-­
rnands and #update directives# which control the manipu­
lation of decks on the library and line oriented modif­
ications to specific decks.

December 19, 1978

SLMP

Source Library Maintpnanc~ Packa9~

Implementation Notes

Ian Almond

Univ~rsity of WoJlongong

TABLE OF CONTENTS

1 .

2 .

IN T RO DU c'r ION

DEVELOPMENT

2

2

3. IMPLEMENTATION
3 • 1 • F' i 1e- Forma t
3. 2. I/O with inS LM P
3.3. Brie-f Dpscirption
3.4. De-tailed Descript.on
3. 4. 1 . '" add
3.4.2. Adele-te-
3.4.3. "'re-placE"
3.4.4. "'list
3.4.4.1. getmods
3.4.4.2. moddeck
3.4.4.3. Ideck
3.4.5. Aextract.
3 • 4 • 6 • '" u pdatE'

5
5
7
H

9
9
9
9
9

1 1
1 2
1 3
1 3
1 3

4 •

5.

6 .

FUTURE DEVELOPMENTS

BUGS

CONCLUSION

DE"cember 19, 1978

13

13

14

- 2 -

This document has been produced in con junction with the Source
Library Maintenance Package (SLMP) developed on the Interdata
7/32 operating at the University of Wollongong. The package was
developed due to the lack of an adequate system for maintaining
source code. A need was expressed for a system that would pro­
vide a method of storing and updating source code on a library in
such a way that all modifications that are made, are identified,
thus allowing the original code to be obtained at any time. An
extension to this thought was to identify each update with a
string of characters supplied by the user and provide the facili­
ty for obtaining a copy of the code as it was at any point in
time.

The de~criptions of the data structures used in the ·c· code
given in the apropriate sections of this document provide a gen­
eral overview of the design of the package. Almost all changes
to the design and unimplemented features discussed will have a
direct affect on one or more of the data structures.

A call to ~MP is made with the name of the library and a ~od~

which indicates whether the library is a new one or already ex­
ists and the type of commands to be used. The commands are read
from the standard input and instruct the package to perform a
certain function on a specified deck. Following three of the
commands an optional set of 'update directives' can be supplied
to perform modifications to the associated deck by deleting and
inserting entire lines. The run is terminated by an end-of-file
or the ~!~QE command.

During the course of developing the package, as problems arose
and were overcome, and new features were added, the design of the
system was continually being rethought and improved. The final
design has resulted in a very useful and flexible system with
plenty of room for the development of a wider and more sophisti­
cated range of functions.

It was decided for the sake of simplicity to keep each source
code deck on the library as a contiguous block of data and main­
tain a directory describing each deck and it's position on the
library. Originally it was' planned to take advantage of the UNIX
file syste~by making the directory a contiguous area starting at
some very large block number on the library. Under the UNIX file
system disk space is assigned, as required, only to those blocks
of a file containing valid data, that is those that have been
written on. This would have made the expansion of the directory
a simple matter without posing any real limit on the size of the
library, but unfortunately several problems were created which
finally lead to the adoption of an alternate design.

rhe most obvious problem was that the size of a library, obtained
through the 1! command, would always be very large (and constant)
eVen though the actual disk space required may be quite small.
Secondly if a user tried to copy a library (using the £E command)
then the resulting file would indeed use all the space reported
by l! and not only that used by SLMP. Another more important

December 19, 1978

- J -

pr'oblem to be faced was how to t"t·ad through the directory of a
library which could virtual ly extend to any length. Decisions
that had to be made were; wha~ size buffer should be used; should
a variable size buffer be dynamically assigned; and what condi­
tions would cause ~he the reading and writing of a copy of the
lL.rectory.

The alternative proposed was a circular chain of fixed length
directory blocks created as required and interspersed with the
source code dE'cks stored on the library. As well, a library
header at the beginning of the file was needed to accommodate a
table of unused space on the library (produced by the deleting of
decks) and a pointer into the chain of directory blocks. This
a llowed a fixed size buffer to be allocated and it was realised
that the contents of the buffer only needed to be written out
wh.n another block had to be read in. The latter method was ac­
cepted because it imposed no restrictions on the size of a li­
brary and although some problems still existed they were more
clearly defined and thus more easily solved.

The original idea for modifying a deck was to add to the front of
each line of a deck a six character line sequence number. Modif­
ications were to use a basic system of deleting existing lines
and inserting new lines by referring to these line sequence
numbers. New lines inse'rted in 'the deck were to be identified by
the six character identifier supplied by the user. Associated
with this idea was a plan to provide an option for resequencing
the deck which implied replacing all identifiers by line sequence
numbers again. Probl'?ms involved with 'the implementation of this
concept led to the most important and basic feature of the pack­
age being completely redesigned. Some of these problems were:

(1) a satisfactory method of obtaining the original
code at any time had stil I not been found.

source

(2) how could an inserted line be deleted if it did not have
an associated line number?

(3) how could a deleted line be excl uded from the most re­
cent version of a deck while still remaining in the original?

(4) the resequencing of the lines of a d~ck would mean for­
fpiting al 1 information dE'scribing any previous updates to thE'
deck.

Al 1 of these problems were overcome and a more easily maintained,
morE' flexible, and more sophisticated package was produced as a
result of one very simple idea. All other design features are an
extension of this idea.

Firstly all lines of 'the original dE'ck are stored exactly as they
exist on the input file and always remain as part of thE' deck.
When a new line is inserted in a deck two bytes are added to th~

begin:'ng of the linE' wh:'ch hav~ a threefold purpose. The first
byte is the ASCII 'escape' character which id~ntifies the line as
affected by an update. The second byte contains a pointer to a
tabl. of identifiers which contains any information about the
group of lines that arE' part of thE' complete update. Some infor­
ma~ion contained in this table is; whpth~r or not the identifier

December 19, 197H

- 4 -

is still required on listings (the ~clear-flag~); whether the up­
date is current or has been removed (the ~forget-flag'): and the
time and date of the update (not implemented). Also contained in
the second byte are two flags which indicate if the line has been
deleted or inserted. Similarly when a line is deleted the two
bytes are inserted (or modified). Therefore by inspecting the
first two bytes of a line and the corresponding identi fier table
entry (if the line was part of an update) we can readily deter­
mine if the line exists in the most recent version of the deck.
By the same method lines of the original deck can be found be­
cause they will either have not been modified or will not have
the 'inserted-flag' set. Unfortunately a flaw exists in this
design as once a line is deleted any connection with a previous
update is lost. Howeve r, this ca n be over come by impl em en t ing a
variation of the design which is discussed in the section ~Future

De velopments ~

The third major design decision made concerns the method of ap­
plying the updates to a deck. Three situations exist where
modifications to a deck are allowable;

(l) , 1 is t i ng' a dec k.

This function creates a file containing a copy of the deck with
line sequence numbers and update identifiers included. The pre­
viously discussed concept of applying modifications allows any
one line of -3 listing to have a line number, a modification iden­
tifier and a flag (indicating whether the. line has been inserted
or deleted) all present at once. It was decided to give the user
the option of including the identifiers and flags and deleted
lines. The method of generating the line numbers introduces the
concept of the ~curent deck'. Line numbers used in an update
correspond to the lines of the current deck and therefore only
those lines of a listing will have prepended line numbers. This
means that deleted lines can be included in a listing without
line numbers so that the user can be assured that the line
numbers will always correspond to the same line (i.e. until
another u pda tel •

(2) ~extracting~ a deck.

This creates a file suitable for compilation in the same format
as the input file required by the Aadd and Areplace COlTunands.

(3) ~updating" a deck.

The update function makes a permanent change to the deck on the
library.

The desired goal was to be able to create the exact same result
by

(1) listing (or extracting) a deck with a set of updates, or

(ii) permanently modifying the deck with the update function
using the same set of updates and then listing the deck with no
mod i fie a t ion s .

December 19, 1978

- 5 -

To ensure this ~esult all three functions firstly call a routine
to create a temporary deck using any supplied modifications.
This temporary deck is the same format as decks on the library
and the update function simply replaces the existing deck with
the modified one. The list and extract functions generate the
required file by operating on the temporary deck as if it was
permanent on the library. If no modificat~ons are made the ex­
isting deck rin the library is used avoiding the need to create an
identical temporary file.

At the beginning of every library created by SLMP is a library
header. The purpose of the header is to identify the file as a
valid library and link together the other components of the file.
The structure of the header is

st ruct header
{

int firstblk;
i n t n urn fr ee ;
struct free freetab[FTABSIZE];

}

A magic number or string has yet to be implemented to
against the misuse of SLMP on a file without the correct
u~fr~ is the number of blocks of free space on the
which are described by the first ~fre!! entries of
tr!!~2 is a table of 'free space- on the library and
following structure.

proteC't
forma t.
libra ry
i~ta~.
has the

struct free
{

int start,fsize;
}

Free space is an area of the library that is currently available
to be used. It is created direct ly by the Adelete command and
indirectly by the Areplace and Aupdate commands. Each entry of
the table contains the starting position and length of a contigu­
ous piece of free space. The end-of-file of the library is main­
tained as a very large free space starting at the first byte
after the last piece of valid data.

fir~tbl!5. is required to loC'ate the C'ircular chain of directory
blocks which contain one unique entry per deck on the library.
Each block of the directory chain is a fixed length and is creat­
ed as required when new decks are being added to the library.
The structure of each block is

- 6 -

struct dirblock
{

i nt used;
iot thisblk, nextblk;
struct direntry dir[ENTPERBLK];

}

~~~ is a flag indicating that the incore copy of a directory
block has been modified and must be written to disk. Actual
blocks on the file should never have this flag set. t~isblk is a
pointer to the position on the file where this block must be
written and n~~tbl~ is the link in the chain and is the position
on the library of the next directory block. ~!.£. is an array of
directory entries, one per deck which have the following struc­
t ure.

struct direntry
{

i nt mods;
char name[ NAMESI ZE+ 1] ;
int size;
in t loc;

}

At present only the necessary fields have been implemented but
information such as the time of creation, and time of the last up­
date woul d be use ful ina ny fu tu re deve 10 pment s. All decks have
a unique E~~ and are stored as a contiguous block. The starting
position and size of the deck ,are stored in 12£ and !!iz~ respec­
tively. The ~Q~ field contains the number of modification iden­
tifiers stored in a table which is located immediately after the
deck and is included in the size. This table varies in length
(calculated from the value of ~od) and does not exist when a new
deck is initially added. Each entry of the ~od-table has the
following structure.

s truct modent ry
{

char id[ 7]
char flags;

}

fl.!9.!. contains two flags which can only be set as a result of a
corresponding update directive (-clear or -forget). The first is
the 'clear-flag' and if it is set the corresponding identifier is
omitted from any listings. The second is the 'forget-flag' and
when it is set any modifications from the corresponding group are
ignored, that is deleted lines pointing to the entry are part of
the current deck and similarly inserted lines are not. Another
field useful in future developments would be the time and date of
the corresponding update. The id field is the six character
identifier supplied by the user as the parameter to the -mark up­
date directive.

December 19, 1978



- 7 -

The function of SLMP is to maintain a library of source code
decks and for this reason alone it is important that certain con­
s iderat ions be given to the I/O with 1n t he pac kage. Becau se up­
dates operate on a line basis, the lines of the current deck must
be counted during most I/O operations. This of course requires
the counting of newline characters which involves the checking of
each character separately. Although this means some operations
on a large deck could be very slow it is fairly simple and also
appears unavoidable. Slightly modified versions of ~tc and put£
have been implemented to suit the particular needs of SLMP.
Separate buffers are used for the reading and writing of files
and associated routines to create and open files also initialize
these buffers. The structures of the buffers are

s truct ibuf
{

i n t c n t d own, i fi 1de s, n 1eft;
char * next p;
char ibuff[BUFSIZE];

}

struct obu f
{

int ofildes, nunused;
char *xfree;
char obuff[BUFSIZE];

}

Both buffers have corresponding fields for the file descriptor of
the file being read or written and a character array for the
buffer proper. ~l~ft and ~~~ are the number of characters
left in te input buffer and the number of unused spaces left in
the output buffer respectively. Similarly ~~tE and ~fr~ point
to the next character to be read or written in the corresponding
buffers. The input buffer has an extra field,~tdQ~. Normally
when input is an entire file !.£h~ returns a zero value if the
buffer is empty and a call to ~~ad fails. If however input is a
deck on the library £~t~~ is used to determine the end of the
deck. ~ch~£ will return a zero value when the buffer is empty
and £~td~ is zero. When input is from a file ~~~ is set to
-1 to indicate that it is not being used, otherwise it is set to
the size of the deck and decremented by the number of characters
read whenever the buffer is refilled. If cnt~Q~ goes negative
nleft is set to the appropriate value and cnt~~ is reset to
zero.

Three different methods of I/O are used within the package.

(1) Copying an entire file directly.

\'lhen a new deck is added to the library via the -ad9.., -!:.lli~,

or -upd~t~ command the function newdeck is called to copy the in­
put file directly to a suitable position on the library. n~wdec~

opens the input file and stores the size in the current directory

December 19, 1978



- 8 -

entry. It then searches the free table for the first area of
free space large enough to store the deck. When a suitable posi­
tion is found it stores a pointer to the beginning of this area
in the directory entry, updates the free table and ~alls ~QEYfll~

which allocates a buffer and ~opies the new de~k onto the library
in blocks of BUFSIZE (512) bytes.

(2) one character at a time.

During a list, extract or update of a deck the first few charac­
ters of each line must be inspected separately to determine the
status of the line with respect to the current deck. The two
functons ~ch~~ and wcha~ are used to read and write respectively
any number of characters to or from a given file (buffer).

(3) one line at a time.

When it has been decided if the current line is required in the
new deck it can be copied onto the output file or skipped over.
The function !ill~ol copies all characters up to and including
the next ~~wlin~ character from one file (buffer) to another.
Simi larl y the funct ion ~ki p2eo!. re ads cha ra ct e rs from the input
file until the next ~~wlin~. The importan~e for all de~ks to be
source code be~omes obvious here as both of these functions ter­
minate with the n~w1in~ character which is used to delimit lines
of source code. No real ~heck can be made when a deck is being
added to the library but certain restri~tions regarding the
length of lines can be applied during a -:li s 1, A~rtI.~~tor A!:!£.:.
!!at~.

The mainline of SLMP has three major steps;

(i) prepare the library for processing;

(iil process all the requests;

(iii) write out the header.

To process the requests the function s.et£Q.1!l is called to obtain
and validate the next command and any corresponding parameters.
g~~ in turn calls li~~ to read the next line from the standard
input. It then ~hecks that it is a legal command under the ~od~

of the call and sets up the required parameters. get£Q.ill only re­
turns to the mainline when it finds an allowed command with the
correct parameters. lin~ sets up pointers to the begining of
each group of non-blank characters and returns the length of the
line to g~tc0l!l. The appropriate function is then called to per­
form the required action. Any operation on a specific deck (i.e.
all ex~ept Atabl~ and A2~£~) will cause a call to be made to the
function gU~ll.This function searches the directory chain
starting with the current block for an entry with a !!A~~ matching
the first parameter of the command. If found it sets the global
variable .2Ue!!:. to point to the ~orresponding in~ore entry and
returns a value of ~true·. Otherwise it sets £!.£E!.~ to the first
unused entry found (having a null string in theriame feild) and
returns a value of 'false'. If an entry for the req~ired deck is
not found and no unused entries exist 9.~ntt:i creates a new

December 19, 1978



- 9 -

dirE>ctory block and links it into the chain.

At present there are eight commands which can be split into three
general categories. First there are the Aad£, AdeletE> and A~=

2l~ commands that operate on a deck as a unit and are not con­
cerned with individual linE>s. The second category includes the
Alist, A~tract and Aupdat~ commands that process each line of a
deck separately and accept an optional set of update directives
from the standard input. Finally there are two miscellaneous
commands, Atab~~ and Apac~ which have no parameters and operate
on the library as a whole. The implementation of these commands
is covered in thE> folloWing section with some of the algorithms
used being described in detail.

l.~ . ..!. Aadd

This command is relatively simple to implement as it virtually is
only a file copy. Firstly ~et~try is called to find the direc­
tory entry for the deck and a check is made for a duplicate
deck-name. If the deck did not previously exist !1~wdeck

(described in the section 'I/O within SLMP') is called to copy
the input file to a suitablE> location on the library. If this is
sucessful the dE>ck-name is copied into the directory entry, the
ID££ field is set to zero and the ~!ed flag is set to make sure
the directory block is written out to disk.

To delete a file the directory entry is markf>d as unused by stor­
ing a null string in the !!~~ field, and calling savespace to add
the area where the deck was stor~ to the free table. Entries in
the free table are stored in order of the position on the library
so that two adjoining areas can be combined into one. If the new
area being added to the table does not join any other blocks then
a new entry must be inserted in the table. This could cause the
table to overflow if the library has become fragmented in which
case E~ck must be called to recreate the library and squash out
any frE>e areas. The user can also request that the library be
recreated by using the Apac~ command which is described later.
The flowchart of the function ~~~~~ has been included here
because although the idea is simple covering all possible cases
complicates the task of determining the position of the new area
in relation to already existing blocks.

A£epl~ is merely a combination of the Aadd and A£el~ commands
with the condition that the existing deck is not deleted until
the new deck has been successfully copied onto the library.

This is the commana that provides the user with the line numbers
to use in an update. It also identifies the lines affected by
each update.

December 19, 1978



yes

1 ncrease
he size of
this area
o include
he new one

xpand the '
able and

. nsert the
new area

here

°ncrement
he number
of free

- 10 -

combine
this area
with the

next one
and move

the rest of
he entries
in the

table up

decrement
he number
of free
ar as

no

combine
the new
rea with

one

December 19,1978



all
In

I.!lQ.9.:'

- 11 -

There are three options which can be used with the A!.ist command
D, I and M. The M (mark) option causes the update identifiers

(used in the -!!l2.!:1i update directive) to be included in the list­
ing if they have not been 'cleared~ and if the update has not
been 'forgotten'. The D (deleted) option will cause any lines
that have been deleted to be included in the listing and flagged
with a ~D'. These lines are not part of the C'urrent deC'k and do
not have line numbers prepended to them. The I (inserted) option
tells SLI\lP to flag any lines that have been ins-erted with an '1'.

As mentioned before the Alist, A!:..~ace and Auedatg commands
call the same function to apply any optional Illoaif::,'--:>ns.
fact there are two functions used to do this, ~~tmod~ and
g~ck.

This is the function that uses the update directives to produce a
new ~Q9.-table and a set of modifications suitable as input to
!!lodgeck. It calls li~ to get the next line of input until ei­
ther end-of-file is reached or another command is read. For each
line it processes the update directive of which there are five.
Three of these directives modify the table appended to each deck
and the other two affect the lines of the decks. The directives
are

(i) -!!l~~ which uses a six C'haracter identifier to mark the
following changes to the deck. It stores the identifier in the
table and remembers the pointer to that entry.

(ii) -cl~ sets up a flag in the entry of the table
corresponding to the supplied identifier to unmark the update.

(iii) -fo~q~t sets a flag in a similar fashion to -cl~~ to
undo any corresponding changes. That is it effectively inserts
any deleted lines and deletes any inserted lines.

(iv) -in~t creates a new entry in a linked list of updates
and switches g~t~9.~ to input mode so that subsequent lines of
text are stored on a temporary file. A line is considered to be
text if the first character is neither a circumflex ('A') nor a
dash (~-') and is stored in the same fonnat as lines are stored
on the library. The position of the first line and a count of
the number of lines for each directive is kept ih the list of up­
dates.

(v) -g~~ works the same as -~~t except that the entry
in the linked list will also indicate that certain existing lines
be excluded from the new deck.

The new .!!'Qg-table and linked list of updates is input to the as­
sociated function ~oddeck which is always called immediately
a fter ..9~t!!lod~. The list of updates is sorted according to line
numbers and the structure of each element is

December 19. 1978



- 12 -

struct changes
{

int copy to, skipto;
int insert, nlineloc;
in t mi ndex;
s t ruct ch ange s *nex t:

}

The use of each field is described in the following section.

3.4.4.2. ~od~eck

The output produced by this function is a flag (~~wlin~~) to say
if any new 1 ines have been inserted in the deck and an input
buffer set up to read an already opened file which contains the
new deck and the associated table. When the ~~wli~~ flag is set
what it really means is that the new deck is on a temporary file
as opposed to the permanf:!nt library and it is set if and only if
one or more -in~~£~ and/or -del~~ update directives were ap­
plied. Unless the list of updates created by ~et~od~ is empty
~od~ck uses this list and the current deck on the library to
create the modified deck. Both the -!~~~t and -del~i~ direc­
t'ives produce the same type of entry in the list of updates.

The first field in each entry says copy any lines frrnn the input
deck until the line number of the current deck exceeds £QEYiQ.
Similarly ~kitlQ. is used to skip any lines (Le. read only) that
are to be deleted. The -in~~£t directive sets ~kiPtQ. to zero so
that no lines are skipped. The in~ert field is a count of new
lines of text that are to be inserted aft·er the necessary lines
have been copied and/or deleted and ~linetQ£ is the starting po­
sition of the corresponding lines of text on the temporary ~od­

fil~ created by get~Q.~~. ~ind~ points to the entry within the
table of identifiers which contains the identifier current when
the directive was applied. Finally ~xt points to the next up­
date in the list.

The function £lin~ is called by ~£deck to copy or 'delete' (i.e.
prepend or modify the two special bytes) the next line of the
current deck. Any lines not part of the current deck are simply
copied and then the next ~ine is checked. There are three ways
that a line can be part of the current deck:

(i) it is an original line that has never been affected by
a n update.

(1i) it has been inserted and the update has not been 'for­
gotten' •

(iii) the line has at some time been deleted and the update
has been 'forgotten'.



- 13 -

Ld~ck is called by list to create the final deck with line
numbers. It must inspect each line and determine if it is to be
included in the listing and what flag and/or identifier if re­
quired has to be prepended.

This function operates almost identically to list except that no
options are processed and ~de£~ is called instead of ldeck to
create a file without line numbers and without deleted lines.

[E~~~ calls getmod~ andmoddeck in the same manner as list and
~~t~~ and then calls ~~~ck if necessary to replace the exist­
ing version. Mo~qeck will have created a deck on the temporary
file in the format required to store it on the library and no
further processing needs to be done by updat~.

As with any large program there always seems to be some way to
improve the design and include new features whi~h lead to a much
more powerfu I system. Ma ny cha ng es we re made t 0 §.LM~ du ri ng its
development arid still more ideas have been suggested which were
unable to be implemented due to a lack of time.

There is one idea that would provide a m~ch more ~ffective

recording system for modifications and allow a copy of a deck to
be obtained as it was at any time. To implenent this would in­
volve changing the method of identifying lines affected by modif­
ications and increasing the amount of data stored in the table
appended to each deck. Before discussing the idea we must real­
ise that to be stored on a library a line must be part of an ori­
ginal deck or must have been inserted during an update. Also
although a line may only be inserted orice it can be deleted any
n umber of times because when a mod i £i ca tion is ' forgot ten' all
deleted lines appear again. The idea then is to provide a method
of naving a variable length header on each line with pointers to
every modification identifier in the table that is connected with
the line. The !!!od-table would also be expanded to include the
date of the modifif~ation and also if it has been 'forgotten',
t hen when. This system would supply all the informat ion requi red
to determine the status of a deck on any given date.

2,. BUGS

Although the system is operating successfully there are many dif­
ferent situations that may occur where the data on a library may
become corrupted. The program needs to have several precautions
included to try and minimise the nwnber of situations which could
create a suspect library, and a recovery routine should also be
written.

A corrupt library is most likely to be caused by problems inter­
nal to SLMP or by an I/O error but user's errors may result in a
deck not containing all the information expected. Although most

December 19, 1978



- 14 -

of these situations are adequately checked error messages may ap­
pear some time after the error has been made giving a false im­
pression of what was really wrong. This is definitely the case
when input is redirected from a file because the error messages
do not specify which command or update has failed. This is
another area that does require some improvement.

A third situation which goes unchecked at the moment is the use
of invalid files (i.e. files of the wrong format) either as a li­
brary or a source deck. Both these situations need to be con­
trolled and will almost certainly cause SLMP to blow up if they
are not.

The package that has been produced upto now can be used very ef­
fectively until the level of modifications becomes too deep. It
provides a useful system for recording modifications made to a
deck and clear listings readily showing the current state of a
deck. Although the package is at present very susceptible to
misuse with a little work it could be made more secure and with
the addition of the new method of recording modifications it
could be used as a very powerful tool.

DE>c-pmhpr 19. 1 q 7R


	University of Wollongong
	Research Online
	1978

	SLMP: Source Library Maintenance Package implementation notes
	Ian Almond
	Recommended Citation



