Title

Metal-oxygen bonds: stabilizing the intermediate species towards practical Li-air batteries

RIS ID

117175

Publication Details

Hou, Y., Liu, Y., Zhou, Z., Liu, L., Guo, H., Liu, H., Wang, J. & Chen, J. (2018). Metal-oxygen bonds: stabilizing the intermediate species towards practical Li-air batteries. Electrochimica Acta, 259 313-320.

Abstract

Rechargeable nonaqueous Li-air batteries are attracting much attention due to their far higher theoretical energy density than lithium-ion batteries. However, Li-air batteries suffers from poor round-trip efficiency, low rate capability and poor cycle life. To reduce charge overpotentials by understanding reaction mechanism and to operate in ambient air instead of pure oxygen are prerequisites to realization of practical Li-air batteries. Here, we demonstrate a practical Li-air battery using Mo 2 C/CNT as a potential promoter with high round-trip efficiency (∼80%) and improved cycling performance (40 cycles) because Mo 2 C stabilizes the intermediate species from reduction of both O 2 and CO 2 . The stabilization via formation of Mo-O bonds prevents further reduction and disproportionation of intermediate species to generate crystalline Li 2 O 2 and Li 2 CO 3 , thus reducing the charge overpotentials normally caused by the decomposition of crystalline Li 2 O 2 and Li 2 CO 3 . In all, this work provides improved understanding of the general role of solid promoters and enables rational design of promoters towards practical Li-air batteries.

Grant Number

ARC/DP140100401

Grant Number

ARC/DP170102267

Please refer to publisher version or contact your library.

Share

COinS