RIS ID

108379

Publication Details

Wang, H., Sencadas, V., Gao, G., Gao, H., Du, A., Liu, H. & Guo, Z. (2016). Strong affinity of polysulfide intermediates to multi-functional binder for practical application in lithium-sulfur batteries. Nano Energy, 26 722-728.

Abstract

Binder, one of the most important battery components, plays a critical role in lithium-sulfur batteries. Poly(vinylidene difluoride) (PVDF), a commonly used binder in lithium-sulfur batteries, does not have a strong affinity to the intermediate polysulfides, however, leading to fast capacity fading with electrochemical cycling. Herein, copolymers of vinylidene difluoride with other monomers are used as multi-functional binders to enhance the electrochemical performance of lithium-sulfur batteries. Compared to the PVDF, the copolymer, poly(vinylidene difluoride-trifluoroethylene) (P(VDF-TRFE)) binder exhibits higher adhesion strength, less porosity, and stronger chemical interaction with polysulfides, which helps to keep the polysulfides within the cathode region, thereby improving the electrochemical performance of the lithium-sulfur battery. As a result, sulfur electrode with P(VDF-TRFE) binder delivered a high capacity of 801 mA h g-1 at 0.2 C after 100 cycles, which is nearly 80% higher capacity than the corresponding sulfur cathode with PVDF binder.

Grant Number

ARC/DP1094261, ARC/LE0882613

Available for download on Thursday, June 21, 2018

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.nanoen.2016.06.036