Title

Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework

RIS ID

101852

Publication Details

Salunkhe, R. R., Tang, J., Kamachi, Y., Nakato, T., Kim, J. & Yamauchi, Y. (2015). Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano, 9 (6), 6288-6296.

Abstract

Nanoporous carbon and nanoporous cobalt oxide (Co3O4) materials have been selectively prepared from a single metal-organic framework (MOF) (zeolitic imidazolate framework, ZIF-67) by optimizing the annealing conditions. The resulting ZIF-derived carbon possesses highly graphitic walls and a high specific surface area of 350 m2·g-1, while the resulting ZIF-derived nanoporous Co3O4 possesses a high specific surface area of 148 m2·g-1 with much less carbon content (1.7 at%). When nanoporous carbon and nanoporous Co3O4 were tested as electrode materials for supercapacitor application, they showed high capacitance values (272 and 504 F·g-1, respectively, at a scan rate of 5 mV·s-1). To further demonstrate the advantages of our ZIF-derived nanoporous materials, symmetric (SSCs) and asymmetric supercapacitors (ASCs) were also fabricated using nanoporous carbon and nanoporous Co3O4 electrodes. Improved capacitance performance was successfully realized for the ASC (Co3O4//carbon), better than those of the SSCs based on nanoporous carbon and nanoporous Co3O4 materials (i.e., carbon//carbon and Co3O4//Co3O4). The developed ASC with an optimal mass loading can be operated within a wide potential window of 0.0-1.6 V, which leads to a high specific energy of 36 W·h·kg-1. More interestingly, this ASC also exhibits excellent rate capability (with the highest specific power of 8000 W·kg-1 at a specific energy of 15 W·h·kg-1) combined with long-term stability up to 2000 cycles.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1021/acsnano.5b01790